
Label-Based Access Control: An ABAC Model
with Enumerated Authorization Policy

Prosunjit Biswas
Univ. of Texas at San Antonio

eft434@my.utsa.edu

Ravi Sandhu
Univ. of Texas at San Antonio
ravi.sandhu@utsa.edu

Ram Krishnan
Univ. of Texas at San Antonio
ram.krishnan@utsa.edu

ABSTRACT
There are two major techniques for specifying authorization
policies in Attribute Based Access Control (ABAC) mod-
els. The more conventional approach is to define policies by
using logical formulas involving attribute values. Examples
in this category include ABACα, HGABAC and XACML.
The alternate technique for expressing policies is by enu-
meration. Policy Machine (PM) and 2-sorted-RBAC fall
into the later category. In this paper, we present an ABAC
model named LaBAC (Label-Based Access Control) which
adopts the enumerated style for expressing authorization
policies. LaBAC can be viewed as a particularly simple in-
stance of the Policy Machine. LaBAC uses one user attribute
(uLabel) and one object attribute (oLabel). An authoriza-
tion policy in LaBAC for an action is an enumeration using
these two attributes. Thus, LaBAC can be considered as
a bare minimum ABAC model. We show equivalence of
LaBAC and 2-sorted-RBAC with respect to theoretical ex-
pressive power. Furthermore, we show how to configure the
traditional RBAC (Role-Based Access Control) and LBAC
(Lattice-Based Access Control) models in LaBAC to illus-
trate its expressiveness.

1. INTRODUCTION
Access control has been a major component in enforc-

ing security and privacy requirements of information and
resources with respect to unauthorized access. While many
access control models have been proposed only three, viz.,
DAC, MAC and RBAC, have received meaningful practical
deployment. DAC (Discretionary Access Control) [19] al-
lows resource owners to retain control on their resources by
specifying who can or cannot access certain resources. To
address inherent limitations of DAC such as trojan horses,
MAC (Mandatory Access Control) [19] has been proposed
which mandates access to resources by pre-specified sys-
tem policies. While both of these two models are based on
fixed and predetermined policies, RBAC (Role Based Access
Control) [18] is a policy neutral, flexible and administrative

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ABAC’16, March 11 2016, New Orleans, LA, USA
c© 2016 ACM. ISBN 978-1-4503-4079-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2875491.2875498

friendly model. Notably RBAC is capable of enforcing both
DAC and MAC. MAC is also commonly referred to as LBAC
(Lattice-Based Access Control).

Attribute Based Access Control (ABAC) has gained con-
siderable attention from businesses, academia and standard
bodies (NIST [7] and NCCOE [16]) in recent years. ABAC
uses attributes on users, objects and possibly other entities
(e.g. context/environment) and specifies rules using these
attributes to assert who can have which access permissions
(e.g. read/write) on which objects. Although ABAC con-
cepts have been around for over two decades there remains
a lack of well-accepted ABAC models. Recently there has
been a resurgence of interest in ABAC due to continued dis-
satisfaction with the three traditional models, particularly
the limitations of RBAC.

To demonstrate expressive power and flexibility, several
ABAC models including [11, 20, 25] have been proposed in
past few years. These models adopt the conventional ap-
proach of designing attribute based rules/policies as logical
formulas. Using logical formulas to grant or deny access is
convenient because of the following reasons.

• Simple and easy: Creating a new rule for granting ac-
cess is simple. It does not involve upfront cost like
engineering roles in case of RBAC.

• Flexible: Rules are easy to succinctly specify even com-
plex policies. There is no limit on how many attributes
can be used in a rule or how complex the language be
to specify the rule. Given a required set of attributes,
and a computational language, ABAC policy is only
limited to what the language can express [7].

Interestingly, designing a rich computational language to
define attribute-based rules makes policy update or pol-
icy review an NP-complete or even undecidable problem.
For example, authorization policies in many existing ABAC
models including [11, 20, 25] are expressed in propositional
logic. Reviewing policy in these models (which may simply
ask, for a given policy which (attribute, value) pairs evaluate
the policy to be true) is similar to the satisfiability problem
in propositional logic which is NP-complete. Likewise review
for policies specified in first-order logic is undecidable.

Another method for specifying attribute-based policies is
by enumeration. Policy Machine [5] and 2-sorted-RBAC [13]
fall into this category. Enumerated policies can also be very
expressive. Ferraiolo et al [5] show configuration of LBAC,
DAC and RBAC in Policy Machine using enumerated poli-
cies. Moreover, updating or reviewing an enumerated policy
is inherently simple (polynomial time) because of its simple

1

structure. It should be noted that the size of an enumer-
ated policy may be exponential relative to a succinct formula
which expresses the same policy. Thus there is a trade-off
between these two methods for specifying policies.

In this paper, we present an ABAC model named Label-
Based Access Control (LaBAC). In LaBAC, users are as-
signed a single label named uLabel and objects are assigned
a single label named oLabel. For a particular action, a pol-
icy in LaBAC is an enumeration using uLabel and oLabel
values.

Labels (uLabel and oLabel) in LaBAC are special types
of attributes. While semantics of attributes in general are
open-ended, labels have very specific semantics. For exam-
ple, in general attributes can be set valued (e.g. roles) or
atomic valued (e.g. age). Values of an attribute can be
assigned by administrators (e.g. roles), derived from other
attributes (e.g. membership type), self asserted (e.g. date
of birth), system specified (e.g. time) and so on. Moreover,
values can be ordered or unordered. On the other hand,
labels are specifically defined to be set valued, values are
partially ordered and are only assigned by administrators.
Intentionally, we use abstract names for labels—uLabel and
oLabel. In an actual instance of LaBAC, labels can be given
more appropriate names. For example, roles or clearance for
uLabel and classification or sensitivity for oLabel.

We analyze the expressive power of LaBAC with respect
to other enumerative models. We also show that LaBAC
can be viewed as a simple instance of Policy Machine (PM).
While, PM is more general and complex by covering other
interesting aspects of access control, LaBAC is more scoped
regarding development and progress towards ABAC models.
On the other hand, we show equivalence of LaBAC and 2-
sorted-RBAC with respect to theoretical expressive power.
Finally, we show flexibility of LaBAC by configuring tradi-
tional models (LBAC [17] and RBAC[18]) in it.

Rest of the paper is organized as follows. In Section 2,
we briefly discuss logic-based policy and enumerated pol-
icy along with a review of related literature. Section 3
presents a family of LaBAC models. We show the equiv-
alence of LaBAC and 2-sorted-RBAC in Section 4. Section
5 presents configuration of tradition RBAC and LBAC pol-
icy in LaBAC. We express LaBAC as a simple instance of
Policy Machine in Section 6. Finally, Section 7 concludes
the paper.

2. BACKGROUND & RELATED WORK
Different ABAC models have been proposed in the liter-

ature. In general an ABAC model, in the minimum, ac-
commodates a set of user attributes, object attributes and
authorization policies comprising these attributes. An au-
thorization policy grants a set of users a particular access
(eg. read, write) to a set of objects. Generally, attributes
are defined as functions and each attribute function takes
a user or an object as an argument and returns a single
value or a set of values. For example, clearance(u) = TS
specifies that clearance is an atomic valued user attribute,
and it returns a single value, TS for user u. Similarly,
projects(o) = {utsa, cs, ics} indicates that projects is a set
valued object attribute.

