
An Attribute-Based Protection Model
for JSON Documents

Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan

Institute for Cyber Security
University of Texas at San Antonio

prosun.csedu@gmail.com, {ravi.sandhu, ram.krishnan}@utsa.edu

Abstract. There has been considerable research in specifying autho-
rization policies for XML documents. Most of these approaches consider
only hierarchical structure of underlying data. They define authoriza-
tion policies by directly identifying XML nodes in the policies. These
approaches work well for hierarchical structure but are not suitable for
other required characteristics we identify in this paper as semantical as-
sociation and scatteredness.
This paper presents an attribute based protection model for JSON doc-
uments. We assign security-label attribute values to JSON elements and
specify authorization policies using these values. By using security-label
attribute, we leverage semantical association and scatteredness proper-
ties. Our protection mechanism defines two types of policies called autho-
rization and labeling policies. We present an operational model to specify
authorization policies and different models for defining labeling policies.
Finally, we demonstrate a proof-of-concept for the proposed models in
the Swift service of OpenStack IaaS cloud.

1 Introduction

JavaScript Object Notation (JSON) is a human and machine readable
representation for text data. It is widely used because of its simple and
concise structure. For example, Twitter uses JSON as the only supported
format for exchange of data starting from API v1.1 [5] and YouTube
recommends uses of JSON for speed from its latest API [6]. JSON is
being adapted increasingly in large and scalable document databases such
as MongoDB [4], Apache Casandra [2] and CouchDB [3]. Besides these,
JSON is also widely used in lightweight data storages for example in
configuration files, online catalogs or applications with embedded-storage.

In spite of high adoption from industries, JSON has received little
attention from academic researchers. To the best of our knowledge, there
is no formal work published on the protection of JSON documents.

On the other hand, considerable work has been done for protection
of XML documents. Although syntactically JSON and XML formats are

different, semantically both of them form a rooted tree hierarchical struc-
ture. In fact, JSON data can equivalently be represented in XML form
and vice versa. This brings an obvious question - whether we can utilize
authorization models used for XML documents for protection of JSON
data.

Before we answer the preceding question, we look into some of the
salient characteristics of data represented in JSON (or XML) format,
given below.

– Hierarchical relationship. Data often exhibits hierarchical rela-
tionship. For example, a residential address consists of pieces like
house number, street name, district/town and state name organized
into an strictly hierarchical structure.

– Semantical association. Different pieces of data are often related
semantically and may need same level of protection. For example,
phone number, email address, Skype name may all represent contact
information and require same level of protection.

– Scatteredness. Related information can be scattered around a doc-
ument. For example, different pieces of contact information might be
located in different places in a document. Some pieces of data can
even be repeated in more than one place in the same document or
across documents.

Interestingly, most of XML authorization models [8–10, 17] consider
structural hierarchy only. These models have an implicit assumption that
information has been organized in the intended hierarchical form. These
models attach authorization policies directly on nodes in the XML tree
and propagate them using the hierarchical structure. For example, Dami-
ani et al. [15] specify authorization policy as a tuple 〈subject, object, action,
sign, type〉 where subject is specified as user, user group, IP address or
semantic name; object is specified with XPath expression; example of ac-
tions are read or write; signs are positive and negative; and example of
types are local, global and DTD which determines the level of propaga-
tion. In this model, if similar data items requiring same level of protection
are placed in structurally unrelated nodes, it is required to attach same
authorization policy to all these nodes. This results in duplication of au-
thorization policies which is caused by lack of recognition of semantical
association and scatteredness properties.

Duplication incurs significant overhead in maintenance of authoriza-
tion policies. For instance, if requirements for storing or publishing con-
tact information (e.g. email, phone, fax) change, it is required to update

Fig. 1. (a) Existing XML models (b) the proposed model

policies for all different pieces of data that represent contact information.
Organizations often collect different types of data including personal iden-
tifiable information of employees and customers. So, they are compliant
to different internal and external parties including government and stan-
dard bodies. This increases the likelihood that authorization requirements
change frequently over time.

While most XML authorization models directly identify nodes in their
authorization policies, our proposed model adds a level of abstraction by
using security-label attribute values. The proposed model specifies two
types of policies called authorization policies and labeling policies. Autho-
rization policies are specified using security-label attribute values. These
values are assigned to JSON data using labeling policies. A conceptual
overview of existing XML authorization models and our proposed model
is shown schematically in Figure 1(a) and 1(b) respectively. By using
security-label attribute values to connect nodes and policies, we can as-
sign semantically related or scattered data same attribute values. This
eliminates the need to specify duplicated policies.

