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Abstract—Most cloud services are built with multi-tenancy
which enables data and configuration segregation upon shared
infrastructures. In this setting, a tenant temporarily uses a
piece of virtually dedicated software, platform, or infrastructure.
To fully benefit from the cloud, tenants are seeking to build
controlled and secure collaboration with each other. In this
paper, we propose a Multi-Tenant Role-Based Access Control
(MT-RBAC) model family which aims to provide fine-grained
authorization in collaborative cloud environments by building
trust relations among tenants. With an established trust relation
in MT-RBAC, the trustee can precisely authorize cross-tenant
accesses to the truster’s resources consistent with constraints over
the trust relation and other components designated by the truster.
The users in the trustee may restrictively inherit permissions
from the truster so that multi-tenant collaboration is securely
enabled. Using SUN’s XACML library, we prototype MT-RBAC
models on a novel Authorization as a Service (AaaS) platform
with the Joyent commercial cloud system. The performance and
scalability metrics are evaluated with respect to an open source
cloud storage system. The results show that our prototype incurs
only 0.016 second authorization delay for end users on average
and is scalable in cloud environments.

Keywords—cloud computing; multi-tenancy; trust; collabora-
tion; fine-grained authorization

I. INTRODUCTION

The growing predominance of cloud computing impacts
every aspect of the information technology (IT) industry [1].
It brings business agility and lower costs for information
systems by using virtualization and shared infrastructures.
Most cloud providers isolate tenants from each other using
multi-tenancy [2] to secure user data and configurations. How-
ever, the isolation strategy hampers multi-tenant collaborations
which are also essential in the cloud [3]. In particular, fine-
grained secure resource sharing among tenants is not fostered
in today’s commercial clouds [4], [5].

Utilizing existing access control models, cloud providers
are capable to control user activities within a single tenant.
For example, NASA integrates Role-Based Access Control
(RBAC) in the cloud to enforce fine-grained access control
in their existing directories [6]. Nevertheless, the traditional
RBAC model [7] is not designed to enforce collaborative ac-
cess control in decentralized environments. Currently, database
schema is widely utilized to enable multi-tenant data sharing
for Software as a Service (SaaS) [8], [9]. However, this
approach is confined to address multi-tenant access control in
databases and cannot be directly extended to protect other vital
types of resources such as files and virtual machines. Conse-
quently, in order to enable secure multi-tenant collaborations

in the cloud, we need a general fine-grained access control
model for this purpose.
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Fig. 1: Multi-tenant accesses in an out-sourcing case

To motivate the problem, we use an out-sourcing example
illustrated in Figure 1, in which the Enterprise (E), the Out-
Sourcing company (OS), and the Auditing Firm (AF ) are three
collaborating parties sharing a common cloud storage service.
E out-sources part of its application development work to OS
and external auditing tasks to AF . The cloud storage service
provides storage services for the development department of
OS, the accounting department of AF , and three of E’s
departments, development, accounting, and HR, as segregated
tenants. Let “.” denote the affiliation relation between the
tenant and its organization (also called issuer) so that, for
example, Dev.E represents the tenant corresponding to E’s
development department. The example cross-tenant accesses
for collaborations are as follows.

C1. Charlie as a developer in OS has to access the source
code stored in Dev.E to perform his out-sourcing job;

C2. Alice as an auditor in AF requires read-only access to
financial reports stored in Acc.E; and

C3. Alice needs read-only accesses to Dev.E and Dev.OS in
order to audit the out-sourcing project.

For simplicity, in our examples we assume all the tenants
are created on a single cloud service, bringing homogeneous
architecture which is often the case in cloud environments [10].
However, we do not exclude the potential of heterogeneous
collaborations among multiple cloud services or even among
multiple service models: SaaS, Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS) [2]. As a common collab-
oration need suggests, a user may test and deploy the source
code stored in Dev.E directly on another tenant of a PaaS
service. This function requires secure collaborative accesses



between the two services. In fact, SaaS services are often
hosted on PaaS clouds in which the SaaS services are regarded
as tenants. The similar situation holds between PaaS and IaaS.
Thus, we treat accesses among multiple tenants, clouds, or
even service models equivalently in the abstraction level as
multi-tenant accesses upon which access control mechanisms
should be enforced.

In order to achieve multi-tenant access control, Calero et
al [11] propose a multi-tenancy authorization system (MTAS)
by extending RBAC with a coarse-grained trust relation. Multi-
tenant collaborations are enabled in MTAS by bridging two
tenants with a cross-tenant trust relation. The tenant estab-
lishing the trust is called the truster and the tenant being
trusted is called the trustee. The essence of collaboration
is resource sharing wherein a resource requester requests to
share resources from a resource owner. The resources here
represent the objects, such as virtual machine instances or
stored files, in a tenant leased from the cloud service provider
(CSP). For instance, in order to enable cross-tenant access
C1 in the out-sourcing example above, an MTAS trust re-
lation is established with Dev.OS as truster and Dev.E as
trustee, allowing Dev.E as resource owner to issue suitable
cross-tenant assignments to allow Dev.OS’s users to access
Dev.E’s resources. By definition, the MTAS trust relation is
always established by the resource requester. The granularity
of MTAS trust is refined in [12] to reduce undue exposure of
the truster’s sensitive authorization information to the trustees.
While Calero et al provide use cases for this resource-requester
initiated cross-tenant trust relation, there are obviously other
practically useful approaches that can be developed.

In this paper we develop a family of models for a cross-
tenant trust relation that is established by the resource owner.
We demonstrate the utility of this approach by means of use
cases. Later in the paper we formally compare the role-based
trust models of MTAS, the current paper and RT [13]. There
may be possibility of additional cross-tenant trust models,
based on roles and perhaps on attributes. Eventually we believe
there will be consolidation and unification of cross-tenant trust
models but we are currently at early stages of developing and
investigating alternate cross-tenant trust models.