Authorization policies in ABAC are more conventionally
thought to be logical formulas using subset of user attributes,
subset of object attributes and one or more actions. A policy
grants access if the formula is evaluated to be true for the

requesting user, requested object and action. For example,
an informal policy can access(u, a, o) → (clearance(u) =
TS) ∧ (ics ∈ projects(o)) ∧ (action = read) says that any
user u with TS clearance can read any object o, if o is in-
cluded in the ics project.

2.1 ABAC styles and scopes
Most of the ABAC models assume a finite set of user

attributes, finite set of object attributes and finite range
for each of these attribute functions. On the other hand,
when specifying authorization policies, there are two major
methods. More conventional approach is to define policies
using logical formula. Examples in this category include
ABACα [11], HGABAC [20], ABAC for Web Services [25],
and XACML [15]. The alternative technique for expressing
policy is by enumeration. Examples in this category include
Policy Machine (PM) [5] and 2-sorted-RBAC [13].

2.1.1 Policy using logic-based formula
Logic-based formulas are defined over one or more predi-

cates connected by different logical operators, for example,
∧,∨, ¬ and so on. Each predicate takes one user/object
attribute and compares it against another user/object at-
tribute or a constant value. For example, the predicate
(clearance(u) � classification(o)) compares a user-attribute
against another object-attribute. Policies defined by logic-
based formulas can be quite rich and complex. For example,
authorization policies in ABACα [11] can be considered as
logical formula expressed in propositional logic. Similarly,
policies in HGABAC [20] and ABAC-for-Web-Service [25]
can also be considered as instances of propositional logic.

Policy review poses interesting questions on a given set of
policies. Policy reviews are important in defining a new pol-
icy based on existing policies or updating an existing policy.
For example, to define a new policy that allows ‘manager’
to approve a ‘new loan’, an administrator may first need to
check, who (in terms of user attributes and values) can ap-
prove ‘new loan’ for existing set of policies. Policy review
can be compared with privilege or capability discovery for an
access control system as mentioned in access control system
evaluation matrix [8].

As satisfiability in propositional logic is NP-complete and
policy review in general can be mapped to satisfiability prob-
lem, reviewing policy would be NP-Complete in many ex-
isting ABAC models including [11, 20, 25]. On the other
hand, if policies are expressed in first-order logic, policy re-
view would be undecidable since satisfiability is undecidable
in first-order logic.

2.1.2 Enumerated policy
Usefulness of enumerated policy has been demonstrated

in the literature. For example, in Policy Machine (PM) [5],
Ferraiolo et. al define attribute based enumerated policies
using one user attribute, one object attribute and a set of ac-
tions. A policy/privilege in PM is defined as (uai, OP, oai),
where uai and oai are values of user-attribute and object-
attribute respectively and OP is a set of operations. Intu-
itively, reviewing or updating an enumerated policy would
be polynomial time.

The simple structure of enumerated policy does not neces-
sarily make it less expressive. For example, PM shows how
to configure traditional models using enumerated policies [1].
In Section 5, we also show how to express RBAC [18] and

2

LBAC [17] policies using LaBAC policies. Interestingly, not
all logic-based policies can be expressed in the enumerated
policies defined in PM . One simple reason is that PM does
not allow negative attribute values to be in the policy. An-
other reason is that PM only considers single attribute-value
for users and single attribute-value for objects for defining
policies. In PM, it is difficult to define a policy such that
some one who is ‘manager’ and not ‘director’ should be able
to approve ‘new loans’. However, in general it is possible
to define enumerated policies, different than policies in PM,
that use a set of user-attribute values and object-attribute
values along with negative values.

A concern in enumerated policy is that a complex policy
expressed in logic-based formula may require many (in the
worst case exponentially large) enumerated policies to be
defined. This may require large space along with significant
administrative efforts to define and maintain these policies.

2-sorted-RBAC [13], on the other hand is an example to
use enumerated policy in the context of RBAC [18]. In 2-
sorted-RBAC, roles are split into proper roles containing
group of users and demarcations containing group of per-
missions. Proper roles and demarcations are subsequently
combined together by enumerating grant relations.

2.1.3 Authorization and administrative policies
Different authors adopt different scopes while expressing

details of an ABAC model. For example, authors in ABACα
[11], consider both authorization policies (for granting ac-
cess to objects) and constraint policies (for modifying at-
tributes of subjects or objects during creation and modi-
fication time). HGABAC [20] considers policies for user-
attribute or object-attribute assignments besides defining
authorization policies as part of their core model. There
are separate models as well (eg. [10]) for addressing admin-
istrative policies (e.g. administration of user-attributes) in
ABAC system.

LaBAC, on the contrary, considers only authorization poli-
cies as part of the most essential components of the model.
Other policies like user-attribute-value assignments, object-
attribute-value assignments, activation of user-attribute val-
ues in a session and so on are outside the scope of core
LaBAC authorization model.

2.2 Related work
Several attribute based access control models have been

proposed in the literature. While, some authors design gen-
eral purpose ABAC model, others design ABAC in specific
application context. There are also significant works towards
integrating attributes with traditional RBAC model for en-
hancing its expressibility. Furthermore, XACML represent
another line of work involving attributes to provide flexi-
ble policy language and support of multiple access control
policies.

ABACα [11] is among the first few models to formally
define an ABAC model. It is designed to demonstrate flex-
ibilities of an ABAC system to configure DAC, MAC and
RBAC models. ABACα uses subset of subject attributes
and object attributes to define an authorization policy for a
particular permission p. It describes a constraint language
to specify subject attributes from user attributes. Further-
more, it also presents a constraint language for changing
object attributes at creation or modification time.

HGABAC [20] is another notable work in designing a

formal model for an ABAC system. Besides designing a
flexible policy language capable of configuring DAC, MAC
and RBAC, it also addresses a real problem of assigning
attributes to a large set of users and objects. It specifies
hierarchical groups and provides a mechanism for inheriting
attributes from a group by joining to the group.

ABAC-for-web-services [25] is among very few earlier works
to outline authorization architecture and policy formulation
for an ABAC system. They propose a distributed architec-
ture for authoring, administering, implementing and enforc-
ing an ABAC system. Even though, their policy language
is semi-formal, they present a powerful idea of composing
hierarchical policies from individual policies.

Wang et al [24] presents a stratified logic programming
based framework to specify ABAC policies. Even though,
they only consider user attributes, they focus on providing
a consistent, high performance and workable solution for
ABAC system.

In its ABAC guide [7] and other publications [9], NIST
defines common terminologies, and concepts for an ABAC
system. It discusses required components, considerations
and architecture for designing an enterprise ABAC system.
It acknowledges the fact that ABAC rules can be quite com-
plex in boolean combination of attributes or in simple rela-
tions involving attributes. Additionally, it discusses more
advanced features like attribute and policy engineering, fed-
eration of attributes and so on. Nonetheless, these docu-
ments are focused towards establishing general definitions
and considerations of an ABAC system without providing a
concrete model definition.