The proposed model additionally offers flexibility in specification and
maintenance of authorization and labeling policies. These two types of
policies can now be managed separately and independently. For instance,
given security-label attribute values, higher level, organization-wide pol-
icy makers can specify authorization policies using these values without
knowing details of JSON structure. On the other hand, local administra-
tors knowledgeable about details of specific JSON documents can specify
labeling policies.

We believe, the presented model can easily be generalized for data
represented in trees and be instantiated for other representations, for
example, YAML [1]. For simplicity, we only focus on JSON here.

The contributions of this paper are as follows. We have identified un-
derlying characteristics of data represented in XML/JSON form. While,
existing XML authorization models address only structural hierarchy, we
additionally focus on semantical association and scatterredness proper-
ties. We have designed an attribute-based protection mechanism for JSON
documents including an operational and two different labeling models.

We have demonstrated a proof-of-concept for the proposed models in the
Swift service of OpenStack IaaS cloud platform.

The rest of the paper is organized as follows. In Section 2, we discuss
underlying concepts of JSON documents and existing works relating to
the protection of these documents. Section 3 presents the operational
model. The labeling models are described in Section 4. Section 5 discusses
the proof-of-concept implementation of our proposed models. Finally, we
conclude the paper in Section 6.

2 Background and related work

In this section, we briefly review JSON and discuss related work.

2.1 JSON (JavaScript Object Notation)

JSON or JavaScript Object Notation is a format for representing textual
data in a structured way. In JSON, data is represented in one of two
forms — as an object or an array of values. A JSON object is defined as a
collection of key,value pairs where a key is simply a string representing a
name and a value is one of the following primitive types—string, number,
boolean, null or another object or an array. The definition of a JSON
object is recursive in that an object may contain other objects. An array
is defined as a set of an ordered collection of values. JSON data manifests
following characteristics.

– JSON data forms a rooted tree hierarchical structure.
– In the tree, leaf nodes represent values and a non-leaf nodes represent

keys.
– A node in the tree, can be uniquely identified by a unique path.

Figure 2(a) shows the content of a JSON document where strings
representing values have been replaced by “...” for ease of presentation.
Figure 2(b) shows the corresponding tree representation. Any node in the
tree can be uniquely represented by JSONPath [18] which is a standard
representation of paths for JSON documents.

2.2 Related work

There is limited academic research published on security of JSON data.
To the best of our knowledge, we are the first to propose a protection
model for it.

Fig. 2. Example of (a) JSON data (b) corresponding JSON tree

On the other hand, XML security has long been investigated by many
researchers. A fundamental line of work in this area is about specifying
authorization policies for the protection of XML documents [8–10, 17].
All of these models attach authorization policies directly on nodes in the
XML tree. Most of these models use XPath [14] to specify a node in the
tree. For example, Damiani et al. [15] specify authorization policies as a
tuple of 〈subject, object, action, sign, type 〉 where an object is identified
by an URI (Uniform Resource Identifier) along with a XPath expression.

Another direction of work is about effective enforcement of authoriza-
tion mechanisms for secure and efficient query evaluation. For example,
in [16] the authors derive security views comprising exactly the set of
accessible nodes for different user groups. Based on the security view,
they provide a unique DTD view for each user group. Similar works in
this direction include [19, 20] which use query preprocessing approaches.
These models uses preprocessed finite automatas for authorization poli-
cies, document and Schema/DTD, and determine if a query is safe before
running it. Unsafe queries can be rewritten.

The idea of associating labels with protected objects has been pro-
posed before. For example, in purpose based access control (PBAC) [13],
the authors associate intended purposes with data items and access pur-
pose with users. If access purpose of a user is included in the intended
purposes of the requested objects, the request is granted. Our approach
is similar. While PBAC manages intended purposes using RBAC [22],

Fig. 3. The Attribute-based Operational Model (AtOM)

we use attributes with attribute-based access control (ABAC). Most sig-
nificantly, PBAC does not specify how to annotate objects with access
purposes, which we emphasize in this paper via labeling policies. Adam
et al. [7], have applied concepts and slots on digital objects which work
at a finer grained content level. They have also specified an access control
model based on expressions using concepts and slots. This model also
does not specify how to assign concepts and slots to objects.