Our central contribution is a novel family of Multi-Tenant
RBAC (MT-RBAC) models where the cross-tenant trust rela-
tion is established by the resource owner rather than by the
resource requester. MT-RBAC extends the traditional RBAC
model [7] with two new built-in entity components: issuers and
tenants.1 Each issuer can have multiple tenants in the cloud,
whereas each tenant belongs to a single issuer. A cross-tenant
trust relation is established and maintained by the issuer of the
resource owner tenant (i.e., truster), as opposed to the resource
requester tenant (i.e., trustee).

Three MT-RBAC models integrate three different trust
relations with increasingly finer-grained constraints, respec-
tively tenant trust (MT-RBAC0), trustee independent public
roles (MT-RBAC1), and trustee dependent public roles (MT-
RBAC2). To allow the trustee to access the truster’s resources,
the base model MT-RBAC0 requires the truster to expose its

1MTAS [11] does not distinguish issuers and tenants, which are regarded as
equivalent notions in that model. This distinction is important for our purpose
in this paper, particularly for elaboration of the administrative model.

entire role set and corresponding authorization assignments to
the trustee. For example, to achieve the cross-tenant access C1
in the out-sourcing example, E will assign a trust relation from
Dev.E to Dev.OS so that OS can use E’s authorization infor-
mation to issue appropriate cross-tenant assignments enabling
Dev.OS’s users to access Dev.E’s resources. To limit un-
necessary exposure of the truster’s authorization information,
MT-RBAC1 requires only exposing the truster’s public roles to
all the trustees, these being the same for all trustees. Further,
MT-RBAC2 enforces finer-grained constraints by exposing the
truster’s public roles on a trustee by trustee basis. With these
trust relations, a truster’s issuer can flexibly and efficiently
constrain accesses from the corresponding trustees in a suitably
fine-grained manner.

We demonstrate the feasibility of MT-RBAC by proto-
typing it with SUN’s XACML library [14]. We develop and
deploy a novel Authorization as a Service (AaaS) platform
applying MT-RBAC models in a Joyent cloud [15]. We system-
atically evaluate the performance of MT-RBAC with an open
source cloud storage service [16]. The experimental results
show the MT-RBAC policies with different expressive power
in the AaaS service incur various policy evaluation delays.
Evaluation of MT-RBAC policies takes on average no more
than 0.016 second overhead in downloading files. Therefore,
we believe that the performance of the prototype system is
acceptable for cloud services. Further, we observe that the
prototype system is also scalable in cloud settings.

The rest of the paper is organized as follows. Section II
formally presents the MT-RBAC model family along with
the introduction of its administrative model AMT-RBAC and
constraints to be considered. Section III describes the prototype
implementation and evaluation results. Section IV presents
related work and compares our work with others in terms of
role-based trust models. Section V concludes the paper.

II. A FAMILY OF MT-RBAC MODELS

To achieve fine-grained access control for multi-tenant
collaborations in the cloud, we develop a family of three MT-
RBAC models with increasingly finer-grained trust relations.

A. Overview

MT-RBAC models, as shown in Figure 2, have six entity
components: issuers (I), tenants (T ), users (U ), permissions
(P ), roles (R) and sessions (S). The traditional RBAC [7]
entities of users, permissions and roles now have a tenant
attribute so that they can be uniquely identified as depicted
by the user-ownership (UO), permission-ownership (PO) and
role-ownership (RO) relations respectively in Figure 2. All
three relations are many-to-one relations from users, permis-
sions and roles respectively to their owner tenants. Further,
another many-to-one relation representing tenant-ownership
(TO) exists between tenants and issuers.

ISSUERS. An issuer is a client of a single or multiple
cloud services. Typically, it is either an organization or an
individual who is able to administer its own tenants in the
cloud services. For simplicity, we consider a single cloud
scenario in this paper, so the name of the cloud service is not
explicitly specified. For instance, in the out-sourcing example,
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Fig. 2: MT-RBAC Model

E, OS and AF represent three issuers respectively in a single
cloud storage service.

TENANTS. A tenant is an exclusive virtual partition of a
cloud service leased from a cloud service provider. An issuer
may own multiple tenants while a tenant belongs to a single
issuer. Let “.” denote the tenant-issuer relation. For example,
Dev.OS represents the tenant Dev of the issuer OS.2

USERS. A user is an identifier for an individual person
associated with a single tenant. An individual can act as dif-
ferent users in different tenants. Let “@” denote the user-tenant
relation. For example, Alice@Acc.AF and Alice@Acc.E are
two different users in tenants Acc.AF and Acc.E respectively,
even if they belong to a single person, Alice.3

ROLES. A role is a job function (role name) associated
with a tenant. A role belongs to a single tenant while a tenant
may own multiple roles. Let “#” denote the role-tenant relation
roleName#tenant. For example, dev#Dev.E represents a
developer role in tenant Dev.E.

PERMISSIONS. A permission is a specification of a
privilege to an object in a tenant. A permission is as-
sociated with a single tenant while a tenant may have
multiple permissions. Let “%” denote the permission-
tenant relation (privilege, object)%tenant. For example,
(read, /root/)%Dev.E represents a permission to read the
“/root/” path on Dev.E.

SESSIONS. A session is an instance of activity established
by a user. A subset of roles that the user is assigned to
can be activated in a session. Note that in multi-tenant cloud
environments the user and the active roles of a session are not
necessarily from a single tenant.

Crucially, in order to address collaborations among tenants,

2In a more general treatment we would identify the cloud service explicitly
in a three part name such as Dev.OS.CloudService.

3Other user models are possible. For instance, the users of a same person
can be combined into one universal ID using federated identity [17]–[19].
However, since this mechanism is not fully supported in contemporary clouds,
MT-RBAC models do not require a universal ID for an individual. The
particular user model chosen does not materially impact the essentials of MT-
RBAC. For completeness we do need a concrete user model.
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Fig. 3: Example multi-tenant assignments in the out-sourcing
case. The differences among the MT-RBAC models are also
illustrated in terms of E’s exposed roles.

MT-RBAC introduces a role-based trust relation, Tenant Trust
(TT ), as illustrated in Figure 2.