There are other works that design an ABAC system from
a particular application context. For example, WS-ABAC
[21] is motivated by requirements in web services, ABAC-
in-grid [14] is motivated by needs in the grid computing.

Another interesting line of work combines attributes with
Role Based Access Control. Kuhn et. al [12] provides a
framework for combining roles and attributes. In the frame-
work, they briefly outline three different approaches - (i)
dynamic roles which retain basic structure or RBAC and
uses attribute based rules to derive user roles, (ii) attribute
centric, which treat role as another ordinary attribute, and
(iii) role centric, which uses roles to grant permissions and
attributes to reduce permissions to be available to the user.
Various other earlier or subsequent works involving roles and
attributes can also be cast in Kuhn’s framework. For exam-
ple, attribute-based user-role assignment by Al-Kahtani et.
al [3] can be considered as an approach based on dynamic
roles.

Last but not the least, XACML [15] is a declarative access
control policy language and processing model which sup-
ports attribute based access control concepts and policies.
Although, it lacks a formal definition of an ABAC model, it
is notable for its uses in multiple commercial products.

3. FAMILY OF LABAC MODELS
In this section, we describe the LaBAC model along with

formal definitions. LaBAC, short for Label Based Access
Control, uses one user-label named uLabel and one object-
label named oLabel. We define label as a special attribute.
While attributes in general have open-ended semantics, la-
bels are associated with specific semantics. For example, at-
tributes can be set-valued (e.g. roles or clearance) or atomic
valued (e.g. age). An attribute value can be assigned by an

3

Figure 1: Components of LaBAC

Figure 2: Family of LaBAC models

administrator (eg. role, clearance), self-asserted (e.g. date
of birth), or derived from other attributes (e.g. age can be
derived from date of birth). Moreover, value of attributes
can be ordered or unordered. On the other hand, labels are
set-valued, values are partially ordered and are assigned by
administrators.

For the sake of clarity and emphasis on different elements
of the model, we present LaBAC as a family of models. Ba-
sic LaBAC (LaBAC0), presents the minimum elements to
define a LaBAC model. Additionally, we add hierarchies
and constraints with it in LaBACH and LaBACC respec-
tively. LaBAC1 combines both the hierarchical and con-
strained models. The components of the LaBAC models are
shown in Figure 1 and the family of the models is schemat-
ically presented in Figure 2.

3.1 Basic LaBAC Model
The elements represented by solid bold lines in Figure

1 represent the Basic LaBAC Model (LaBAC0). In this
model, a set of users, objects and actions (finite set) are rep-
resented by U,O and A respectively. Users are associated
with a label function named uLabel and objects are asso-
ciated with another label function, oLabel. uLabel maps a
user to one or more values from the finite set UL (repre-
sented by the double headed arrow from users to UL) and
oLabel maps one object to one or more values from the finite
set OL (represented by the double headed arrow from ob-
jects to OL). Similarly, the double headed arrow from UL to
users and OL to objects represent that one user-label value

Table 1: LaBAC0 Model
I. Sets and relations

- U,O and S (set of users, objects and sessions resp.)
- UL, OL and A (finite set of user-label values,

object-label values and action resp.)
- uLabel and oLabel (label functions on users and

objects). uLabel : U → 2UL; oLabel : O → 2OL

- creator : S → U , many-to-one mapping from S to U
- s labels : S → 2UL, mapping from S to uLabel values.

s labels(s) ⊆ uLabel(creator(s))
〈 see Section 3.5 for session management functions 〉

II. Policy components
- Policya ⊆ UL×OL, for action a ∈ A.
- Policy = {Policya|a ∈ A}

III. Authorization function
- is authorized(s:S,a:A,o:O) = ∃ul ∈ s labels(s),

∃ol ∈ oLabel(o) [(ul, ol) ∈ Policya]

Figure 3: Combining subset of tuples in a policy

can be associated with more than one user and one object-
label value can be associated with more than one object.

Sessions are denoted by the set S. There is a one-to-
many mapping from users to sessions. While a user may
have many uLabel values assigned to him, he can choose
to activate any subset of the assigned values in a session.
The relation (and function) creator and s labels maintain
mapping from sessions to users and sessions to uLabel values
respectively. The creator and s labels functions are formally
defined in Segment I of Table 1.

In LaBAC, for each action, a ∈ A we define only one pol-
icy, denoted Policya. A policy is comprised of a subset of
tuples from the set of all tuples UL×OL. Relationship be-
tween a policy and tuples is schematically shown in Figure
3. In defining policies, a policy may contain many tuples

4

Figure 4: ULH and OLH

and a tuple (ul, ol) ∈ UL × OL can be used in more than
one policy. Thus, a many-to-many relation exists between
policies and tuples. Finally, the set Policy contains all indi-
vidual policies for each action a ∈ A. The formal definition
of Policy is shown in Segment II of Table 1.

The authorization function is authorized(s, a, o) allows
an access request by a subject s ∈ S to perform an ac-
tion a ∈ A on an object o ∈ O if all following conditions are
satisfied - s is assigned a value ul; o is assigned a value ol
and the policy for action a contains the tuple (ul, ol). The
formal definition of the authorization function is given in
Segment III of Table 1.

3.2 Hierarchical LaBAC
Hierarchical LaBAC model (LaBACH) introduces user-

label hierarchy (ULH) and object-label hierarchy (OLH)
in addition to the components of LaBAC0. Some elements
in LaBAC0 are also modified in LaBACH . The additions
and modifications in LaBACH from LaBAC0 are shown in
Table 2.

Hierarchy is a convenient way of ranking users and objects.
LaBAC achieves ranking on users through ULH and ranking
on objects through OLH. For two user-label values, uli and
ulj , when we say uli is senior to ulj (written as uli �ul ulj),
we mean that users assigned to uLabel value uli can also
exercise all privileges of users who are assigned to value ulj .
Similarly, for two object-label values, oli and olj , when we
say oli is senior to olj (written as oli �ol olj), we mean that
objects assigned to value olj are also considered as inherited
objects for value oli for the purpose of authorization. The
direction for the containment of privileges and objects along
the hierarchy of ULH and OLH is shown in Figure 4. For
containment of objects, in Figure 5 objects that are assigned
value ‘public’, are also considered to be objects that are
assigned value ‘protected’.

When we assign a tuple (ulm, oln) in a policy Policya, ad-
ditional tuples are also implied for Policya because of user-
label and object-label value hierarchy. We identify these im-
plied tuples with the notion of a new set ImpliedPolicy. The
implied policy ImpliedPolicya includes all tuples of Policya
and extra tuples that are implied by every tuples of Policya.

Implied policy is explained in Figure 5. For a policy,
Policya = {(employee, protected)}, corresponding implied
policy is ImpliedPolicya = {(manager, protected),
(manager, public), (employee, protected), (employee, public)}.
Figure 5, further classifies tuples into tuples implied by ULH,
or OLH or both. Note that authorization function and ses-
sion function are also modified in Table 2 to accommodate
ULH and OLH.

