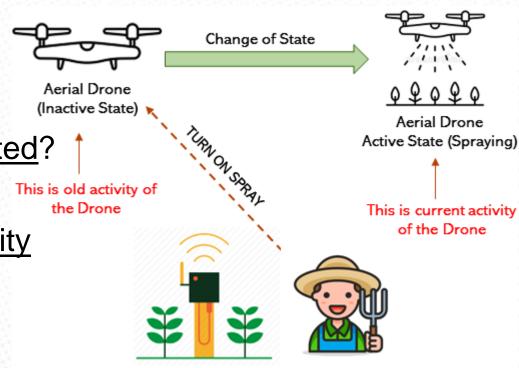
Towards Activity-Centric Access Control for Smart Collaborative Ecosystems

Maanak Gupta

Department of Computer Science
Tennessee Tech University

Ravi Sandhu

Institute for Cyber Security
University of Texas at San Antonio

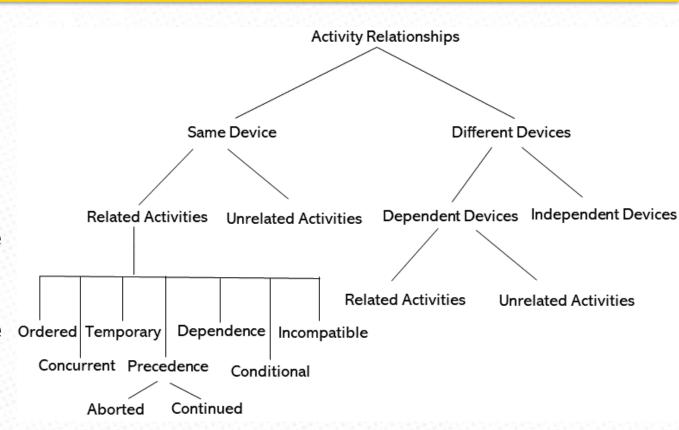


ACM Symposium on Access Control Models and Technologies

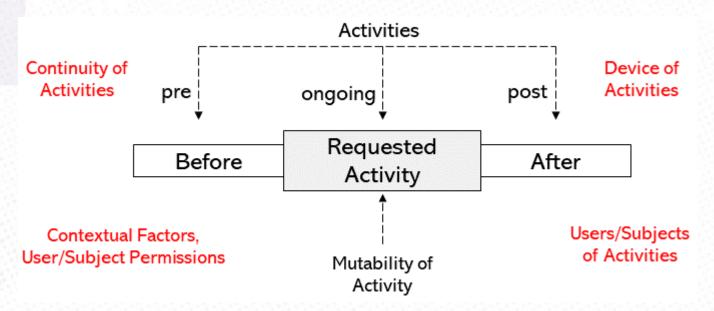
June 16-18th, 2021

The Notion of Activity.

- What is an <u>Activity</u>?
- What are the <u>entities</u> involved in an activity?
- How an activity is <u>initiated</u>?
- Associated <u>conditions</u>,
 <u>obligations</u> and <u>mutability</u>



Source of Activity Initiation


Activity Relation Characterization

- Ordered
- Concurrent
- Temporary
- Precedence
- Dependence
- Conditional
- Incompatible

Factors Impacting Activity Decision

Key Questions:

- Where is the activity allowed to perform?
- Who is allowed to perform the activity?
- When is the activity allowed?
- How many times an activity can be performed?
- Can an activity be performed when other activity is in place?
- Several unexplored questions...

Activity Control Expression

- Generalized structure and representation of expression
- No attempt to propose a formal language

```
Object: ObjectX
( (op, sourceX, activityX),
  (pre_conditions),
  (current_conditions),
  (resulting_conditions),
  (contextual_conditions) \rangle where
  pre_conditions, current_conditions and resulting_conditions can
  be expressed as \langle (pre_state, objA, sourceY), ...... \rangle,
  \langle (cur_state, objB, sourceZ), ...... \rangle, and as
  \langle (new_state, objC, sourceX),... \rangle respectively.
```

Example Expressions

Activity Control Policies in Smart Farming

Activity Example 1: A soil moisture sensor can issue operation TURN ON to a water sprinkler and change its state to active (i.e. water sprinkler is running), only if the water sprinkler is currently in an inactive state which was changed by farm-manager (this is a pre-condition).

```
Object: Water Sprinkler (TURN-ON, moisture sensor, Spraying), (cur_inactive, Water Sprinkler, farm-manager) >.
```

Activity Example 3: Thermal imaging is activated on the Aerial Drone by autonomous tractor only after the drone is done with the spray which was initiated by weed detector, and as a consequence of the start of the new activity (i.e Thermal-imaging) the spraying should be stopped.

```
Object: Aerial Drone

( (IMAGING-ON, autonomous tractor, Thermal imaging),
(cur_spraying, Aerial Drone, weed detector),
(new_inactive-spraying, Aerial Drone, autonomous tractor) ).
```


Example Expressions

Activity Control Policies in Smart Manufacturing

```
Activity Example 6: Air Conditioner cooling in the pharmaceutical
facility cannot be turned on by the thermostat if the moisture sensor
is inactive, and the current temperature is greater than 75.
Object: Air Conditioner
⟨ (TURN-ON, thermostat, Cooling),
(cur active, moisture sensor, ANY),
(value(temperature) > 75).
Activity Example 7: Oil pumping by the smart valve can be activated
only after hydrotreating is performed by the hydrotreater unit by
worker. After oil pumping, outlet valve should remain closed.
Object: Tank Pump
⟨ (TURN-ON, valve, pumping),
(pre_hydrotreating, hydrotreater-unit, worker),
(post_closed, outlet valve, ANY) ⟩.
Activity Example 8: Robotic Arm must be inactivated when produc-
tion belt accelerometer is vibrating.
Object: Robotic Arm
(Inactive, ANY, Inactive),
(cur_vibrating, production belt, ANY) ⟩.
```

Research Questions

- Operational Model and Extensions
- Enforcement Architectures
- Policy Language and Constraints
- Administrative Models
- Convergence with existing models
- Al and data driven deployment
- Safety Analysis

Thank You..!!

Questions, Comments or Concerns