TT is reflexive but not transitive, symmetric or anti-
symmetric. In MT-RBAC, a trust relation is always established
by the truster’s issuer. It enables the trustee’s issuer to add
trustee’s users to truster’s roles. This can be done directly on
a per user basis by assigning one of B’s (trustee’s) users to
one of A’s (truster’s) roles via UA. Alternately it can be done
indirectly by assigning one of B’s roles, say r1, to be senior to
one of A’s roles, say r2, via RH . Thereby all members of r1
become members of r2 and A’s permissions associated with
r2 are granted to the B’s users in r1. We emphasize that trust
is established at the granularity of tenants. For example, if AF
asserts Acc.AF E Acc.E, there is no trust from Acc.AF to
HR.E or Dev.E. The formalization of TT and its effects are
described in Definition 1 as follows.

Definition 1: The tenant trust relation TT ⊆ T × T is a
many-to-many reflexive relation on T , also written as “E”. By
asserting A E B, A’s issuer exposes A’s roles to B’s issuer
so that B’s issuer can and can only make the following two
kinds of assignments:

• assigning B’s users to A’s roles; and

• assigning A’s roles as junior roles to B’s roles.

Different MT-RBAC models vary in the granularity of the
trust relations, specifically in the truster’s role exposure. The
left part of Figure 3 shows the role hierarchy of Dev.E in
the out-sourcing example. Since MT-RBAC0 does not enforce
any constraint on the trust relation, the entire Dev.E role
structure is exposed to all Dev.E’s trustees (more precisely
to their issuers). In MT-RBAC1, suppose the employee role
emp#Dev.E is a private role while the others are public. The
private role is never exposed to other tenants. Conversely, the
public roles are exposed to all the trustees’ issuers. Crucially,
during cross-tenant accesses, the permissions associated with
the private role cannot be inherited directly or even indirectly
through the public roles. In MT-RBAC2, public role sets are
customized for different trustees. Suppose the accountant role
acc#Dev.E and the manager role mgr#Dev.E have to be
exposed in the collaboration with Acc.AF while mgr#Dev.E
and the developer role dev#Dev.E need to be exposed to
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Dev.OS for the out-sourcing project. Accordingly, as illus-
trated in Figure 3, there are two different public role sets to
these two trustees respectively. Note that even if mgr#Dev.E
is public in both collaborations, for either one, it only inherits
permissions from the junior roles in the corresponding public
role set. For example, since acc#Dev.E is a private role to
Dev.OS and a public role to Acc.AF , its permissions are only
inherited to Acc.AF but not to Dev.OS.

B. Base Model—MT-RBAC0

In order to enable secure cross-tenant collaborations, the
base model is formally defined as follows.

Definition 2: The Base Model MT-RBAC0 has the follow-
ing components.

• I , T , U , R, P , S and TT are finite sets of issuers, tenants,
users, roles, permissions, sessions and tenant trust relation
respectively;

• TO ⊆ T ×I , a many-to-one relation mapping each tenant
to its owner issuer, also written as “.”; correspondingly,
tenantOwner(t : T )→ I , a function mapping a tenant to
its owner issuer where userOwner(t) = i iff (t, i) ∈ TO;

• UO ⊆ U × T , a many-to-one relation mapping each user
to its owner tenant, also written as “@”; correspondingly,
userOwner(u : U)→ T , a function mapping a user to its
owner tenant where userOwner(u) = t iff (u, t) ∈ UO;

• RO ⊆ R × T , a many-to-one relation mapping each role
to its owner tenant, also written as “#”; correspondingly,
roleOwner(r : R)→ T , a function mapping a role to its
owner tenant where roleOwner(r) = t iff (r, t) ∈ RO;

• PO ⊆ P×T , a many-to-one relation mapping each perm-
ission to its owner tenant, also written as “%”; correspond-
ingly, permOwner(p : P ) → T , a function mapping a
permission to its owner tenant where permOwner(p) = t
iff (p, t) ∈ PO;

• canUse(r : R)→ 2T , a function mapping a role to a set
of tenants who can use the role; formally, canUse(r) =
{t ∈ T |roleOwner(r) E t};

• UA ⊆ U × R, a many-to-many user-to-role assignment
relation requiring (u, r) ∈ UA only if userOwner(u) ∈
canUse(r);

• PA ⊆ P × R, a many-to-many permission-to-role
assignment relation requiring (p, r) ∈ PA only if
permOwner(p) = roleOwner(r);

• RH ⊆ R×R is a partial order on R called role hierarchy
or role dominance relation, also written as “≥”, requiring
r2 ≥ r1 only if roleOwner(r2) ∈ canUse(r1);

• user(s : S) → U , a function mapping each session to a
single user which is constant within the life-time of the
session; and

• roles(s : S)→ 2R, a function mapping each session to a
subset of roles, roles(s) ⊆ {r|∃r2 ≥ r[(user(s), r2) ∈
UA ∧ userOwner(user(s)) ∈ canUse(r)]}, which
can change with time, and s has the permissions⋃

r∈roles(s){p|(p, r) ∈ PA}.

Note that the introduction of the derived canUse function
provides convenient means for TT to take effect upon UA and
RH . For a given role r ∈ R, the statement roleOwner(r) ∈
canUse(r) is always true since TT is reflexive. Hence, intra-
tenant assignments are always under the authority of the
tenant’s owner issuer.

A trustee (more precisely its issuer) can assign a truster’s
permissions to the trustee’s users only at the granularity of
the truster’s roles. In the spirit of RBAC, MT-RBAC does not
allow individual permissions of the truster to be assigned to
the trustee’s users or roles.

Role activation mechanisms determine the executable per-
missions in a session. Because a role may inherit permissions
from its junior roles in the role hierarchy, when a role
is activated in a session, its inherited roles may be either
automatically activated (implicit activation) or require explicit
activation. The choice between the two approaches is left as
an implementation issue in the NIST RBAC model [7]. In the
RBAC96 model implicit activation is specified [20]. In MT-
RBAC, we choose to specify explicit activation in the roles(s)
component. In a session, only the permissions of the explicitly
activated roles are available. An alternate forumulation of MT-
RBAC with implicit activation can also be developed.