Table 2: LaBACH Model
(Additions and modifications to LaBAC0)

I. Sets and relations
- ULH ⊆ UL× UL, partial order (�ul) on UL
- OLH ⊆ OL×OL, partial order (�ol) on OL
- s labels(s) ⊆ {ul′|ul ∈ uLabel(creator(s)) ∧ ul �ul ul′}

II. Implied policy
- ImpliedPolicya = {(uli, olj)|∃(ulm, oln) ∈ Policya[

uli �ul ulm ∧ oln �ol olj]} (explained in Figure 5)

III. Authorization function
- is authorized(s:S,a:A,o:O) = ∃ul ∈ s labels(s),

ol ∈ oLabel(o) [(ul, ol) ∈ ImpliedPolicya]

Figure 5: Policy and implied policy

3.3 Constrained LaBAC
A general treatment of assignment constraints in ABAC

has been covered in [4]. similarly, role based authorization
constraints have been extensively studied in [2]. In this sec-
tion, we specify constraints for the LaBAC model.

We scope constraints as means of restricting administra-
tive or user actions. We define two types of constraints -
assignment constraints and policy constraints. Assignment
constraints put constraints on user to user-label value assign-
ments, object to object-label value assignments and session-
label value assignments. An example of user-label value as-
signment constraint is that a user cannot be assigned all fol-
lowing values {manager, director, employee}. An example
of object-label value assignment constraint is that an object
cannot be assigned both values - protected and public. An
example of session-label value assignment constraint is that
both manager and director values cannot be activated in the
same session. Policy constraints, on the other hand, prevent
certain tuples in policies. For example, policy constraints
may enforce that an employee can never access protected
objects by restricting the tuple (employee, protected).

Assignment constraints are specified by defining a set of
conflicting uLabel, oLabel and session values denoted by
COL, CUL and CSL respectively in Table 3. The constraint
that an object cannot be assigned both values - ‘protected’
and ‘public’ is specified as COL = {{public, protected}}
and |oLabel(o) ∩ OneElement(COL)| ≤ 1 where function
OneElement() returns one element from its input set. (we
use the same concept of OneElement() from [2]). Similarly,
other assignment constraints can also be formulated. Note
that user-label value assignment constraints can be used to
configure Static Separation of Duty, while session constraints
can be used to enforce some aspects of Dynamic Separation
of Duty [22].

Policy constraints are defined using the set RestrictedTu-

5

Table 3: LaBACC Model
(Additions and modifications to LaBAC0)

I. Components added from LaBAC0

uLabel value assignment constraint:
- CUL = a collection of conflicting user-label values,
{CUL1, CUL2, ...CULn} where CULi = {ul1, ...ulk}

oLabel value assignment constraint:
- COL = a collection of conflicting object-label values,
{COL1, COL2, ...COLn} where COLi = {ol1, ...olk}

Session value assignment constraint:
- CSL = a collection of conflicting user-label values,
{CSL1, CSL2, ...CSLn} where CSLi = {ul1, ...ulk}

Policy constraint:
- RestrictedTuples ⊆ UL×OL

II. Derived components
- V alidTuples = (UL×OL) \RestrictedTuples

III. Authorization function
- is authorized(s:S,a:A,o:O) = ∃ul ∈ s labels(s),
∃ol ∈ oLabel(o) [(ul, ol) ∈ Policya ∩ V alidTuplesa]

Table 4: LaBAC1 Model
I. Basic Components

- U,O and S (set of users, objects and sessions resp.)
- UL, OL and A (finite set of user-label values,

object-label values and action resp.)
- uLabel and oLabel (label functions on users and

objects). uLabel : U → 2UL; oLabel : O → 2OL

- ULH ⊆ UL× UL, partial order (�ul) on UL
- OLH ⊆ OL×OL, partial order (�ol) on OL
- creator : S → U , mapping from S to U
- s labels : S → 2UL, mapping from S to uLabel values.
s labels(s) ⊆ {ul′|ul ∈ uLabel(creator(s)) ∧ ul �ul ul′}
- RestrictedTuples ⊆ UL×OL
- CUL, COL, CSL (conflicting set of uLabel, oLabel

and session-label values)
〈 see Section 3.5 for session management functions 〉

II. Policy components
- Policya ⊆ UL×OL, for action a ∈ A.
- Policy = {Policya|a ∈ A}

III. Derived components
- ImpliedPolicya = {(uli, olj)|∃(ulm, oln) ∈ Policya[

uli �ul ulm ∧ oln �ol olj]}
- ValidTuples = (UL×OL) \RestrictedTuples

IV. Authorization function
- is authorized(s:S,a:A,o:O) = ∃ul ∈ s labels(s), ∃ol
∈ oLabel(o)[(ul, ol) ∈ ImpliedPolicya ∩ValidTuples]

Figure 6: Restricting policies with policy constraints

ples. For a tuple, (ulr, olr) ∈ RestrictedTuples, if it is
included in a policy, Policya, it would be ignored in the
computation of authorization decision. For convenience we
define a derived set ValidTuples as all possible tuples mi-
nus RestrictedTuples. RestrictedTuples and ValidTuples are
shown in Table 3. Policy constraint is explained schemati-
cally in Figure 6.

In LaBAC, we include constraint policies beyond autho-
rization policies. While, authorization policies establish re-
lationship only between user-label and object-label values
(along with actions), constraint policies go beyond. For ex-
ample, constraint policies may consider relationship between
UL and OL (policy constraints), UL and UL (uLabel/session
value assignment constraints), OL and OL (oLabel value as-
signment constraints), S and UL (cardinality constraints on
session value assignments) and so on. As a result, constraint
policies in LaBAC include logical formulas as well as enu-
merated tuples.

3.4 The Combined Model (LaBAC1)
The combined model, LaBAC1 (shown in Table 4), com-

bines elements from both LaBACH and LaBACC models.
Segment I of Table 4 presents all basic sets and relations.
Policy components and derived components are shown in
Segment II and III respectively. Finally, authorization deci-
sion function is laid out in Segment IV.

3.5 Functional Specification
LaBAC allows users to create or destroy sessions, and as-

sign/remove values from an existing session. Table 5 presents
user-level s labels functions for managing sessions in LaBAC0.
Each function is presented with formal parameters (given
in the first column), necessary preconditions (in the sec-
ond column) and resulting updates (in the third column).
The function create session() creates a new session with
given values, delete session() deletes an existing session,
assign values() assigns values in an existing session and
remove values() removes values from an existing session.

In LaBACH , we modify condition of the session func-
tions from Table 5 to accommodate that in a session cre-
ated by a user, he can choose from the values he is as-
signed to or junior values. The modified conditions are
given in Table 6. We specify an additional condition with
each session function in LaBACC and LaBAC1. For ex-
ample, with create session(), we specify a boolean func-
tion fcreate session() as additional precondition which must
also be true. The definition of these boolean functions are
open-ended to be able to configure any session constraints.
The difference between session functions in LaBACC and
LaBAC1 is that the former does not consider hierarchy on
user-label values whereas the later does. Table 7 and 8
show session functions in LaBACC and LaBAC1 respec-
tively. Table 9 presents some constraints specified with
fcreate session() function. Example 1 uses an enumerated
policy, Policycreate session. It specifies that in order to cre-
ate a session and assign values to the session, a user must
be assigned to value session+. Example 2 enforces the con-
straint that no more than one conflicting uLabel values can
be activated in a session. Example 3 imposes that a user
cannot have more than some bounded number of sessions.

