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Abstract—Dynamic Separation of Duties (DSOD) is a well-
known and important concept in cyber security, which has been
extensively studied in the literature. The published literature
mostly assumes that necessary information for enabling DSOD
constraints is readily available. As such, there has been little dis-
cussion on the tasks of capturing, storing, extracting, and utilizing
necessary historical information. Since this information is often in
the form of system events history, provenance data is naturally
suitable as the source for DSOD-related information. Recently
the notion of provenance-based access control (PBAC) has
been formulated and a base PBAC model (PBACB) together
with an underlying provenance data model has been formally
specified [19], [22]. Unlike Role-based Access Control where
DSOD is modeled as a constraint, PBACB directly maintains
and utilizes the necessary information for DSOD enforcement. In
this paper, we propose an enhanced model, PBACC , by extending
both the provenance data model and the PBACB model to
enforce various DSOD policy classes identified in the literature,
and go beyond these to specify novel DSOD policy classes.
A proof-of-concept prototype is implemented and evaluated to
demonstrate the feasibility of our approach.

I. INTRODUCTION

Separation of Duties (SOD) has long been studied and
accepted as a fundamental approach to prevent fraud and
privileges misuse and abuse. Two major variations of SOD,
Static SOD (SSOD) and Dynamic SOD (DSOD), are mainly
discussed in the context of Role-based Access Control [26].
Static SOD has shown its usefulness and effectiveness in
that domain, as evident by the multitude of researches in the
literature. However, the approach has a major limitation as
it mainly deals with role assignment and henceforth cannot
address issues that arise within a dynamic active session.
The original concept of DSOD addresses this limitation.
Yet, this approach is also limited in its narrow role-centric
scope as it is solely concerned with role activation. For
expansion, researchers propose variations of DSOD, each
of which address a separate issue. The variations include
Object-based (ObjDSOD), Operational(OpsDSOD), and to the
broader extent, History-based DSOD (HDSOD) [10], [27].
These approaches rely on the history information of system
events, which is assumed to be readily available. However,
there lacks exact specifications on how such information can be
captured and utilized. Provenance data naturally provides such
information and its unique characteristics enable even more
sophisticated DSOD features that have not been recognized so
far in the literature. Therefore, we propose a DSOD approach
that utilizes provenance information. The expressive power of
provenance utilization can further enable finer-grained DSOD

policies and address other DSOD-related issues such as object-
based conflicts and workflows.

Specifically, we build our approach on a notion called
dependency path pattern that can be used to identify mean-
ingful paths in provenance graphs [19]. This notion is used
as a foundation of a base model for Provenance-based Access
Control [22]. In this model, the system operation events are
captured following the Open Provenance Model (OPM) style
[16] provenance graph.1 Dependency path patterns and asso-
ciated abstraction names are built upon the base provenance
graph that consists of vertices (subjects, actions, objects) and
connecting causality dependency edges. While the base PBAC
model, or PBACB , is capable of handling some DSOD
aspects, it is limited by the types of information that are
captured as provenance data. Specifically, the PBACB model
only captures the basic information of user transactions (User,
Action, Objects) in provenance data and ignores other essential
contextual information (e.g. timestamps, activated roles, etc.).
Such simplification serves well for the purpose of demonstrat-
ing the core concepts of the model. However, in abstracting
away such contextual information, the PBACB model is
restricted in its capability to handle other traditional DSOD
issues as well as enhanced DSOD features that are specific
to provenance-aware systems. To support both previously and
newly identified DSOD, this paper extends the PBACB model
to capture and express the necessary contextual information of
transaction events.

We proceed to discuss these issues and concerns in the
context of the following online homework grading system
(HWGS) examples. Essentially, students can upload a home-
work to the system, after which they can replace it multiple
times before they submit the homework. Once it is submitted,
the homework can be reviewed by other students or designated
graders until it is graded by the teaching assistant (TA). The
Professor holds the highest authority.

In this paper, we make the following novel contributions:

• Identify the potential use of provenance data in ad-
dressing traditional DSOD issues.

• Provide an extended model, PBACC , to the base
PBAC model which is capable of addressing the
described DSOD issues.

1Currently, Prov-DM [2] model extensions are being built upon OPM’s
foundational constructs. For our purpose, the extended Prov-DM model does
not bear essential impact and hence OPM suffices.
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Simple DSOD ObjDSOD OpsDSOD HDSOD TCE DSOD in PBAC
Per Role X X X X X X

Per Action X X X X X
Per Object X X X X
Task-aware X X X X
Order-aware X X X

Weighted Action-aware X X
Dependency Path Pattern-aware X

Past Attribute-aware X
TABLE I. DSOD VARIATIONS AND FEATURES

• Identify new classes of DSOD concerns that have not
been discussed elsewhere and are unique to PBACC

systems.

• Implement a proof-of-concept prototype, which is
based on the XACML architecture [17], and provide
evaluation results that demonstrate its feasibility in
practical system deployment.

II. DYNAMIC SEPARATION OF DUTY: VARIATIONS

Table I shows several classic DSOD variations that are
identified in the literature [10], [25], [27] and some of their
unique control features. So far most of the published research
on DSOD (or more generally SOD) have been in conjunction
with RBAC. In particular, SOD is developed around the main
concept of dividing a business task into smaller subtasks or
other identifiable units such as actions, each of which is
assigned to individual roles. These roles are specified into
conflicting role sets from which policies can be specified and
enforced to achieve SOD.