The revocation of a TT relation tr E te can be asserted
by tr’s issuer. This operation will automatically eliminate the
trustee te from canUse(r) for each of {r ∈ R|(r, tr) ∈ RO}.
Moreover, as the formal description of UA and RH in
Definition 2 suggests, all the relevant cross-tenant assignments
(i.e., UA and RH) issued by te’s issuer will be revoked
automatically, as well as the active roles in the sessions of
te’s users. In this way the permissions in tr are not able
to be inherited to te after revocation.4 If the removed trust
relation is subsequently restored, the trustee’s issuer would
have to redefine and reissue all the cross-tenant assignments
from scratch.

MT-RBAC0 enables multi-tenant collaborations by means
of TT . However the coarse-grained trust relation may lead to
breaches in protection of sensitive information. For example, in
the base model, a truster needs to expose all the organization
role structure to its trustees. A more important issue is that
trustees can obtain more sensitive information by assigning
their users to the sensitive roles they can use. Therefore, MT-
RBAC0 may only be suitable for collaborations among closely
related tenants such as departments of a single organization.

C. Trustee Independent Public Role—MT-RBAC1

A natural enhancement to address the granularity limita-
tions of the base model is to classify the components for
collaborations into public ones and private ones. In this setting,
collaborations only take place on the public components of the
resource owner. The truster’s roles can be simply classified
into two disjoint sets: public roles and private roles. Since
the truster’s public roles are public equally to all the trustees,
we name this mechanism as trustee independent public role

4For simplicity and security in model level, the corresponding cross-tenant
assignments issued by trustee’s issuer are automatically cleared as soon as
the trust relation is revoked. Depending upon implementation, trustee’s issuer
may also choose to manually clear or even keep the nonfunctional hanging
cross-tenant assignments for future use although it is not recommended.
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(TIPR) which provides more expressiveness and granularity
than TT in MT-RBAC0.

Definition 3: MT-RBAC1 inherits all the components from
MT-RBAC0 as described in Definition 2, while the following
modifications are applied.

• PTI(t : T ) → 2R, a new function mapping a tenant to a
set of roles which is the trustee independent public role
(TIPR) set of the tenant; and

• canUse(r : R)→ 2T is modified to canUse(r) = {t} ∪
{te ∈ T |t E te ∧ r ∈ PTI(t)}, where (r, t) ∈ RO.

Note that the truster’s permissions associated with the
public roles can be inherited externally to the trustees, but
those associated with the private roles can only be inherited
internally within the truster. For example, in Figure 3, since the
employee role emp#Dev.E is a private role, its permissions
should never be used in cross-tenant accesses. Further, if
PTI(t) consists of the entire role set of t, then MT-RBAC1

is identical to MT-RBAC0. Therefore, MT-RBAC1 is a more
general model than the base model.

MT-RBAC1 provides enhanced security by introducing
TIPR so that only public roles are exposed to the trustees. Be-
sides, it enables finer-grained control for the resource owner’s
issuer, say ir, who can revoke a specific cross-tenant access
from a trustee, say te by removing the relevant roles from
PTI(tr) while not disrupting the other cross-tenant accesses
from te. A public role should be automatically removed from
PTI(tr) as soon as the corresponding trust relation with tr
comes to an end. However, in practice a trustee independent
public role may be used in multiple trust relations so that the
bindings of the public role and its corresponding trust relations
should be carefully managed; otherwise the public role may be
unnecessarily maintained or unwillingly removed. Therefore,
MT-RBAC1 is only suitable for a single type or very similar
types of collaborations.

In MT-RBAC1, the PTI(t) function lacks the expressive-
ness to describe various public role sets for different trustees.
To achieve the least privilege principle in multi-tenant collabo-
rations, we propose MT-RBAC2 which is the most fine-grained
model in the MT-RBAC family.

D. Trustee Dependent Public Role—MT-RBAC2

Unlike MT-RBAC1 treating all the trustees equally, MT-
RBAC2 supports different public role sets specifically for dif-
ferent trustees. With respect to every established trust relation,
the truster’s issuer can designate disjoint sets of public roles
and private roles with respect to the trustee. This mechanism is
called trustee dependent public role (TDPR) which provides
more expressiveness and flexibility for the truster’s issuer
to maintain cross-tenant accesses for different trustees. The
formal definition of MT-RBAC2 follows.

Definition 4: MT-RBAC2 inherits all the components from
MT-RBAC0 as described in Definition 2, while the following
modifications are applied.

• PTD(tr, te : T )→ 2R, a new function mapping a pair of
truster and trustee tenants to a set of roles which is the
trustee dependent public role (TDPR) set of the truster
to the trustee; and

• canUse(r : R)→ 2T is modified to canUse(r) = {t} ∪
{te ∈ T |t E te ∧ r ∈ PTD(t, te)}, where (r, t) ∈ RO.

Note that if for every trustee te the PTD(tr, te) function
returns the same set of public roles, then MT-RBAC2 is
equivalent to MT-RBAC1. Thus, MT-RBAC2 is more general
than MT-RBAC1 and the most general model in the MT-RBAC
model family.

Comparing to MT-RBAC1, the revocation process in MT-
RBAC2 is much simpler. The revocation of a cross-tenant
access can be easily achieved by removing the relevant roles
from the specific TDPR set. This operation is executed by the
truster’s issuer and will not affect other accesses from other
trustees.

MT-RBAC2 supports various types of collaborations since
TDPR sets are maintained per truster-trustee pair. The
truster’s issuer has to maintain a TDPR set for each trustee.

E. Administrative MT-RBAC (AMT-RBAC) model

The administration of tenant trust relations and autho-
rization assignments is critical in MT-RBAC. Since TT is
embedded in the cross-tenant assignments (i.e., UA and RH)
as described in Definition 2, the management of tenant trust
relations also controls cross-tenant accesses.