Note that creation and deletion of objects, updating object-
label values by sessions are outside the scope of LaBAC op-
erational models presented here. One reason behind is that,

6

Table 5: User-level session functions in LaBAC0

Fuction Condition Updates
create session
(u : U, s : S, values : 2UL)

u ∈ U ∧ s 6∈ S ∧ values ⊆ uLabel(u)
S′ = S ∪ {s}, creator(s) = u,
s labels(s) = value

delete session
(u : U, s : S)

u ∈ U ∧ s ∈ S ∧ creator(s) = u S′ = S \ {s}

assign values
(u : U, s : S, values : 2UL)

u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧ values ⊆ uLabel(u) s labels(s) = s labels(s) ∪ values

remove values
(u : U, s : S, values : 2UL)

u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧ values ⊆ uLabel(u) s labels(s) = s labels(s) \ values

Table 6: Session functions in LaBACH
(condition of session functions modified from Table 5)

Function Modified condition

create session
u ∈ U ∧ s 6∈ S ∧ values ⊆
{ul′|∃ul �ul ul′[ul ∈ uLabel(u)]}

delete session u ∈ U ∧ s ∈ S ∧ creator(s) = u

assign values
u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧ values

⊆ {ul′|∃ul �ul ul′[ul ∈ uLabel(u)]}

remove values
u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧ values
⊆ {ul′|∃ul ∈ uLabel(u) ∧ ul �ul ul′}

Table 7: Session functions in LaBACC
(condition added with session functions from Table 5)

Session function Additional condition
create session ∧fcreate session(u, s, values)
delete session ∧fdelete session(u, s)
assign values ∧fassign values(u, s, values)
remove values ∧fremove values(u, s, values)

LaBAC assumes actions not to be state-changing, while cre-
ation and deletion of objects change state of the model.

3.6 Quantifying LaBAC1 authorization policies
In LaBAC, we define one authorization policy per action.

A policy can take any subset of all possible tuples. Thus,
different number of ways to define a policy is the size of the
power set of all possible tuples. Table 10 shows possible
number of enumerated authorization policies in LaBAC1.

4. EQUIVALENCE OF LABAC AND
2-SORTED-RBAC

2-sorted-RBAC [13] is an interesting extension of Role
Based Access Control which breaks the duality of roles (users
and permissions perspectives) into proper roles (R+) as group
of users and demarcation (D+) as group of permissions. User
inheritance is maintained with proper role hierarchy (R+H)
and permission inheritance is maintained with demarcation
hierarchy (D+H). The connection between proper roles and
demarcation is maintained by the grant relation (G) which
enumerates (proper role, demarcation) pairs. For example,

Table 8: Session functions in LaBAC1

(condition added with session functions from Table 6)
Session function Additional condition
create session ∧fcreate session(u, s, values)
delete session ∧fdelete session(u, s)
assign values ∧fassign values(u, s, values)
remove values ∧fremove values(u, s, values)

Table 9: Examples of fcreate session(u, s, values)
Example 1. using LaBAC policy:
∃session+ ∈ uLabel(u)∧
∃Policycreate session ≡ {(session+, session)} ∈ Policy

Example 2. using LaBAC1 session constraint CSL:
|values ∩OneElement(CSL)| <= 1

Example 3. using cardinality constraint on sessions:
|{s|creator(s) = u}| <= 10

Table 10: Authorization policy space in LaBAC1

Item Size
Authorization policies |A|
Ways to define an Auth. policy 2|UL|×|OL|

Ways to define all Auth. policies |A| × 2|UL|×|OL|

for proper roles and demarcations given in Figure 7, G in-
cludes following tuples - {(manager, red), (employee, am-
ber)}. Note that 2-sorted-RBAC [13] also includes negative
roles and demarcations which we do not consider here.

2-sorted-RBAC is compelling in many ways. It introduces
a higher administrative level (through grant relation) for ac-
cess management. User-role assignment (UR+ ⊆ U × R+)
and demarcation-permission assignment (PD+ ⊆ P ×D+),
along with administration of grant relation can be carried
out more independently and distributively. Moreover, the
authors shows that, 2-sorted-RBAC enables many-to-many
administrative mutations which leads to organizational scal-
ability. In many-to-many mutation, by granting a (proper
role, demarcation) pair, all users in the proper role get all
permissions in the demarcation which, as the authors shows
cannot be achieved by standard RBAC [6].

The benefits of 2-sorted-RBAC can also be realized through
LaBAC. For example, user to uLabel value assignments, ob-
ject to oLabel value assignments and authorization policies
are analogous to R+H, D+H and grant relation in 2-sorted-
RBAC and can also be carried out independently. On the
other hand, many-to-many administrative mutation can also

Figure 7: An example of Two-sorted-RBAC

7

Figure 8: An example of Two-sorted-RBAC configured in
LaBAC

Table 11: 2-sorted-RBAC in LaBACH
I. 2-sorted-RBAC components

- S,OBS,OPS, R+, R+H, D+, D+H, (users, objects,
operations, proper roles, role hierarchy, demarcation

and demarcation hierarchy respectively).
- PRMS = (OBS ×OPS), the set of permissions
- SR+ ⊆ S ×R+

- PD+ ⊆ PRMS ×D+

- G ⊆ R+ ×D+

II. Construction in LaBACH
- U = S,O = OBS,A = OPS
- UL = R+, ULH = R+H
- OL = D+ ×OPS
- OLH = {((di, opi), (dj , opj))|di � dj ∧ opi = opj}
- uLabel(u) = {r|(s, r) ∈ SR+}
- oLabel(o) = {(d, op)|((o, op), d) ∈ PD}
- Policyopi = {(ri, (dj , opj))|(ri, di) ∈ G∧

((o, opi), di) ∈ PD+}

be achieved. For example, the LaBAC policy, Policyop1 ≡
{(manager, (red, op1))} in Figure 8, enables every manager
to perform operation op1 on every object labeled with (red, op1).

In fact, LaBAC is similar to 2-sorted-RBAC in spirit.
While 2-sorted-RBAC is more role oriented, LaBAC is at-
tribute oriented. In the following of this section, we show
equivalence of LaBAC and 2-sorted-RBAC with respect to
their theoretical expressive power. In order to establish the
equivalence, we show that any instance of 2-sorted-RBAC
can be expressed in LaBAC and vice-versa.

