Prosunjit Biswas, Farhan Patwa, Ravi Sandhu

_ ISON (JavaScript Object Notation)

Swift Background:

v'Storage service from OpenStack cloud platform.

v'Users can upload or download an object using Swift
API.

v'User can Share an object with other uses using
Swift’s ACL(Access Control List).

Identifying Problems:

v' Swift ACL is an ‘all or nothing’ approach.

v'User either shares the whole object or cannot share
at all.

Our Solution:

v'We extend Swift’s access control into content level
access control.

v'We assign object-labels on the content level of
Swift objects.

v'"We specify Label Based policy using object-labels
and user-labels.

v'We further specify different ways for applying
object-labels at content level.

Our Scope:
v'The solution applies for JSON formatted file, in
hierarchical document models (e.g. XML)

v JSON is a hierarchical Data Model similar to XML
v We use JSON because of its increasing popularity:.

Label Based Access Control (LaBAC):

LaBAC Policy:

v’ (user-labels, action, object-labels)
e.g. ({manager},read,{'sensitive’})

Assigning Labels at Content Level:
v’ Using JSONPath
e.g. (‘/path/to/salary’ {sensitive})
v Using JSON key/value
e.g. (<RE-for-email>, {contact-info})
v’ Using Attribute to specify labels
e.g. Records created after Jan 1% are restricted.

Implementation & Performance:

Swift Storage

KE tone
[Idﬂnm:.r Provide

,ﬂ

1, 2: User requests and receives Ildentity from Keystone.

3. User present credential to Swift.
4. LaBAC decides which JSON object is accessible.

2. User gets Partial content.

Required Changes:

v Extended Swift Object Server logic.

v'LaBAC module intercept every Swift request
and modifies response based on LaBAC policy.

v'LaBAC policy and Labeling rules are stored as
metadata of Swift objects.

Comparing download time of Swift objects
with and without Content Level Access

Control (CLAC)

0.2 B Without
CLAC

B With CLAC
0.15

0.1

Download time [(in second)

0.05

0
1KE TOKE 100KE TMB 10MB

Swift Object Size