The core idea of the administrative model for MT-RBAC
is dual control, meaning both of the truster’s and the trustee’s
issuers have complementary power of authority to control
cross-tenant accesses. The cross-tenant assignments are created
and maintained by the trustee’s issuer. The effectiveness of
cross-tenant assignments depends on the corresponding trust
relations which are under the control of the truster’s issuer.
In this way, the security and efficiency of the administration
process are convenient for both parties. The truster’s issuer
deals with the overall trust and constraints for a trustee. The
trustee’s issuer deals with the finer details of the trustee’s users.

Definition 5: The Administrative MT-RBAC (AMT-
RBAC) model requires both issuers of the collaborating
tenants, iA the resource owner A’s issuer and iB the requester
B’s issuer, to manage the tenant trust relations and the
cross-tenant authorization assignments separately as follows.

• iA is responsible for managing the tenant trust relation of
A E B; and

• iB is responsible for managing the cross-tenant assign-
ments (i.e., UA and RH) to A’s roles, according to
Definition 2.

Note that the resource owner’s issuer delegates the man-
agement of the cross-tenant authorization assignments to the
resource requester’s issuer. With the carefully defined coop-
erative mechanisms, in AMT-RBAC the resource owner’s is-
suer retains the critical management authority (managing trust
relations) while the maintenance of cross-tenant assignments
is given away to the resource requester’s issuer who is more
knowledgable of the requesting users and roles.

In Table I, we give the formal specification of the exact
administration functions of AMT-RBAC for a single issuer i
along with the corresponding preconditions and updates to MT-
RBAC policies.
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TABLE I: Administration functions available to issuer i in AMT-RBAC

Function Precondition Update
assignUser(t, r, u) (t, i) ∈ TO ∧ (u, t) ∈ UO ∧ t ∈ canUse(r) UA′ = UA ∪ {(u, r)}
revokeUser(t, r, u) (t, i) ∈ TO ∧ (u, t) ∈ UO ∧ t ∈ canUse(r)∧

(u, r) ∈ UA
UA′ = UA \ {(u, r)}

assignPerm(t, r, p) (t, i) ∈ TO ∧ (r, t) ∈ RO ∧ (p, t) ∈ PO PA′ = PA ∪ {(p, r)}
revokePerm(t, r, p) (t, i) ∈ TO ∧ (r, t) ∈ RO ∧ (p, t) ∈ PO∧

(p, r) ∈ PA
PA′ = PA \ {(p, r)}

assignRH(t, rasc, rdesc) (t, i) ∈ TO∧(rasc, t) ∈ RO∧t ∈ canUse(rdesc)∧
¬(rasc � rdesc)

† ∧ ¬(rdesc ≥ rasc)
‡

≥′=≥ ∪{r, q : R|r ≥ rasc ∧ rdesc ≥ q ∧
roleOwner(r) ∈ canUse(q) • (r, q)}

revokeRH(t, rasc, rdesc) (t, i) ∈ TO∧(rasc, t) ∈ RO∧t ∈ canUse(rdesc)∧
rasc � rdesc

≥′= (� \{(rasc, rdesc)})∗ §

assignTrust(t, t1) t1 ∈ T E′=E ∪{(t, t1)}
revokeTrust(t, t1) t1 ∈ T ∧ t 6= t1 ∧ t E t1 E′=E \{(t, t1)} ¶
addTenant(t) i ∈ I ∧ t /∈ T T ′ = T ∪ {t}
deleteTenant(t) (t, i) ∈ TO ∧ t ∈ T [∀t1 : T ⇒ revokeTrust(t, t1)]

[∀t2 : T ⇒ revokeTrust(t2, t)]
UA′ = UA \ {(u, r)|(u, t) ∈ UO ∧ (r, t) ∈ RO}
PA′ = PA \ {(p, r)|(p, t) ∈ PO ∧ (r, t) ∈ RO}
RH ′ = RH \ {(r, r′)|(r, t) ∈ RO ∧ (r′, t) ∈ RO}
U ′ = U \ {u|(u, t) ∈ UO}
UO′ = UO \ {(u, t)|u /∈ U}
R′ = R \ {r|(r, t) ∈ RO}
RO′ = RO \ {(r, t)|r /∈ R}
P ′ = P \ {p|(p, t) ∈ PO}
PO′ = PO \ {(p, t)|p /∈ P}
T ′ = T \ {t}
TO′ = TO \ {(t, i)}

† The notation “�” represents an immediate inheritance relation. For example, rasc � rdesc means that rasc is a parent of rdesc.
‡ This condition avoids the creation of role cycles which is discussed in Section II-F.
§ The notation “∗” represents recursive updates for the entire RH assignments. Implied RH relations are preserved after revocation.
¶ The revocation of a trust relation automatically triggers updates in the canUse() function of all t’s roles and then corresponding UA

and RH accordingly.

Note that both of the assignTrust and revokeTrust func-
tions result in automatic updates of the canUse function for
each of the truster’s roles. Moreover, since the public role sets
in MT-RBAC1 and MT-RBAC2 also can be modified by the
truster’s issuer, the return sets of canUse(r) for the truster’s
roles are updated accordingly. Because canUse function is
updated, the trustee’s cross-tenant assignments, UA and RH ,
and their authorized cross-tenant accesses are also updated
accordingly. In this way, the cross-tenant assignments are not
only controlled by the trustee’s issuer, but also manageable by
the truster’s issuer.

F. Constraints

The constraints identified in RBAC96 [20] are directly
applicable to MT-RBAC for intra-tenant accesses. While the
trust relations in MT-RBAC enable cross-tenant accesses,
constraints should also be extended into a multi-tenant envi-
ronment. Some constraints we feel reasonable to implement in
the new environment are described below.