Figure 8 is an example showing configuration of a 2-sorted-
RBAC instance (given in Figure 7) in LaBAC. In Figure 8,
user-label values and its hierarchy directly corresponds to
roles and role hierarchy in Figure 7. On the other hand,
object-label values correspond to Cartesian product of D+

and OPS. An object-label value (di, op) dominates an-
other object-label value (dj , op), if demarcation di domi-
nates demarcation dj . For example, for demarcations {red,
amber} and operations {op1, op2} (of Figure 7), four object-
label values have been defined where (red, op1) dominates
(amber, op1) because red dominates amber. For an object-
label value (d, op), we assign (d, op) to the object o to if
(o, op) is a permission in demarcation d. For example, ob-
ject o1 is assigned the value (red, op1) because (o1, op1)
is a permission in demarcation red. On the other hand,
user-label values assigned to a user corresponds to his as-
signed proper roles. Finally, having assigned object-label
and user-label values, for each grant relation (r, d) ∈ G,
we specify authorization policy Policyop ≡ {(r, (d, op))} so
that object labeled with (d, op) are accessed by users with

Table 12: LaBACH in 2-sorted-RBAC
I. LaBACH components

- U,O,A (set of users, objects and actions resp.)
- UL,OL,ULH,OLH (uLabel values, oLabel values,

uLabel and oLabel value hierarchy resp.)
- uLabel : U → 2UL, oLabel : O → 2OL

- Policya, authorization policy for action a ∈ A

II. Construction in 2-sorted-RBAC
- S = U,OBS = O,OPS = A
- R+ = UL, R+H = ULH
- D+ = OL, D+H = {}
- SR+ = {(u, r)|r ∈ uLabel(u)}
- PD+ = {((oi, ai), ol)|∃(ul, ol) ∈ Policyai∧

ol′ ∈ oLabel(oi) ∧ ol �ol ol′}
- G = {(ul, ol)|(ul, ol) ∈ Policya}

role r for operation op. For example, for the grant relation
(manager, red) in Figure 7, we create a policy Policyop1 ≡
{(manager, (red, op1))}. We do not create policy Policyop2 ≡
{(manager, (red, op2))} because there is no permission de-
fined with operation op2 in demarcation red. Table 11 for-
mally shows this configuration.

Configuration of LaBACH in 2-sorted-RBAC is given in
Table 12. Segment I represents elements of LaBAC model
and Segment II shows the configuration. In the configura-
tion, user-label values and its hierarchy are used as proper
roles and proper role hierarchy. Object-label values are
used as names for demarcations. For an object-label value
ol ∈ OL, let Ool be the objects labeled with ol. For each
policy policyop ≡ {(ul, ol)} in LaBAC, we create a grant
relation (ul, ol) in 2-sorted-RBAC. Further, assign permis-
sion (o,op) in demarcation named ol for o ∈ Oop. Note that
2-sorted-RBAC does not distinguish between users and ses-
sions as we do in LaBAC. For this reason, we omit LaBAC
sessions while showing equivalence with 2-sorted-RBAC.

Here we use LaBACH to configure 2-sorted-RBAC for
convenience. In fact, LaBAC0 is the minimalistic model
that is equivalent to 2-sorted-RBAC. In Figure 9, we show
summary of expressive power of different LaBAC models.
The dashed box represents the minimalistic LaBAC model
required to configure other models and solid box represents
the LaBAC model that we use for our convenience.

The construction of Tables 11 and 12 and other construc-
tions given in the rest of this paper can be cast in the formal
approach of [23]. So, these models are equivalent in the sense
of state-matching reduction.

5. LBAC AND RBAC IN LABAC
In this section, we configure LBAC [17] and RBAC [18] us-

ing LaBAC1. For each configuration, we additionally show
the required number of label values and authorization poli-
cies.

5.1 LBAC in LaBAC1

LBAC or Lattice Based Access Control is characterized
by one directional information flow in a lattice of security
classes. The security classes are partially ordered. One se-
curity class from these classes is assigned to each user which
is known as clearance of the user. A user having a senior
security class can also exercise his/her privileges using a ju-
nior security class. For example, a top secret user can also

8

Figure 9: Expressiveness of LaBAC models

exercise his privileges as secret user but he/she cannot use
both secret and top secret clearance at the same time. On
the other hand, one security class (from the same classes of
the security lattice) is assigned on objects commonly known
as classification of the object. LBAC enforces one direction
of information flow by two mandatory rules for reading and
writing of these objects. One rule, known as simple-security
property (informally, read down rule), states that a subject
(or user) can read an object if subject’s clearance dominates
object’s classification. The other rule, known as liberal ?-
property (informally, write up rule), states that a subject
can write on an object if object’s classification dominates
subject’s clearance. As a security class dominates itself it is
possible to read and write at the same level. A variation of
liberal ?-property, know as strict ?-property, mandates that
a subject can only write at his own level for the purpose
of integrity requirements. A definition of LBAC is given in
Segment I of Table 13.

We present the configuration of LBAC in LaBAC1. Mini-
malistically, we need LaBACC to configure some constraints
of LBAC, for example, at most one security class can be ac-
tivated by a subject (i.e. session in case of LaBAC) at a
time. We use LaBAC1 for convenience.

The configuration of LBAC in LaBAC1 is given in Seg-
ment II of Table 13. The security classes and its hierarchy
are directly used as user label values and its hierarchy. For
object-label values and its hierarchy we consider both the
original lattice and the inverted lattice. The clearance of
a user in LBAC is assigned as uLabel values of the user in
LaBAC. On the other hand, if an object has a classification
of sc ∈ SC in LBAC, we assign the object oLabel values
of {sc,sc’}, where sc′ correspond to sc in the inverted lat-
tice. The simple-security property is configured as a LaBAC
policy Policyread ≡ {(sci, sci)} so that users having user-
label value sci can read objects having object-label value
sci or its junior. Similarly, the ?-property is configured with
Policywrite ≡ {(sci, sc′i)} where sci is the user-label value
from the original lattice and sc′i is the object-label value
from the inverted lattice and sci correspond to sc′i. For the
liberal ?-property, we consider the hierarchy of the inverted
lattice where as we do not consider them for the strict ?-
property. An example of LBAC configured in LaBAC1 is
given in Figure 10.

Table 13: LBAC in LaBAC1

I. LBAC components
- UL, OL and SL (set of users, objects and sessions resp.)
- SC : set of security classes in the lattice
- SCH : partial order on SC (also denoted by �)
- sub creator : SL → UL, many-to-one mapping

from SL to UL
- clearance : (UL ∪ SL)→ SC, and

clearance(s) � clearance(sub creator(s))
- classification : OL → SC
- Simple-security property : Subject s can read object o

only if clearance(s) � classification(o)
- Liberal ?-property : Subject s can write object o

only if clearance(s) � classification(o)
- Strict ?-property : Subject s can write object o

only if clearance(s) = classification(o)

II. Construction in LaBAC1

II(a). Construction of basic sets and relations
- U = UL, O = OL, S = SL, A = {read, write}
- creator(s) = sub creator(s), for s ∈ S
- UL = SC,ULH = SCH
- OL = {sc|sc ∈ SC} ∪ {sc′|sc ∈ SC}
- OLH = {(sci, scj)|sci � scj} ∪ {(sc′i, sc′j)|sc′j � sc′i}

[under liberal ?-property]
- OLH = {(sci, scj)|sci � scj} [under strict ?-property]
- uLabel(u) = clearance(u)
- oLabel(o) = {sc, sc′}, where sc = classification(o)
- Policyread = {(sci, sci)|sci ∈ SC}
- Policywrite = {(sci, sc′i)|sci ∈ SC}

II(b). Condition on session functions
- fcreate session(u, s, val) : |val| = 1
- fdelete session(u, s) : true
- fassign values(u, s, val) : false [assuming tranquility]
- fremove values(u, s, val) : false [assuming tranquility]

III. LaBAC extension for object creation
- create object(s, o, {val}): create a new object, and

assign value {val}
condition: s ∈ S ∧ o 6∈ O ∧ ∃ul ∈ s labels(s)

∧val � ul]
update: O′ = O ∪ {o}, oLabel(o) = {val}

Figure 10: LBAC example configured in LaBAC

9

Table 14: Quantifying LaBAC for simulating LBAC
|UL| = |SC| and |OL| = 2 ∗ |SC|
|Policy| = 2 (Policyread and Policywrite)

Figure 11: An example of roles and permission-role assign-
ments in RBAC.