The concept of attaching organized labels to users and objects and
controlling access based on these labels is the underlying idea of Lattice
Based Access Control (LBAC [21]), sometime also referred as Manda-
tory Access Control (MAC). The operational model, AtOM , presented in
Section 3 resembles LBAC but it is fundamentally different from LBAC.
AtOM is based on enumerated authorization policy ABAC model named
EAP-ABAC ([12, 11]). EAP-ABAC is a general purpose ABAC model
which supports larger set of attributes contrary to single label in LBAC
and based on enumerated authorization policies. Correlation between
EAP-ABAC and LBAC is presented in [12].

3 The operational model

This section presents the Attribute-based Operational Model (AtOM) for
protection of JSON documents. AtOM adapts enumerated authorization
policies from [12, 11].

Figure 3 presents components of AtOM . In the figure, the set of users
is represented by U . Each user is assigned to one or more values of an
attribute named user-label or uLabel in short. These values are selected
from the set of all possible user-label values UL which are partially or-
dered. The partial order is represented by ULH. An example showing
user-label values and hierarchy is presented in Figure 4(a). On the other
hand, the set of JSON elements are specified as JE. JSON elements may
subsume other JSON elements, and form a tree structured hierarchy. The

Table 1. Definition of AtOM

I. Sets and relations
- U, JE and A (set of users, JSON elements and actions resp.)
- JEH (hierarchy of JSON elements, represented by �j)
- UL and ULH (finite set of uLabel values and their partial order denoted as �ul resp)
- SL and SLH (finite set of security-label values and their partial denoted as �sl resp)
- uLabel and sLabel (attribute functions on users and JSON objects resp.) Formally,

uLabel : U → 2UL; sLabel : JO → 2SL

II. Policy components

- Policy-tuples = UL× SL
- Policya ⊆ Policy-tuples for a ∈ A
- Policy = {Policya|a ∈ A}

III. Authorization function

- can access(u : U, a : A, o : JE) = (∃(ul, sl) ∈ Policya)[ul ∈ uLabel(u) ∧ sl ∈ sLabel(o)]
- is authorized(u : U, a : A, jei : JE) = (can access(u, a, jej))[jei �sl jej]

Fig. 4. (a) User-label values, (b) Security-label values and (c) Annotated JSON tree

hierarchy is represented by JEH. Each JSON element is assigned values
of an attribute named security-label or sLabel in short. These values are
selected from the set of security-label values SL which are also partially
ordered. The partial order is represented by SLH. An example showing
security-label values and hierarchy is presented in Figure 4(b). A JSON
tree annotated with security-label values is given in Figure 4(c). These
components and relationship among them are formally specified in Seg-
ment I of Table 1.

In Figure 3, the set of authorization policies is represented by Policy.
There exists one authorization policy per action which is shown by the
one-to-one relation between Policy and A. In Table 1, Policyread presents
the authorization policy for action read. An authorization policy may con-
tain one or more micro-policies and one micro-policy can be associated
with more than one authorization policies. This is represented by the
many-to-many relation between Policy and Policy-tuples. Policyread, as
mentioned above, contains four policy-tuples including (manager, sensi-
tive). The tuple (manager, sensitive) while contained in policy Policyread
specifies that users who are manager can read objects that have been

Table 2. Example of an authorization policy and authorization requests

I. Enumerated authorization policies

Policyread ≡ { (manager,sensitive), (HR,employment),
(employee, enterprise), (guest, public)}

II. Authorization requests

is authorized(Alice, read, emp-rec) = true, assuming uLabel(Alice) = {manager}
is authorized(Bob, read, emp-rec) = false, assuming uLabel(Bob) = {employee}
is authorized(Bob, read, con-info) = true, assuming uLabel(Bob) = {employee}
is authorized(Charlie, read, sen-info) = false, assuming uLabel(Charlie) = {HR}

assigned values sensitive. Formally, we represent a policy-tuple a pair of
atomic values (ul, sl) where ul ∈ UL and sl ∈ SL. The formal defini-
tion of policies and policy-tuples is given in Segment II of Table 1. We
use the terms policy-tuples and micro-policies equivalently to represent
sub-policies.

The authorization function is authorized() is specified in Section III
of Table 1. We define the helper function can access(u, a, o) which spec-
ifies that the user u can access the object o for action a if there exists
a policy-tuple in Policya for that allows it. A user is authorized to per-
form an action on the requested JSON element if he can access the re-
quested element and all its sub-elements. For example, let us assume,
Alice as a manager wants to read emp-rec which has been assigned value
enterprise as shown in Figure 4(c). The tuple (manager, sensitive) in
Policyread specifies that Alice can read object labeled with sensitive or
junior values. Thus, the request is authorized(Alice, read, emp rec) is
evaluated true. On the other hand, assuming Bob as an employee, the
request is authorized(Bob, read, emp-rec) is evaluated false as an em-
ployee cannot read sen-info which is sub-element of emp-rec. Additional
examples of authorization request is given in Segment II of Table 2.