Role Cycles. A “role cycle” may be formed across tenants
in MT-RBAC systems without proper constraints. This is a
well known problem in inter-domain access control [21]. The
issue may lead to implicit role upgrades in the role hierarchy.
A role r1a in tenant A may be assigned as a senior role
to r2b in tenant B while r2b dominates r1b in B. If r1b is
then assigned as a senior role to r2a which dominates r1a in
A, then a role cycle forms. As a result, a user in r1a can

inherit permissions from a senior role r2a through the cross-
tenant RH assignments contrary to the role hierarchy in A.
In order to prevent the formation of role cycles, constraints
should be enforced over assignments or sessions. Constraints
with respect to assignments can be enforced by checking for
role cycles whenever a cross-tenant RH assignment is issued.
Constraints with respect to sessions would allow role-cycles in
assignments, but prohibit a cycle of roles from being activated
in a single session. The algorithms for checking role cycles
are well-known and straightforward.

Separation of Duties. There are two levels of separation
of duty (SoD) problem that we need to be concerned during
collaboration in MT-RBAC systems. These are at the tenant
level and role level. For tenant level SoD, one collaborating
tenant cannot execute two conflicting responsibilities. For in-
stance, SOX [22] compliant companies are not suppose to hire
one third-party as both consultant and auditing organization.
This constraint could be enforced at tenant level against trust
relations. The role level SoD is straightforward. Two roles
attached to conflict duties are not supposed to be activated
for one user in a session. In the out-sourcing example, a
quality assurance (QA) role and a developer role should not
be obtained by one user in either tenant, E or OS, at the same
time.

Other Considerations. Some other constraints in
RBAC [20], such as cardinality and prerequisite roles, are
also applicable to tenants. Even if multi-tenancy brings some
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complexity to implementation, it is also straightforward to
apply these constraints. Moreover, the conflict of interests
among tenants can be addressed by Chinese Wall model [23].
For example, two competing tenants cannot be trusted or
accessed by tenants of a single issuer.

III. PROTOTYPE IMPLEMENTATION AND EVALUATION

To demonstrate the feasibility of our approach, we im-
plement a prototype to achieve multi-tenant authorization for
collaborative cloud services. We also evaluate the performance
and scalability of our prototype with CloudStorage [16], an
open source cloud storage system, deployed as a cloud service.

1) Implementation Overview: In order to foster fine-
grained access control in collaborative cloud environments, we
propose Authorization as a Service (AaaS) as a novel service
model providing an independent authorization infrastructure
in a multi-tenancy manner. This service can be integrated with
the existing cloud services to manage and process authoriza-
tions for them. AaaS supports multi-tenant access control by
applying suitable access control models, such as MT-RBAC.

CloudStorage

Tenant A

Policy Decision Point (PDP)

PEP PEP

CloudStorage

Tenant B

CloudStorage

Tenant X

PEP

Authorization 
Policies

Authorization as a Service

Trust 
Policies

Fig. 4: The prototype architecture

Figure 4 shows the prototype architecture in which the ten-
ants of the cloud storage service use a common authorization
service (i.e., AaaS) by associating each with a policy enforce-
ment point (PEP) module. The PEPs parse the requests from
end users and generate normalized (XACML format) requests
to the centralized policy decision point (PDP) module which
refers to MT-RBAC policies stored in the centralized policy
repository. The MT-RBAC policy specification is presented in
Appendix A. After the decision is made, an XACML format
response will be sent back to the requesting PEP to take
effect with respect to the requested access. The integrity and
authenticity of communication messages should be guaranteed,
say via long-lived TLS connections between PEPs and the
central PDP. For simplicity, they are not included in the
prototype implementation. The prototype can be extended to
a cloud authorization service with distributed PDPs.

The MT-RBAC policy engine is developed using SUN’s
XACML library [14]. The prototype is compiled and deployed
on a Joyent cloud system. In the performance evaluation, the
PDP module runs on a SmartMachine [15] image with Smar-
tOS Version 1.6.3 and 1 GB RAM. The PEP modules and the
cloud storage service are deployed on another SmartMachine
image with SmartOS Plus 64 Version 3.2.0 with 256 MB
RAM. The CPU caps of both images are set to 350 meaning

each can use at most 3.5 CPUs. The PDP and PEP modules
are created on different physical machines, so that they don’t
affect each other in the performance evaluation results. All
the machines in the prototype are connected through data
center networks. End users connect to the cloud storage service
through wireless local area network (WLAN) which is a
common connection type for cloud service users. Note that,
in the following experiments, the policy files are stored on
the PDP server and an experiment request set consists of 10
independent sample multi-tenant access requests.

2) Authorization Delay: An MT-RBAC decision making
process includes verifying subjects, resources and actions in
the request, searching attributes and linking referred policy
files. All these operations increase the overhead of access as
authorization is involved. Authorization overhead is inevitable
in MT-RBAC as well as other authorization models. Figure 5a
compares the policy evaluation delay in RBAC and the three
MT-RBAC models. Note that in RBAC cross-tenant access
requests are not supported. Due to the caching mechanisms
of the operating system, as the number of concurrent re-
quests increases, the average policy decision delay decreases
dramatically until it reaches a stable state. RBAC has the
least delay of 4.01 ms, while MT-RBAC0 has 6.92 ms delay.
The evaluation of TP policies contributes to the extra delay
of MT-RBAC0, compared to RBAC. Since IPS and DPS
evaluations incur the similar I/O operations to TP evaluations,
the authorization delay for MT-RBAC1 and MT-RBAC2 are
similar. MT-RBAC1 and MT-RBAC2 have the most delay
of 11.75 ms and 12.18 ms, respectively. MT-RBAC models
introduce acceptable evaluation overheads compared to RBAC.

Figure 5b shows a comparison of delays at the client-end of
the CloudStorage service. The delays are observed upon a 1KB
file downloading task with or without authorization through
RBAC or MT-RBAC2. According to the experiment result,
we observe that MT-RBAC2 introduces 15.50 ms (≈ 0.016
second) authorization delay on average which we believe is
acceptable for file downloading tasks in cloud storage services.

3) Scalability: Scalability is also a critical criterion to
judge the feasibility of a cloud application. Thus, we evaluate
our prototype with various cloud images for the PDP module
and numbers of engaged PEPs to see whether the system
performance improvement is proportional to the increase of
the hardware capacity which is represented by image size in
the cloud.