A definition of simple DSOD is given in [27]. Informally,
the concept can be described as follow. Given a set of con-
flicting roles in a RBAC system, no single user can activate
two or more roles from this set at the same time. For example,
in a HWGS scenario, no user should be able to activate the
roles Student and Reviewer at the same time. This notion of
DSOD is limited in that it cannot support per-action control
and therefore different variations are introduced [27].

One variation of DSOD is Object-based DSOD (ObjD-
SOD) [27]. Informally, the concept can be described as follow.
Given a set of conflicting roles and a set of conflicting
actions allowed in the conflicting roles, while a user may have
conflicting roles activated at a given time, a user is not allowed
to perform an action allowed in a role on an object if she
performed a conflicting action allowed in conflicting roles on
the same object. Here, the focus is emphasized on a singular
data object upon which conflicting actions are considered. For
example, a user should not be allowed to review the homework
object that user submitted earlier while the user is allowed to
review other homework.

Operational DSOD (OpsDSOD) [27] is another approach
that can be described as follow. Given a set of conflicting roles
and a set of actions allowed in the conflicting roles, while a
user may be assigned to the conflicting roles, the user is not
allowed to perform all the actions allowed by the conflicting
roles if the union of the actions can complete a particular
task. For example, suppose students in a business course are
required to participate in an online role-playing project and
provide inputs as different roles such as CEO and CTO to
finish a given task. While students can acts as multiple roles

in the project, one student cannot perform all the actions of
roles where the roles are necessary to finish the required task.

History-based DSOD (HDSOD) [27] is defined as the
combination of ObjDSOD and OpDSOD to allow finer control
that are both object and task aware. More specifically, while
operational DSOD prohibits users performing a set of action
types that can finish a particular task, it is object-unaware
and does not distinguish certain actions that are performed
in a task for different objects. History-based DSOD resolves
this issue by combining object-based DSOD and operational
DSOD. One added characteristics of History-based DSOD
is the consideration of order-dependent subtask sequences
for identifying SOD conflicts. Order-dependent conflicts arise
when the subtasks are allowed or obliged to occur in a certain
order. For example, a homework should always be submitted
before it can be reviewed.

Proposed by Sandhu [25], Transaction Control Expression
(TCE) is another traditional approach toward DSOD issues
which possesses its own interesting features. TCE is flexible
in the sense that it can cover a wide range of DSOD features
exhibited by other DSOD variations. At the same time, it also
assumes a readily available system-maintained history to rely
on for access decision. TCE also introduces the notion of
weighted subtasks. From this point of view, each subtask is
assigned an integer value as a weight. The conflict is then
determined by whether the total weight of actions exceeds a
particular weight threshold. An example of this can be seen
in how peer-review processes are introduced in the HWGS.
A fellow student can review another student’s homework,
whereas each review process can be assigned a weight 1.
Homework can also be reviewed by designated graders, each
of whose reviews can be assigned a weight 2. A TA can
only grade a reviewed homework if the combined weight of
all review processes exceeds 3, which can happen by various
combinations of student and grader reviews.

In Table I, we also identify new features of DSOD that are
unique to the PBACC environment. Specifically, dependency
path-aware refers to cases where the units of conflict are not
individual roles, objects, or actions. Instead, conflicts can arise
between different dependency paths, which more expressively
capture meaningful relations in the system. Another feature,
past attribute-aware, refers to how context information of past
transactions can be utilized for DSOD constraints. Both of
these unique features are further discussed later in the paper.

III. PBACC - EXTENDED PBAC MODEL

The PBAC base model PBACB , proposed in [22], pro-
vides a foundation for enhanced access control mechanisms
that utilize provenance information. While the PBACB model
certainly facilitates access control issues, including dynamic
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Fig. 1. Components of the PBACC Model

separation of duties and workflow control, it is currently
restrictive in the type of provenance data the model can
capture, store, and extract. As a result, not all DSOD features
identified in the previous section can be supported in the
current PBACB model. To address these issues, we propose
an extension model, PBACC , that utilizes contextual infor-
mation of subjects, actions and objects (which are captured as
attributes and anchored to actions in provenance data).

A. PBACC Model Components and Interaction

Figure 1 provides an overview of the extended provenance-
based access control model we propose in this paper. We
provide more detailed descriptions of various newly added and
modified components, which form the essential parts of the
extended model, in the subsection. We also provide an abstract
discussion on the interaction of these model components in an
access control context.

1) Components: Essentially, the PBACC model includes
the following components:

Subjects (S): represent acting users and interact with the
system through initiating access control requests and perform-
ing granted requesting actions. While the PBACB model
does not differentiate between acting users and subjects as the
authors assume that it is trivial to obtain the associating acting
user from a subject, such simplification causes the model to be
not fully sufficient in addressing DSOD concerns. In a RBAC
system, subjects correspond to sessions, where each session is
initiated by an acting user activating a subset of his assigned
roles. For the model to be role-aware, we make the distinction
and utilize the notion of subjects in place of acting users.

Actions (A): represent the set of operations on data objects.
These actions are supported by a Provenance-aware System
(PAS) in the sense the corresponding provenance information
can be captured, represented, stored, and extracted.

Objects (O): represents all data pieces that are stored and
utilized by the system. Objects are the main target of protection
around which access control mechanisms are built.