Segment II(b) of Table 13 specifies conditions for the ses-
sion management functions in LaBAC. In create session()
we specify additional condition so that at most one user-
label value can be activated in one session. We assume,
once created clearance of subjects and classification of ob-
jects cannot be changed. This property in known tranquility
in the literature [17]

Segment III is an extension of LaBAC1 for the purpose of
creating objects in LaBAC. Since functional specification of
LaBAC1 does not include functions for creating or managing
objects, here we define a function create object() for this
purpose. We follow the liberal ?-property as the precondition
for creation of objects.

Finally, Table 14 shows required number of authorization
policies, UL and OL values for configuring LBAC.

5.2 RBAC in LaBACH

A definition of hierarchical RBAC (RBAC1) is shown in
Segment I of Table 15. In RBAC, permissions are assigned
to roles and users receive permissions through their enroll-
ment to roles. Roles are partially ordered. If a role, ri is
senior to role, rj (otherwise told ri dominates rj), ri inherits
permissions from rj and rj inherits users from ri. Thus role
hierarchy serves dual purpose of inheriting users and per-
missions. Figure 11 presents an example showing roles, role
hierarchy and permission-role assignments in RBAC1.

In Segment II of Table 15, we show construction of RBAC1

in LaBACH . Minimalistically, we need LaBAC0, but we use
LaBACH for convenience.

Figure 12 shows an instance of RBAC (given in Figure
11) configured in LaBAC. In the figure, user-label values
and its hierarchy directly correspond to roles and role hi-
erarchy of Figure 11. On the other hand, object-label val-
ues correspond to Cartesian Product of ROLES and OPS.
For example, for roles {manager, employee} and operations
{read, write, exec} of Figure 11, six different object-label
values have been defined. For an object-label value (r, op),
we assign it to the object o if (o, op) is a permission as-
signed to role r. For example, object o1 is assigned to label
(manager, read) because (o1, read) is a permission of role
manager (see Figure 11). Having assigned object-label and
user-label values, for each r ∈ ROLES, we specify autho-
rization policy Policyop ≡ {(r, (r, op))} so that object la-
beled with (r, op) are accessed by users labeled with role r for

Table 15: RBAC1 in LaBACH
I. RBAC1 components

- USERS, OBS, OPS, SESSIONS, ROLES and RH
(users, objects, operations, sessions, roles

and role hierarchy resp.)
- PRMS = (OBS×OPS), the set of permissions
- UA ⊆ USERS× ROLES.
- PA ⊆ PRMS× ROLES.
- session user : SESSIONS→ USERS
- session roles : SESSIONS→ 2ROLES and
session roles(s) ⊆ {r|(∃r′ � r)[session user(s), r′) ∈ UA]}

II. Construction in LaBACH
- U = USERS, O = OBS, A = OPS, S = SESSIONS
- UL=ROLES, ULH=RH
- OL = ROLES×OPS, OLH = {}
- uLabel(u) = {r|(u, r) ∈ UA}
- oLabel(o) = {(r, op)|((o, op), r) ∈ PA}
- creator(s) = session user(s), for s ∈ S
- s labels(s) = session roles(s), for s ∈ S
- Policyopi = {(r, (r′, opi))|((o, opi), r′) ∈ PA ∧ r′ = r}

Table 16: Quantifying LaBAC for simulating RBAC
UL	=	ROLES		
OL	=	ROLES	×	OPS
Policy	=	OPS		

operation op. For example, for role, manager in Figure 11,
we create Policyread ≡ {(manager, (manager, read))} and
Policywrite ≡ {(manager, (manager, write))}. We do not
create policy Policyexec ≡ {(manager, (manager, exec))}
because there is no permission defined with operation exec
in role manager. Table 15 formally shows the configuration
of RBAC1 in LaBAC.

Finally, Table 16 presents number of user-label values,
object-label values and authorization policies required to
configure RBAC1.

6. LaBACH IN POLICY MACHINE
In this section, we show how LaBAC can be presented as

a simple instance of Policy Machine (PM) [5]. In order to
do so, we first define Policy Machine Mini (PMmini) - a step
down version of PM sufficient enough for our purpose. We
then configure LaBACH in PMmini.

6.1 PMmini

PMmini is a sufficiently reduced version of PM. For exam-
ple, while PM uses four basic relations namely Assignment,
Association, Prohibition and Obligation, PMmini includes
only the first two of these. Similarly, PM manages both re-
source operations and administrative actions but PMmini

is limited to managing operation on resources only. Ad-
ditionally, Policy Class, an important concept in PM for
combining multiple policies, is not considered in PMmini.

Definition of PMmini is shown in Table 17. In PMmini

users, objects, operations and processes are denoted by set
U,O,OP and P respectively. UA and OA represent the
finite sets of user attributes and object attributes. The def-
inition of attributes in PMmini is different than the defini-
tion of attributes in most other models. While typically at-
tributes are used as (attribute, value) pairs, PMmini uses at-
tributes as containers for users, objects and other attributes

10

Figure 12: An instance of RBAC (from Figure 11) configured in LaBAC.

Table 17: PMmini definition
I. Basic sets and relations

- U,O,OP and P (set of users, objects, operations
and processes resp.)

- UA,OA (set of user and object attributes)
- AR (set of access rights). In PMmini, AR = OP
- process user : P → U

II. Assignment and association relations
- ASSIGN ⊆ (U × UA) ∪ (UA× UA) ∪ (O ×OA)

∪(OA×OA), an irreflexive, acyclic relation
- ASSOCIATION ⊆ UA× 2AR ×OA

III. Derived relations
- ASSIGN+, transitive closure of ASSIGN

IV. Decision function
- allow resource request(p, op, o) =

∃oa ∈ OA,∃ua ∈ UA, ∃u ∈ U
[(ua, {op}, oa) ∈ ASSOCIATION∧

(u, ua) ∈ ASSIGN+ ∧ (o, oa) ∈ ASSIGN+∧
process user(p) = u]

(constraints apply). For example, a user can be assigned to
a user attribute uai which can further be assigned to an-
other user attribute uaj . Same type of assignment applies
for object and object attributes. User (or user attribute) to
user-attribute assignments and object (or object attribute)
to object-attribute assignments are captured by the AS-
SIGN relation which must be acyclic and irreflexive. On
the other hand, the ASSOCIATION relation is like a grant
relation. The meaning of (ua, {a}, oa) ∈ ASSOCIATION
is that users contained in ua can perform operation a on
objects contained in oa. Containment of users and objects
can be transitive which is specified by the ASSIGN+ rela-
tion. The decision function allow resource request(p, op, o)
allows a process, p (running on behalf of a user, u) to per-
form an operation, op on an object, o if there exists an entry,
(ua, {op}, oa) in ASSOCIATION relation where ua transi-
tively contains u and oa transitively contains o.