4 Labeling policies

In this section, we discuss specification of labeling policies for the opera-
tional model given in Section 3. We broadly categorize the policies used
in the operational model into specification of authorization policies and
assignment of security-label values or labeling policies. Policy scope of
the operational model is schematically shown in Figure 5. Here, we focus
on the later type of policies.

We specify two different approaches to assign security-label values
to elements in a JSON document, viz. content-based and path-based.
These approaches are fundamentally different in how a JSON element is
specified. While a path is described starting from the root node of the

Fig. 5. Policy scope

Fig. 6. (a) Assignment of security label values (b) assignment controls

tree, content is specified starting from the leaf nodes of the tree. These two
contrasting approaches offer flexibility in assignments and propagation of
security-label values.

4.1 Control on labeling policies

For specification of labeling policies, we define two types of restriction
that control assignments and propagations of security-label values. In the
first type, we restrict how security-label values are selected and assigned
on tree nodes. We call this assignment-control . In the second type, we
specify how assigned values are propagated along nodes in the tree. We
call this propagation-control .

The motivation of assignment-control is to restrict arbitrary assign-
ments of security-label values. This enables administrators to restrict fu-
ture assignments after some assignments have been carried out. These
controls are specified during the assignments. If any attempting assign-
ment does not comply with assignment-controls of existing assignments,
it will be discarded. We define five possible options for assignment-control
as no-restiction, senior-up, senior-down, junior-up and junior-down. The

Fig. 7. Assignments with assignment controls

type no-restriction does not specify any restriction. If we assign a value
valuei in nodei, with senior-up restriction, all up/ancestors of nodei must
be assigned values senior to valuei possibly including valuei. In type
senior-down restriction, all down/descendants of nodei must be assigned
values senior to valuei possibly including valuei. Similarly, the types
junior-up and junior-down, specify that ancestors and descendants of
nodei must be assigned values junior to valuei, possibly including valuei.
Figure 6 schematically illustrates assignment-control . In Figure 7, the
node con-info is assigned a value enterprise with option junior-down
which regulates that its descendant nodes namely {email, work-phone}
must be assigned values enterprise or its juniors, in this case from the set
{enterprise, public} (using security-label values given in Figure 4(b)). In
the same figure, the node sen-info is assigned value sensitive with option
senior-down which mandates that its descendant nodes namely {SSN,
salary} must be assigned values from sensitive or its seniors in this case
from the set {sensitive}.

Once we assign security-label values on an element in a JSON tree, the
value can be propagated to other elements in the tree. We define following
types for propagation-control as no-prop, one-level up, one-level down,
cascading up and cascading down. Assigned values are not propagated in
type no-prop. From a node, assigned values are propagated to parent and
all its siblings in the type one-level up. Assigned values are propagated to
all ancestor nodes in type cascading up. Similarly, from a selected item,
assigned values are propagated to direct children in type one-level down
and to all descendants in type cascading down.

4.2 Content-based labeling

This section shows how to assign security-label values by matching con-
tent and propagating the labels.

We adapt the concept of query object available in MongoDB [4] which
matches content in a JSON document. Query objects discover content

Fig. 8. Content-based labeling model

Table 3. Definition of content-based labeling

I. Basic sets and relations
- QO (set of query objects).
- AC (assignment control) AC= {no-restriction, senior-up, junior-up}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC
- SL (set of security-label values).

II. Assignments of security-label values

- LabelAssignments ⊆ QO × SCOPE × 2SL

starting from the value nodes of the JSON tree. It accepts regular expres-
sion to find value nodes or key nodes conveniently. MongoDB has built-in
functions to express regular expressions and compare values matched by
the regular expressions.

A model to assign security-label values based on query objects is given
in Figure 8. In the figure, QO represents the set of all query objects and
SL is the set of security-label values. The set AC represents assignment-
control and PC represents propagation-control discussed earlier. AC and
PC together define labeling scopes. A labeling scope determines how val-
ues are assigned and propagated in the tree. As content is matched from
the value/leaf nodes of the tree, we consider assignment and propagation
control only for the ancestors of the matching nodes.