Requests (R) and Policies (P): represent the initiation for
access to resources and the applicable rules that determine the
responses to such requests. Since interactions with the system
are no longer directly perpetuated by the acting users but by
the subjects instead, requests are changed to the form (Subject,
ActionType, Objects). Object Roles (OR) are constructs that
enable more precise policy rule specification for requests
which include multiple input objects as parameters. In addition,
provenance information is utilized in assisting this process.

Dependency List (DL): contains all system-specific prede-
fined pairs of Dependency Name (DNAME) and Dependency
Path (DPATH). DNAME are semantical abstractions that are
assigned to specific patterns of edges, DPATH(s), which hold
significance in the context of the specific application domains.
These constructs facilitate policy specifications.

Provenance Data (PD): provenance data captures user
transactions in a directed acyclic graph structure which allows
edge-traversal enabled queries to be performed on a graph node
and obtain resulting sets of vertices that provide lineage, ver-
sioning, and other provenance-related information. Provenance
Data comprises two subtypes:

• Base Provenance Data: represents the causality depen-
dencies between request components that are captured
as results of an access request being granted and
executed.

• Attribute Provenance Data: represents the contextual
information that is associated with the main compo-
nents of a request (S, A, or O).

Contextual Information (CI): captures state values of the
main components of a request at transaction occurrence time.
We identify four different categories of CI:

• Acting Users-related Context: In each application sys-
tem, an acting user serves as an initiator on access
request and associating system events. The context
information of acting users can include typical infor-
mation such as user ID and other forms of attributes.2

• Subjects-related Context: While the acting users are
responsible for interacting with the system, the sub-
jects are entities that perform actions on behalf of the
acting users. In a typical RBAC system, subjects are
equivalent to sessions. The contextual information of
subjects can include session id, set of activated roles,
etc.

• Actions-related Context: The contextual information,
which is associated with each action instance that
arises from a system event, is unique. The context in-
formation that relates actions include temporal aspects,
location, weights, etc. Action context information is
most suitable for more expressive forms of access
control mechanisms.

• Objects-related Context: The object context informa-
tion can include information such as object size, URI,

2We note that while the acting user is not directly captured as a provenance
entity, it is trivial to obtain the acting user information from the subjects that
the user activates. Therefore, acting user context is effectively still captured
in provenance attribute data.
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Fig. 2. OPM-style Provenance Graph Notations in PBACC

etc. Although the object context information can also
include information about the origin, list of previous
versions, etc., these information does not need to be
stored as contextual information as such information
is likely to be captured and stored in provenance
graph and can be retrieved by accessing the stored
provenance data.

2) Interaction: As an access request is generated, the
Access Evaluation module extracts the request information to
locate the appropriate policies for evaluation. These policies
typically make use of the dependency names and associ-
ated path expressions, both of which are maintained in the
dependency list (DL). The path expressions are constructed
using regular expression and carry application-specific seman-
tics. They are used to identify the causality dependencies
and contextual information of transaction components (i.e.,
subject, action, object) that are stored in the provenance
storage. Naturally, they can be used to traverse the graph-
based provenance data to extract information that is necessary
for making access decision. When an access request is granted,
the current contextual information is stored as provenance data.
This contextual information is uniquely anchored to the action
instance of the access transaction in provenance data.

B. Provenance Data in PBACC Model

1) Provenance Data Model: Provenance data naturally
forms a direct-acyclic graph (DAG). The main entities that
are captured in provenance data comprise the graph vertices.
The directed edges between adjacent vertices represent the
causality dependencies between those vertices. The Open
Provenance Model (OPM) [16] is a graph-based model for
PD. OPM identifies three main types of vertices as agents,
process, and artifacts to refer to subjects, actions, and objects
respectively. The vertices are graphically depicted as hexagons,
rectangles, and circles, respectively. The dependency edges
between these vertices are identified as wasControlledBy (or
c), wasGeneratedBy (or g), used (or u), wasDerivedFrom,
and wasTriggeredBy. PBACB model utilizes mainly u, g, c
dependencies for capturing the essential relationships between
entities. For more expressive and finer-grained access control,
we introduce an additional type of graph edge hasAttributeOf
(or t) and an additional type of vertices which capture the
attribute types and values of the core provenance entities.
PBACB model allows subtypes of u and g edges. We further

allows subtypes of edge t. Variation of edge subtypes is
essential for finer-grained and meaningful policy expressions.
In figure 2, these subtypes are represented with the parameter,
type, assigned with specific edge subtypes. The OPM original
notations are depicted along with the new notations introduced
to capture the concepts presented in the extended model.

2) Capturing User Transactions in Provenance Data: In
this section, we describe our perception of how provenance
and attribute data of user transactions can be captured in
the system. The concept is discussed in the context of the
OPM causality dependencies and additional notations that are
discussed in the earlier subsection.