A process in PMmini simply inherits all attributes of the
creating user. Thus PMmini lacks the ability to model
sessions, since there is no user control over a process’s at-
tributes. Note that PM achieves this effect through obliga-

Table 18: LaBACH in PMmini

I. LaBACH components
- UL, OL, A, S (set of users, objects, actions

and sessions resp.)
- UL,OL,ULH,OLH (uLabel values, oLabel values,

uLabel and oLabel value hierarchy resp.)
- uLabel : U → 2UL, oLabel : O → 2OL

- Policya, authorization policy for action a ∈ A
- creator : S → U

II. Construction
- U = UL, O = OL, OP = A,P = S
- process user(s) = creator(s), for s ∈ S
- UA = UL,OA = OL
- ASSIGN = {(u, ul)|ul ∈ uLabel(u)}∪

{(uli, ulj)|uli �ul ulj}∪
{(o, ol)|ol ∈ oLabel(o)}∪
{(oli, olj)|olj �ul oli}

- ASSOCIATION = {(ul, a, ol)|∃(ul, ol) ∈ Policya
∧Policya ∈ Policy}

tion and prohibition relations [1]. A complete and detailed
model of Policy Machine can be found here [1, 5].

6.2 LaBACH in PMmini

As PMmini lacks the ability to manage sessions, here we
present a mapping from PMmini to LaBACH without ses-
sion management. In the mapping, users, objects, actions
and sessions in LaBAC are directly mapped to users, objects,
operations and processes in PMmini. User-label values and
object-label values in LaBAC correspond to UA and OA
respectively. Additionally, user to user-label value assign-
ments, object to object-label value assignments, ULH and
OLH in LaBACH is mapped to the ASSIGN relation. Fi-
nally, each tuple in each policy in LaBAC is contained in
the ASSOCIATION relation. A mapping from PMmini to
LaBACH is given in Table 18.

7. CONCLUSION & FUTURE WORK
In this paper, we present a simple Attribute Based Access

Control model (LaBAC) using enumerated policies. LaBAC
is based on single user attribute (uLabel) and single object
attribute (oLabel). We analyze LaBAC with other enumer-
ated policy models. LaBAC can be viewed as a simple in-

11

stance of an existing enumerated policy model - Policy Ma-
chine. LaBAC is also equivalent to 2-sorted-RBAC, which is
the other enumerated policy model as we are aware of. We
show flexibility of LaBAC in terms of configuring traditional
models (RBAC and LBAC) in it.

Besides enumerated policy, we also discuss logical formula
based authorization policy which is the more conventional
approach for designing ABAC policy. Logical formula can
be very rich and complex and capable of expressing even
complicated business logic in a very succinct form. But pol-
icy review or policy update may become NP-complete in
policies expressed in logical formulas.

Enumerated policies as an alternate to specify authoriza-
tion policies raise many interesting issues that need to be
addressed to better understand the nature of ABAC. For
example, are there other alternates to specify authorization
policies or policies in general in a ABAC system? What are
the pros and cons of using logical formula or enumerated
policy? Does review of policy or policy update become any
simple in enumerated policies?

Additionally, many other questions need to be addressed
in term of enumerated policy ABAC models. Are enumer-
ated policy models as expressive (or less/more) as logical
formula based models? How (if possible) can we express ar-
bitrary business logic in enumerated policies? What would
be the cost of storing potentially large number of enumer-
ated tuples? How can we extend LaBAC to incorporate
more than one user and object labels (or attributes) and so
on?

8. ACKNOWLEDGMENT
This research is supported by NSF Grant CNS-1111925

and CNS-1423481.

9. REFERENCES
[1] Information technology - Next Generation Access

Control - Generic Operations and Data Structures.
INCITS 526, American National Standard for
Information Technology.

[2] G.-J. Ahn and R. Sandhu. Role-based authorization
constraints specification. ACM TISSEC, 3(4):207–226,
2000.

[3] M. Al-Kahtani and R. Sandhu. A model for
attribute-based user-role assignment. In Computer
Security Applications Conference, 2002. 18th Annual
Proceedings., pages 353–362. IEEE, 2002.

[4] K. Z. Bijon, R. Krishman, and R. Sandhu. Constraints
specication in attribute based access control. Science,
2(3):pp–131, 2013.

[5] D. Ferraiolo, V. Atluri, and S. Gavrila. The Policy
Machine: A novel architecture and framework for
access control policy specification and enforcement.
Journal of Systems Architecture, 57(4):412–424, 2011.

[6] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for
role-based access control. ACM TISSEC,
4(3):224–274, 2001.

[7] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer,
K. Sandlin, R. Miller, and K. Scarfone. Guide to

attribute based access control (ABAC) definition and
considerations. NIST Special Publication, 800:162,
2014.

[8] V. C. Hu and K. A. Kent. Guidelines for access control
system evaluation metrics. NISTIR 7874, 2012.

[9] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo.
Attribute-based access control. Computer, (2):85–88,
2015.

[10] X. Jin, R. Krishnan, and R. Sandhu. A role-based
administration model for attributes. In Proceedings.
SRAS 2012, pages 7–12. ACM, 2012.

[11] X. Jin, R. Krishnan, and R. S. Sandhu. A unified
attribute-based access control model covering DAC,
MAC and RBAC. DBSec, 12:41–55, 2012.

[12] D. R. Kuhn, E. J. Coyne, and T. R. Weil. Adding
attributes to role-based access control. Computer,
(6):79–81, 2010.

[13] W. Kuijper and V. Ermolaev. Sorting out role based
access control. In Proceedings of the 19th ACM
SACMAT, pages 63–74. ACM, 2014.

[14] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan,
and T. Freeman. A flexible attribute based access
control method for grid computing. Journal of Grid
Computing, 7(2):169–180, 2009.

[15] T. Moses et al. Extensible access control markup
language (XACML) version 2.0. Oasis Standard, 2005.

[16] NCCOE. Attribute based access control how-to guides
for security engineers.
https://nccoe.nist.gov/sites/default/files/nccoe/NIST -
SP1800-3c ABAC 0.pdf. Accessed November 25,
2015.

[17] R. S. Sandhu. Lattice-based access control models.
Computer, 26(11):9–19, 1993.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
(2):38–47, 1996.

[19] R. S. Sandhu and P. Samarati. Access control:
principle and practice. Communications Magazine,
IEEE, 32(9):40–48, 1994.

[20] D. Servos and S. L. Osborn. HGABAC: Towards a
formal model of hierarchical attribute-based access
control. In Foundations and Practice of Security,
pages 187–204. Springer, 2014.

[21] H.-b. Shen and F. Hong. An attribute-based access
control model for web services. In PDCAT’06., pages
74–79. IEEE, 2006.

[22] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In Computer Security
Foundations Workshop, 1997. Proceedings., 10th,
pages 183–194. IEEE, 1997.

[23] M. V. Tripunitara and N. Li. Comparing the
expressive power of access control models. In
Proceedings of the 11th ACM CCS, pages 62–71, 2004.

[24] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In
Proceedings. FMSE ’04, pages 45–55. ACM, 2004.

[25] E. Yuan and J. Tong. Attributed based access control
(ABAC) for web services. In Proceedings. 2005 IEEE
International Conference on Web Service. IEEE, 2005.

12