We compare the throughput of PDPs with various capabil-
ities in terms of image size. The result is shown in Figure 5c.
The speedup of the system is in positive correlation with
the increase of CPU cores and memory size. The throughput
decreases when the number of concurrent requests increase,
until it reaches a stable position. Compare the authorization
throughput of the PDP with 1Core/128MB and the one with
1Core/1024MB. The approximately ten-time increase in mem-
ory size results in constantly ten-time enhancement in the
throughput. When the physical resource assigned to the PDP
increases to 2Core/2048MB, the throughput increases around
five times. But the throughput has no obvious increase when
the hardware becomes 4Core/4096MB because the amount of
requests does not fulfill the utilization of the system with
increased capacity. According to the results, we conclude that

7



 0

 5

 10

 15

 20

 25

 30

10 20 30 40 50 60 70 80 90 100

P
D

P
 R

es
p

o
n

se
 D

el
ay

 (
m

s)

Concurrent Requests (x10)

MT-RBAC0

MT-RBAC1

MT-RBAC2

RBAC

(a) PDP performance

 0

 10

 20

 30

 40

 50

 60

 70

1 10 100 1000

D
o

w
n

lo
ad

 T
im

e 
(m

s)

Concurrent Requests (x10)

NoAuth
RBAC

MT-RBAC2

(b) Client-end performance

 0

 50

 100

 150

 200

 250

 300

10 100 1000

T
h

ro
u

g
h

p
u

t 
(x

1
0

 r
eq

/s
ec

)

Concurrent Req. per PEP (x10)

4Core/4096MB

2Core/2048MB

1Core/1024MB

1Core/128MB

(c) PDP scalability

 0

 10

 20

 30

 40

 50

10 100 1000

P
D

P
 R

es
p

o
n

se
 D

el
ay

 (
m

s)

Concurrent Req per PEP (x10)

1*PEP

2*PEP

4*PEP

8*PEP

(d) PEP scalability

Fig. 5: Performance and scalability evaluation results

the system throughput is proportional to the hardware capacity
of the PDP module.

Figure 5d illustrates the authorization delay in a
1Core/1024MB PDP with different amounts of engaged PEPs.
More PEPs means more concurrent requests generated and
more connections which consume the capacity of the PDP.
When the number of PEPs increase exponentially, the average
evaluation delay also increases exponentially. Hence, if all the
engaged PEPs send equal amount of requests, the load of PDP
can be roughly determined by the number of PEPs. As a PEP
is assigned per tenant, the required capacity of the system is
proportional to the amount of tenants. The results show that
AaaS with MT-RBAC is scalable in the cloud environment.

IV. RELATED WORK

The access control problems in collaboration have been
extensively addressed in traditional environments. RBAC [7],
[20] enabling fine-grained access control does not encompass
the overall context associated with any collaborative activ-
ity [24]. Many extensions of RBAC have been proposed to en-
able multi-domain access control [25]–[28]. These approaches
require a centralized authority to define collaborating policies
for different domains. However, in clouds, users usually come
from different organizations with independent administrating
authorities. Therefore, a centralized authority is not only
improper but also inefficient.

Another approach is to integrate delegation in RBAC to
achieve decentralized authority for collaborations [29]–[32].
Users may delegate their entire or partial permissions to others,
which is completely under the control of the users. The
delegation approach enables full control for resource providers
while introducing additional administration workloads. The
administrators of resource providers need to track all of
the delegations associated with collaborations. In particular,

collaboration relations may dynamically change. The delega-
tion rules may not instantly reflect the current collaboration
relations so that delegation rules may violate the authorization
goals of the resource providers.

To support collaboration, federated identity and authoriza-
tion services were proposed in distributed systems. Feder-
ated identity [18] enables authenticating strangers by sharing
identity information among federated parties who trust each
other equally. The equivalent trust relation limits the variety of
collaborations. Moreover, maintaining the federation relation
becomes costly when it has to cope with the agility feature
in clouds. Some tenants are created temporarily and deleted
upon completion of their jobs, while the federation relation has
to be updated accordingly. Authorization services [33]–[37]
were developed to control resource sharing between different
Virtual Organizations (V Os) in grids leveraging credentials.
However, cloud is designed with less heterogeneity than grid
for better flexibility and scalability [10] so that the maintenance
of credentials becomes a critical problem in cloud settings.
Moreover, the centralized facility of clouds provide oppor-
tunities for policy-driven authorization services. Therefore,
to build collaborations among tenants, such credential-driven
approaches are neither appropriate nor necessary.

As a critical part of the evolving cloud technology, autho-
rization mechanisms for multi-tenant collaborations are emerg-
ing in both academia and the industry. Multi-tenancy in the
cloud features in homogeneity, centralized facility, and agility
which the former approaches cannot handle. Similar to AaaS,
these approaches [11], [38]–[40] utilize centralized facilities in
clouds to develop authorization services with scalable policy
management modules and PDPs in a central location. This
setting is consistent with MT-RBAC.

Role-Based Trust Models are effective in terms of access
control for collaboration in distributed environments. Trust
relations, in certain forms, are established among adminis-
trative domains for sharing. The effects of different trust
models vary in different aspects. We hereby identify some
crucial differences among three role base trust models: Role-
based Trust-management (RT) framework [13], Multi-Tenancy
Authorization System (MTAS) [11], [12], and our approach
MT-RBAC in this paper, as shown in Table II.

RT is a family of Role-based Trust-management language
using credentials to express trust relations and policies in
distributed authorization. In this paper, we only discuss the
key features of RT0 which is the base model in the family.
RT0 provides four types of multi-domain assignments (cre-
dentials): simple member, simple inclusion, linking inclusion,
and intersection inclusion. The former two are compatible with
MTAS and MT-RBAC which do not support the latter two.