In a provenance-aware system, we assume that all user
transactions can be captured by the mechanisms available
within the capabilities of the underlying system. Without loss
of generality, we assume that the capture of a user transaction
can be simplified to a construct of the form (Subject, Ac-
tion, InputObject, OutputObject, ContextualInfoSet). Depend
on the use cases, either InputObject or OutputObject can
be optional (but not both). ContextualInfoSet is a set of all
contextual information related to the transaction which is
configured and selected as necessary by the system design.
Such a set should contain entries of the form (actionIn-
stance,attributeType,attributeValue) where an actionInstance
represents unique ID of the action performed. For example,
(upload1,weight,3) captures the weight attribute of the upload1
action with the value of 3. The types of attributes and associat-
ing values to be captured are anchored to action instances even
though attribute types are associated with either subjects/users,
objects or action as discussed earlier. As identified in [16], such
raw captured information can be represented as a set of triples.
Provenance is unique in its feature of forming a direct-acyclic
graph (DAG). This characteristic enables powerful capabilities
such as ability to traverse the graph and linking of different
data objects and object versions. The OPM model exhibits the
DAG-like nature of provenance data through the use of basic
dependency edges between the identified vertices. These serve
as the foundational blocks upon which we build our model.

As discussed earlier, while we capture the context informa-
tion of different transaction components (i.e., subjects, actions
and objects) when the information is captured as attribute
provenance data, the attributes are anchored to the action
instances. For example, within a homework grading system
scenario, a transaction (Subject1, Grade1, HW1, GradedHW1,
ContextualInfoSet-Grade1) can be captured in OPM format
as (Grade1, u, HW1), (Grade1, c, Subject1), (GradedHW1,
g, Grade1). If the essential ContextualInfoSet-Grade1 con-
sists of the following information (ActingUser:Alice, Subject-
Role:TA, Grade-Weight:2, HW1-size: 10MB), they can be
captured with the following triples: (Grade1, t(actingUser),
Alice), (Grade1, t(activeRole), TA), (Grade1, t(weight), 2), and
(Grade1, t(object-size), 10MB).

Anchoring transaction attributes to an action instance is
necessary and particularly useful for effective management of
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1) S,A,AT,O,OR and ATT are subjects, action instances, action types, objects, object roles, and attributes respectively.
2) G,U,G�1, U�1, T and T�1 are sets of type variations of ‘WasGeneratedBy’ and ‘Used’ dependencies, matching sets of their inverse dependency types, a set of variations
of ‘hasAttributeOf’ attribute types, and a matching set of its inverse attribute types, respectively.
3) {‘c’, ‘c�1’} is the set of ‘WasControlledBy’ dependency type, its inverse dependency type.
4) Provenance data PD forms a directed graph and is formally denoted as a triple < V,E,L >:
a) V = S [ A [ O [ ATT , a finite set of subjects, action instances, objects, and attributes that have been involved in transactions in the system and are
represented as vertices;
b) L = {‘c’} [ U [G [ T [ {‘c�1’} [ U�1 [G�1 [ T�1, a finite set of dependency type labels and attribute type labels;
c) E ✓ {(A⇥ S ⇥ ‘c’) [ (A⇥ O ⇥ U) [ (O ⇥ A⇥G) [ (S ⇥ A⇥ ‘c�1’) [ (O ⇥ A⇥ U�1) [ (A⇥ O ⇥G�1) [ (A⇥ ATT ⇥ T ) [ (ATT ⇥ A⇥ T�1)},
denoting provenance graph edges, is the set of existing dependencies and attributes types in the provenance data. 3

5) DNAME, disjoint from L, is a finite set of abstracted names for a composition of dependency types and attribute types.
6) Let ⌃ be an alphabet of terms in L [DNAME. The set DPATH of regular expressions is inductively defined as follows:
a) 8p 2 ⌃, p 2 DPATH; ✏ 2 DPATH;
b) (P1|P2), (P1.P2), P1⇤, P1+, P1? 2 DPATH , where P1 2 DPATH and P2 2 DPATH .
7) DPATH

L

✓ DPATH , is the set of regular expression using only alphabet of terms in L.
8) DL : DNAME ! DPATH , defines each dname 2 DNAME as a path expression. DL is also viewed as a list of pairs of dependency names and corresponding
dependency paths.
9) � : DNAME ! DPATH

L

, maps each dname 2 DNAME to a path expression using only dependency type and attribute type labels l 2 L by repeatedly
expanding the definitions of any dname

i

2 DNAME that occurs in DL(dname).
10) P is a finite set of informal XACML-compatible policies.
11) An access evaluation procedure AccessEvaluation(s, a,O) which utilizes the following functions:
a) � : AT ! P , a mapping of an action type to a policy.
b) � : {S [ A [ O}⇥DPATH

L

! 2V , a function mapping a vertex (except attributes in ATT ) and a dependency path to vertices in PD such that
v2 2 �(v1, dpath) iff there exists a path in PD from v1 to v2 whose edge labels form a string that satisfies the regular expression dpath.
c) F is a set of evaluation functions which can be used to evaluate a set of vertices. These functions are application-specific and are designed to suit policy requirements
of the underlying target system.
d) RF is a set of rule-evaluation functions which can be used on the result returned by a function f 2 F and returns a Boolean.
e) RuleCombine : 2Boolean ! Boolean, is a function which evaluates a set of Boolean values through conjunction and disjunction.

TABLE II. FORMAL SPECIFICATIONS FOR PBACC

attributes. The further discussion is made in the next section.

C. PBACC Model Specifications

The formal specifications for our extended model is built
upon the formal definitions provided in [22]. In Table II, we
provide the formal specifications for the extended components
identified in the above subsection.

We describe how our provenance data model can be utilized
in the PBACC model. Specifically, the components (S, A,
O, and ATT) are captured as vertices on the provenance
graph. Causality dependencies types and subtypes are used to
label the directed edges between the vertices of types (S, A,
and O). Attribute types and subtypes are also used to label
the directed edges between A and ATT vertices. Also, we
currently only allow incoming edges to attribute nodes and no
outgoing edges from them. The u, g, t edge types (but not c are
further differentiated by assigning a subtype. These variations
of edges are facilitated to capture different semantics or types
of the dependency relationships between corresponding edges
In addition, each edge type is accompanied with an inverse
edge type which allows traversal toward the future transaction
instances in provenance data.

There are two ways in which we can capture the attribute
provenance data in the graph-based data model.

• The attribute data of a vertex s, a or o is stored as an
attribute vertex connected to the corresponding vertex.

• The attribute data of a vertex s, a or o is stored
as an attribute vertex connected to only the vertex
a. Specifically, attribute of s and o is connected to
the vertex a that is associate with s, o in a same
transaction.

3In the Table II 4c), note that only certain kinds of edges can exist (no O
to O edge for example) and only certain labels can be applied to certain kinds
of edges (A to S edge must be labelled ‘c’ for example). By definition each
edge is accompanied by its inverse edge to facilitated traversal in forward and
backward direction. If the inverse edges are dropped the graph will be acyclic
as in the OPM model.

In our model, we choose the second approach. Contextual
information of a transaction is stateful and only meaningful in
the context of the associated action instance. Anchoring such
stateful information to any other vertices (of types S or O)
which can be stateless may result in inconsistent and incorrect
policy evaluation. For example, a single subject instance can be
involved in multiple different action instances while activating
different roles for different actions. In such case, if provenance
data stores the list of active roles as an anchored attribute
to the corresponding subject, multiple attributes with different
lists of active roles may exist. This then creates difficulty in
identifying which list is for which transaction. On the other
hand, as there could be only one action instance for each
transaction, anchoring attributes to a corresponding action will
eliminate this problem.

We also note the difference between the query-tracing pro-
cess between our model and the PBACB model. Specifically,
PBACB only allows the starting node, from which a regular
path expression query can be traced, to be exclusively O. In
our model, we relax this restriction and allow the starting node
to be any of the three vertex types (S, A, and O).

Based on the model components, access requests can be
evaluated and decided following the access evaluation algo-
rithm provided in Algorithm 1. Policies can be informally
specified using a policy grammar that is modified and in-
crementally extended from the grammar provided in [22].
A policy specification provides a mechanism for matching a
request to a corresponding policy ruleset. Each policy rule
utilizes pairs of a dependency name construct, which can be
applied with a function � to arrive at base dependency path
patterns, and an associated starting graph node to be applied
with a function � which traces through the provenance graph
and obtains a set of resulting nodes. Another function, f , can
then be applied on the resulting nodes set to obtain values
which can be used to assist the evaluation of a rule decision
through a function rf . All rules decisions are then combined
in accordance to a RulesCombining procedure specified in the
policy body.
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Algorithm 1 AccessEvaluation(s, a,O)
1: (Rule Collecting Phase)
2: at a’s action type
3: p �(at)
4: RULE  access evaluation rules Rule found in p
5: (Evaluation Phase)
6: for all Rule in RULE do
7: Extract the path rule (StartingNode,DNAME) from Rule
8: Extract type of StartingNode as S, A, or O
9: if type is O then

10: Extract ObjRole of StartingNode
11: Determine the object o 2 O, whose role is ObjRole
12: Set value of StartingNode to o
13: end if
14: if type is S then
15: Set value of StartingNode to s
16: end if
17: if type is A then
18: Set value of StartingNode to a
19: end if
20: Extract dependency path expression dpath 2 DPATH

L

from DNAME
using � function

21: Determine vertices V Set by tracing provenance data PD through the paths
expressed in dpath that start from the vertex StartingNode using � function

22: Extract f 2 F from Rule and execute it on V Set
23: Extract rf 2 RF from Rule and execute it on f(V Set)
24: Store rf(f(V Set)) in RuleEval
25: end for
26: Execute RulesCombining(RuleEval) and return the Boolean result

All the specific evaluation functions associated with a
particular instance of request are obtained from the rule
specification in the policy body. For example, consider the
sample policy 4 provided in the next section. In this policy,
the function f is specified as the sum function and the rf
function is specified as “greater-than-or-equal” 3.

IV. DSOD IN PBACC MODEL

In this section, we illustrate how the PBACC model can be
utilized to support traditional DSOD policies. We also identify
and discuss several limitations of current approaches as well
as additional unique DSOD and some access control features
that can be supported with the PBACC model.

A. Traditional DSOD in PBACC Model

We provide a set of informal policies to express the
various DSOD constraints in a provenance-aware system. In
the following sample policies, we are using several sample
DNAMEs which we assume are defined accordingly in the
dependency list DL of the application system. These DNAMEs
can be broken down to a dependency path of basic edge labels
(i.e., u, g, c variations), as defined in the model specification,
and then utilized in regular path queries. Furthermore, we
note that these informal policies can be easily translated to
equivalent XACML policies such as the representation of the
sample policy 2 as shown in Listing 1.

Sample Policy 1: represents a simple DSOD concern in
a single session only for simplicity.4 In particular, a subject
should not be active with the role “Reviewer” to activate the
role “Student”.