First, we compare the models in terms of the trust and
authorization assignment authorities as well as the required
trust relations for collaborations. In RT the trust assignment
and the authorization assignment are coupled in a credential
so that both of them are assigned by the resource owner who
trusts the requester. Conversely, in MTAS and MT-RBAC the
two assignments are decoupled and issued by different parties.
The unique feature of MT-RBAC is that the resource owner
trusts the requester not only to access the resources but also for
its issuer to authorize the access that is to make authorization
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TABLE II: Trust Model Comparison. A and B represent two
entities, issuers and tenants respectively in RT, MTAS and MT-
RBAC. A represents the resource owner and B the requester.

RT MTAS MT-RBAC
trust relation

required A trust B B trust A A trust B

trust
assigner A B A

authorization
assigner A A B

User
Assignment

(UA)
U → A.R U → A.R

B.U →
B.R ∪A.R

Permission
Assignment

(PA)
A.P → A.R

A.P →
A.R ∪B.R

B.P → B.R

Role
Hierarchy

(RH)
A.R ≤ B.R A.R ≤ B.R A.R ≤ B.R

require
common

vocabulary
Yes No No

require
centralized

facility
No Yes Yes

assignments for the owner’s permissions. Further, the direction
of a trust relation is special in MTAS where the resource owner
has to be trusted by the resource requester before making
appropriate authorization assignments.

Then, the models are examined respectively with the three
kinds of authorization assignments: UA, PA, and RH . With
UA, properly authenticated users are allowed to be assigned by
resource owners to their own roles in RT and MTAS, while in
MT-RBAC the resource requester (trustee) can only assign its
own users to the roles of itself or the resource owner (truster)
who trusts the requester. Cross-domain permission assignments
are not allowed in RT or in MT-RBAC, but possible in MTAS.
The inheritance of permissions through RH is always from the
resource owner to the requester in all three models.

Last but not least, we discuss the necessity of a prerequisite
to enable collaborations with role based trust models. Common
vocabulary is a term introduced in RT [13] requiring both
collaborators of a trust relation to use a mutually understand-
able definitions of roles. Thus the semantic mismatch issue in
decentralized collaboration is mitigated. However, there is no
such requirement in MTAS and MT-RBAC since their trust
relations allow exposure of the truster’s roles to the trustee so
that the definition of roles is perceivable to the administrator
within a common centralized facility such as an AaaS platform.

Although these role-based trust models foster collabora-
tions in the cloud, a unified and consolidated trust framework is
not currently available. We anticipate research in this field will
establish foundations for the evolution of cloud computing.

V. CONCLUSION

In this paper, we propose a family of MT-RBAC models by
extending the well-known and widely used RBAC model with
the components of tenants and issuers to address multi-tenant
authorization for collaborative cloud services. MT-RBAC aims

to enable fine-grained cross-tenant resource access by building
tenant-level granularity of trust relations. We prototype MT-
RBAC using SUN’s XACML library to implement an Au-
thorization as a Service (AaaS) in cloud. To demonstrate the
viability of the prototype system, we evaluate its performance
and scalability in a Joyent cloud. The results show that the
AaaS platform with MT-RBAC incur acceptable overhead and
is scalable for the cloud storage service.
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APPENDIX

We specify MT-RBAC policies in extensible access con-
trol markup language (XACML). According to the normative
specification of RBAC policies [41], we keep using the Role
PolicySet (RPS) and the Permission PolicySet (PPS), repre-
senting UA and PA respectively in MT-RBAC. Additionally, a
novel Trust PolicySet (TPS) is added. In order to express MT-
RBAC1 and MT-RBAC2 policies, we also introduce TIPR
PolicySet (IPS) and TDPR PolicySet (DPS). In this section,

we present an MT-RBAC2 policy example and the correspond-
ing authorization process.

Role <PolicySet>

<Target>

  subject-role = tr:…

  subject-tenant = te

<PolicySetIdReference>

Trust <PolicySet> tr

<PolicySetIdReference>

<Target>

  subject-tenant = tr

Trust <PolicySet> 

<PolicySetIdReference>

<Target>

  subject-tenant = te

Trust <PolicySet> <PolicySetIdReference>

<Target>

  resource-id = tr:…

Permission <PolicySet> 

Role <PolicySet>

<Target>

  subject-role = te:…

<PolicySetIdReference>

Trust <PolicySet> te

<PolicySetIdReference>

<Target>

  subject-tenant = te
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Fig. 6: The MT-RBAC2 policy enables two independent autho-
rization paths: cross-tenant user assignment (UA) and cross-
tenant role hierarchy (RH), where tr trusts te.

Cross-Tenant UA: starting from the upper RPS in Figure 6,
a user in te sends a request to access tr’s resource. If the user is
already assigned to a role in tr, RPS will forward the request
to tr’s TPS who checks if tr E te. If the trust relation does
not exist, the request will be denied; otherwise, tr’s DPS will
check if the user’s role in tr is in PTD(tr, te). If the role is
public to te, tr’s PPS associated with the role will check the
resources and actions in the request. If these do not match the
policy rules, the request will be forwarded to the DPS again to
verify the visibility of the junior roles to te. This process will
execute recursively until a match in PPS rules is found or the
lowest role visible to te in tr’s role hierarchy is reached. If a
match is found, the PDP will respond with a permit, otherwise
the PDP will check other authorization paths in the policy tree
for a match. If finally no match is found, a deny response will
be returned to the PEP.

Cross-Tenant RH: starting from the lower RPS in Figure 6,
the request from a user of a te’s role will first be sent to te’s
TPS. The te’s TPS and the subsequentDPS will forward
the user’s request because it is an intra-tenant request. Then,
the request will arrive to the PPS of the user’s role in te.
The recursive process of retrieving a proper junior role will
take place. Since a cross-tenant RH assignment to a junior
role in tr exists, the request will be forwarded to tr’s DPS
during the recursive process. The steps afterwards is similar
as described in the other authorization path.

The authorization paths in the other MT-RBAC models are
similar. The IPS in MT-RBAC1 specification enforces TIPR
similarly as the DPS in MT-RBAC2 enforcing TDPR in the
example above.
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