4Our approach can also address simple DSOD for multi-sessions where
active roles of all active sessions of the same user need to be considered
by identifying all the active subjects of the same user in provenance data.
However, we do not discuss further due to the space limitation.

allow(sub,activate,Student) ) Reviewer /2
� (sub, performedActionsOf:hasAttributeOf(activeRoles)).

In this example, the DNAME performedActionsOf is
used to determine all the actions performed by the subject so
the resulting action vertices can be used to identify all the ac-
tive roles of the subject with hasAttributeOf(activeRoles).
Then the policy evaluates whether the “Reviewer” role is
among the active roles found by the � function.

Unlike other DSOD variations identified in this paper,
simple DSOD does not require any historical information as it
only utilize information of currently active roles of the user of a
subject. However, it can be still achieved by using provenance
data only though it may not be ideal to exercise. To achieve
this, as shown above, we first need to find all the actions
performed by the subject then further find all the active roles
of the identified actions.

Sample Policy 2: represents an ObjDSOD concern that
requires the requesting subject on replacing a homework object
to be activated by the same acting user who activated the
subject on uploading it.

allow(sub,replace,o) )
�(sub,hasPerformedActions:hasAttributeOf(actingUser))
2 �(o,wasUploadedBy) ^ count(�(o,wasSubmittedVof)) = 0.

In this scenario, to allow a subject sub to perform
(action:replace) on the object (o), the acting user of sub
should have performed (action:upload) on, either through the
same or different subjects. The acting user of sub can be
found by tracing provenance graph staring from o following
the path identified as DNAMEs hasPerformedActions :
hasAttributeOf(actingUser). The user who uploaded o can
be obtained by tracing through the provenance graph starting
from o and following path as defined with the DNAME
wasUploadedBy. In addition, the DNAME wasSubmittedVof
is used in a separate rule to specify an additional rule that the
homework object should not have been submitted as well.

Sample Policy 3: represents a history-based DSOD
(HDSOD) concern by requiring that a request to review
a homework object can only be allowed after the object is
submitted and before it is graded.

allow(s,review,o) ) count(�(o,wasSubmittedVof)) 6= 0 ^
count(�(o,wasGradedOof�1)) = 0.

Sample Policy 4: represents a weighted-action DSOD
concern where the weight of each review process is summed
up and the total is used to regulate the access request to grade
an object.

allow(sub,grade,o) )
sum(�(o,previousReviewProcesses:hasAttributeOf(Weight)))
>= 3.

DNAME is utilized in all policies for specifying the policy.
While careful selection of such named abstraction can convey
the semantics of the provenance graph path, it is the DPATH
expression that describes a precise path and is used for actual
tracing process. We also note that while a DPATH expression
can be paired with any types of starting vertex (either subject,
object, or action), for efficiency and effectiveness, one type
of starting vertex is preferable to another in different cases.
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In our HWGS example, we can utilize DPATH(s) with object
starting vertices for addressing ObjDSOD and subject starting
vertices for simple DSOD, OpsDSOD and HDSOD issues.

B. Unique DSOD Features in PBACC Model

The utilization of provenance data in the form of DPATH(s)
supports the traditional DSOD variations effectively. Further-
more, it also supports novel features that have not been
discussed much, if at all, in the literature. We briefly introduced
these features in Section II. In this subsection, we elaborate
on these unique features PBACC brings about.

Feature 1: Awareness of Past-Action attribute. Context
information of the system components provides insightful
information on the current state of the system. The information
is useful not only for access control mechanisms in the current
state, but can also play important part in future access control
cases. PBACC provides convenient mechanisms for storing
and carrying the state attributes of a current action instance
into the future, at which point they are past attributes of the
current action instance. We demonstrate this novelty through
the weight-action example.

When an action transaction is executed in the system, it
is assigned a weight by the system policy and setting. That
weight attribute is stored in the provenance data in association
with that particular action instance. At some later point in
the future, the system may assign a different weight value to
that action type. An access control policy based on weighted
actions can base policy rules on either the current weight
attribute state or the ones captured in the past action transitions.
PBACC facilitates this process and can support both type of
mechanisms.

Feature 2: Dependency Path Pattern-based DSOD. Most
of traditional DSOD approaches base the control on some
fixed and restrictive form of control unit, especially actions.
With regular expression-based DPATH(s), we achieve much
more expressiveness in the specification of the control unit. In
particular, we can express a wide variety of path patterns which
includes sequences, repetitions, existences, and any combi-
nations of actions. Additionally, the intrinsic characteristics
of provenance data enables versioning of a data object and
linkages of distinct but related data objects. This enables the
grouping of objects or object versions with meaningful seman-
tics, on which DSOD constraints (e.x., conflicting actions on
current and past object versions instead of a particular object),
can be specified.

The identified features above allows a broader family of
DSOD policies and constraints to be specified. This goes hand
in hand with the complexity a provenance-aware environment
and all its huge amount of data and the associating complexity
can produce. It seems natural that as the amount of data
and complexity rises, so do concerns of DSOD involved in
such environment. Utilizing provenance constructs such as
dependency path patterns and associating dependency names
can lay a strong foundation for addressing this phenomenon.

Fig. 3. An extended XACML architecture

V. PROTOTYPE: ARCHITECTURE, IMPLEMENTATION, AND
EVALUATION

A. Extended XACML Architecture

1) Existing Components: The main components of the
XACML architecture include the Policy Enforcement Point
(PEP), Policy Decision Point (PDP), Policy Administration
Point (PAP), and Policy Information Point (PIP). The PEP is
responsible for receiving and enforcing access requests from a
front end interface. The PDP receives the transferred request
from the PEP and is responsible for evaluating the request.
It does so by obtaining the appropriate policy sets and rules
from the PAP. It also obtains relevant additional information
from the PIP, which is responsible for looking up information
involving the subjects, objects and the system environment.
Obligations also play important roles but the concept is outside
the scope of our approach and henceforth not considered in
details.

2) Policy Language: The XACML policy language essen-
tially comprises policy targets and policy rules. The policy tar-
gets include subjects, actions, and resources. The policy rules,
which are used for access decisions, consist of conditions and
potentially obligations. We can express the informal policies
for PBAC mechanism with the XACML policy language. For
example, policy 2 can be expressed in an equivalent XACML
policy as shown in Listing 1. Here, the function “provenance-
query-SPARQL” corresponds to � while the other functions
capture other rules evaluation functions correspondingly.

3) PBAC Reasoner Component : In order to enable PBAC
mechanisms in the XACML framework, we propose an exten-
sion to the existing XACML architecture as shown in Fig 3.
Specifically, we introduce a new component, PBAC Reasoner.
The PBAC Reasoner communicates directly with the PDP
and PAP components and is responsible for the specification
of provenance-based access control policies. It also provides
specific mechanisms for storing and extracting provenance data
for access control request evaluation. The PBAC Reasoner
component is further composed of three additional subcom-
ponents:

• Dependencies Repository (DR): The dependencies
repository component is responsible for storing
application-specific dependency lists. In this work, we
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assume only one set of dependency path patterns and
associating dependency name constructs is at use, as
only one system is in concern. However, it is possi-
ble to have multiple dependency lists when multiple
systems are considered, as in a cloud or distributed
environment. The dependency list is utilized by the
PAP for policy specification purposes.

• Provenance Data Repository (PDR): The PDR compo-
nent is responsible for storing captured provenance in-
formation. This can include both the base provenance
as well as attributes data.

• Query Engine (QE): The query engine is mostly
associated with the provenance database employed by
the PDR. It is important that the QE is capable of
performing regular path queries as provenance graph
tracing is essential in the PBAC approach.

B. Implementation

Our prototype employs various state-of-the-art tools avail-
able in the community. We are using the Oasis XACML5

implementation for policy specifications and the existing im-
plementations of the XACML components. For the PDR, we
are utilizing the Jena framework [6], where provenance graph
is stored in RDF-triples [15] format. In this work, we are using
Jena-2.7.4 and the corresponding ARQ package 6. The query
engine associating with Jena is ARQ, which we utilized to
execute SPARQL [24] queries on the RDF-format provenance
graph database. Dependency lists are trivially implemented as
arraylists of String values-pairs. To enable the communication
between the existing components of the XACML framework,
specifically the PDP and the PBAC Reasoner components, we
implemented a specialized function that can be incorporated to
the XACML framework at runtime. The function is essentially
an extended class to the FunctionBase class available in the
Sun’s framework. The function essentially performs the tasks
equivalent to the functions � elaborated in the model specifi-
cation. It it assigned a NAME-ID, in our case “provenance-
query-SPARQL”, and then incorporated, after which it can be
used in policy rulesets, as shown in Listing 1.

Listing 1. Sample Policy 2 in XACML
<Policy PolicyId="replacePolicy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-

combining-algorithm:ordered-permit-overrides">

<Target>

...

<Actions>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0

:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">replace</AttributeValue>
<ActionAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>

</Action>

</Actions>

</Target>

<Rule RuleId="ReplaceRule" Effect="Permit">

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0

:function:and">

5https://www.oasis-open.org/
6http://jena.apache.org/

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-is-in">

<Apply FunctionId="provenance-query-SPARQL">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-one-and-only">

<SubjectAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">hasPerformedActions:hasAttributeOf(actingUser)
</AttributeValue>

</Apply>

<Apply FunctionId="provenance-query-SPARQL">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-one-and-only">

<ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-

id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">wasUploadedBy
</AttributeValue>

</Apply>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:integer-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

integer">0</AttributeValue>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-bag-size">

<Apply FunctionId="provenance-query-SPARQL">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-one-and-only">

<ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">wasSubmittedVof
</AttributeValue>

</Apply>

</Apply>

</Apply>

</Condition>

</Rule>

<Rule RuleId="FinalRule" Effect="Deny" />

</Policy>

C. Evaluation

In order to evaluate the performance of our prototype, we
design an experiment to test and capture the runtime execution
of a request instance. We deploy the implemented prototype
onto a virtual machine instance of an Ubuntu 12.10 image
with 4GB Memory and a 2.5 GHz quad-core CPU. We design
sample XACML policies and sample XACML requests that
would require the prototype to invoke the PBAC Reasoner
components to gather necessary data for the access decisions.
More specifically, we measure the time it takes to complete
the following operations flow7:

• The access request is received by the PDP.

• An appropriate access policy is matched.

• Relevant parameters are extracted from the policy and
passed to the PBAC Reasoner.

• SPARQL regular path queries are formed by utilizing
the DR and QE configuration.

7In this work, we disregard the use of PEP for simplification purpose as it
does not make a significant impact on the scope of our topic
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• Queries are executed against PDR and results are
returned to the PDP.

• PDP performs evaluation process on the returned
results and return the final decision.

For the application domain, we simulate the HWGS sce-
nario as described earlier. We generate mock data of possible
action transactions that occurred within the system and capture
them using the proposed provenance data model and store
them as RDF-format triples within an in-memory Jena model.
Regular-path SPARQL queries are generated and executed
against the Jena in-memory model using the ARQ engine.

We recognize the fact that the bottleneck of our prototype
lies at the execution of regular path queries. The performance
of such query execution depends heavily on the shape of the
provenance graph and the pattern after which the tracing needs
to be done. Therefore, in generating the mock data, we take
into consideration two types of shape a provenance graph
takes. One requires wide and the other requires deep tracing.
A wide provenance graph tracing is necessary to query a large
amount of actions that all take a single object as input. For
example, in the HWGS scenario, one submitted homework
object can be reviewed by a multitude of reviewers. A query
which searches for all reviewers of an object would have to
traverse through all edges branching out from the object itself.
A deep provenance graph tracing is necessary to query a path
of cause and effect relations between different versions of an
object. For example, an uploaded homework object can be
replaced multiple times by its owner. To obtain the original
version of a homework, a query needs to traverse back through
a large number of edges.

In order to test the flexibility of the framework, it is
interesting to evaluate the performance of our framework
against various quantity of edges that need to be traversed (the
width and depth of a provenance graph). We design our exper-
iment so that our prototype is validated against “extreme”, yet
reasonable, thresholds. In particular, we evaluated requests that
would require incremental number of edges (to be traversed)
in the quantities of 2000, 4000, 6000, 8000, 10000 and 12000.
To produce precise results, requests of wide type would only
require wide edges traversing. The same configuration applies
to requests of deep type.

The experimental results are shown in Figure 4. For the
most heavy tracing query, we obtain the result of 0.718 second
per deep request and 0.069 second per wide request. At
the same time, for the lightest tracing query, the result is
0.017 second per deep request and 0.014 second per wide
request. We note that for both types of queries, the resulting
runtime demonstrate the feasibility of the prototype. While a
query that requires a deep tracing shows increased runtime,
such phenomenon is most likely because of the SPARQL
implementation of query execution that utilizes recursive calls
for each successive process step. Regardless, we made an
observation that in a practical system deployment, the depth
and width traversals of the associated provenance graph do
not typically exceed such quantities. Furthermore, in certain
special cases, while a provenance graph can grow extremely
large in both depth and width, a practical application system
and its associated provenance graphs do more often resemble
a large set of disconnected graph components with small depth
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Fig. 4. Evaluation Results

and width values. Furthermore, we perceive that in the case of a
large provenance graph, various optimization approaches, such
as requests grouping and results caching, can be performed to
improve the runtime results. The discussion of these concepts
lays beyond the scope of this paper and belongs in our
future works. Nonetheless, although the obtained results are
not optimal, we strongly believe they clearly demonstrate the
feasibility and potential enhancement of the prototype together
with our PBACC approach.

VI. RELATED WORKS

Provenance security has increasingly gained attention from
the community. Researches generally put more emphasis on
securing provenance data, such as works by [3], [11], [12],
[29]. In contrast, we advocate a less popular approach , which
utilizes provenance data for securing normal data, that has been
garnering attention recently [1], [20], [28].

The XACML architecture [17] has been widely considered
suitable for enabling Attribute-based Access Control [14], [23].
Its inherent characteristics, however, allow the enablement of
various extensions which can address different access control
issues. In this work, we extend the XACML architecture with
the PBAC Reasoner component that activates provenance-
awareness for enhancing DSOD. Ferrini et al [9] propose
extending the XACML architecture to enable OWL ontology
for RBAC purposes. They approach DSOD constraints through
the obligations component. The XACML policy language is
utilized and extended to support provenance access control use
cases [5], [21].

In this work, we utilize a provenance data model that is
inspired from the OPM model [16]. The OPM model captures
causality dependencies between provenance entities. Other
provenance data models [4], [8], [13] are designed to capture
different aspects of provenance data that are most suitable for
their application domain.

Our prototype is designed with the assumption that active
provenance capture mechanisms already exist in the underlying
system. Providing provenance capture mechanisms is outside
the scope of our work and addressed elsewhere [7], [18].

VII. CONCLUSION

Traditional DSOD literature assumes necessary history
information of user activities is readily available to the sys-
tem and does not articulate related issues in utilizing this
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history information. In this paper, we propose an approach
toward DSOD issues that utilizes provenance data for enabling
the mechanisms for capturing, storing, and extracting system
history information. Specifically, we propose an extension to
the base PBAC model which utilizes context information of
transaction events for enhanced DSOD capabilities, both in
addressing the traditional DSOD features as well as newly
identified features such as past attribute-based DSOD and
dependency path pattern-based DSOD that have not been
discussed in literature. Based on the popular XACML archi-
tecture, we built a proof-of-concept prototype.The evaluation
results of our prototypes demonstrated the feasibility of the
prototype and the potential for additional enhancements. In
summary, we strongly believe our approach will lay a founda-
tion for not only a finer-grained DSOD enforcement that are
not explored elsewhere in the existing literature, but also more
expressive and versatile access control mechanisms in general.
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