The formal definition of the model is given in Table 3. Segment I
of the table specify basic sets and relations. In Segment II, the relation
LabelAssignments defines rules for assigning security-label values. An as-
signment rule is a triple of a query object to match content, a scope and
a set of values to be assigned. Section I of Table 4 gives some examples
of query objects and their interpretation in plain English. Segment II of
Table 4, presents examples of assignment policies based on query objects.

Table 4. Examples of query objects and content-based labeling policies

I. Query objects

- ob1 = {“email”: { $regex:“/.*@example.com/”} } (matches email addresses
from domain example.com)

- ob2 = { $elemMatch: { $regex: “RE EMAIL” } } (matches any key having value
corresponding to the given regular expression)

- ob3 = {$elemMatch:{ $regex: “RE SSN”}, $elemMatch: {“RE CREDIT CARD”}}
(matches all objects containing both social security and credit card number)

II. LabelAssignments

- LabelAssignments= { (ob1, (no-prop, unrestricted), {enterprise}), (ob2,
(no-prop, unrestricted), {enterprise}), (ob3, (no-prop, restricted), { sensitive} }

Fig. 9. Path-based labeling model

4.3 Path-based labeling

In this section, we show how we assign security-label values by matching
paths in the JSON tree and propagate them along the tree.

We adapt JSONPath [18] to specify path-based labeling policies. This
model is very similar to the content-based labeling model except we use
JSONPath instead of query objects. While, query objects are matched
starting from the leaf nodes, JSONPath specifies elements starting from
the root node (or any node in case of relative path) and traverses towards
leaf of the tree. As a result, this model apply assignment control and
propagation control towards descendants of matching nodes. The com-
ponents of the model and its formal definition are given in Figure 9 and
Table 5 respectively. Examples of JSON paths and path based labeling
policies are presented in Segment I and II of Table 6.

5 Implementation in OpenStack Swift

We have implemented our proposed operational model and path-based
labeling scheme in OpenStack IaaS cloud platform using OpenStack Key-
stone as the authorization service provider and OpenStack Swift as the

Table 5. Definition of Path-based labeling

I. Basic sets and relations
- JPath (set of JSONPaths).
- AC (assignment control) AC= {no-restriction, senior-down, junior-down}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC, relation to assign and propagate values.
- SL (set of security-label values).

II. Assignments of security-label values

- LabelAssignments ⊆ JPath× SCOPE × 2SL (assign security-label values on
JSON elements matched and propagate values based on defined scope)

Table 6. Examples of JSONPath and path-based labeling policies

I. JSONPaths
- path-to-email=$.emp-rec.con-info.email
- path-to-salary=$.emp-rec.sen-info.salary

II. LabelAssignments

- LabelAssignments= { (path-to-email, (no-prop, unrestricted), {enterprise}),
(path-to-salary, (no-prop, unrestricted), {sensitive}) }

storage service provider. Our choice of OpenStack is motivated by its
support for independent and inter-operable services and a well defined
RESTful API set.

We have modified OpenStack Keystone and Swift services to accom-
modate required changes. A reference architecture of our testbed is given
in Figure 10. Details of the implementation is shown in Figure 11. Re-
quired changes are presented as highlighted rectangles in Figure 11.

5.1 Changes in OpenStack Keystone

OpenStack Keystone uses roles and role-based policies to provide autho-
rization decisions. In our implementation, we uses roles to hold user-label
attribute values. A set of valid security-label values are also stored as part
of the Keystone service.

Among two different types of policies - authorization and labeling
policies, the former is managed in the Keystone service. We assume, a
higher level administrators (possibly at the level of organization) adds,
removes or updates these authorization policies. We add a policy table in
Keystone database to store these enumerated authorization policies.

5.2 Changes in OpenStack Swift

In Swift side, we store security-label values assigned to JSON objects
and path-based labeling policies applied to them. Security-label values

Fig. 10. Reference architecture of the implementation testbed

Fig. 11. Implementation in OpenStack IaaS cloud platform

and labeling policies are stored as metadata of the stored objects, JSON
documents in this case. For simplicity, we assume object owner (Swift
account holder in this case) can update security-label values or labeling
policies for stored JSON document.

During evaluation, we intercept every requests to Swift (from the
Swift-proxy server) and reroute a request to be passed through JSO-
NAuth plugin if it is a request for a JSON document. In this case, the
request additionally carries a requested path and authorization policies
applicable to the user. JSONAuth plug-in retrieves the requested JSON
document, apply path-based labeling policies to annotate the document
and uses authorization policies to determine if the user is authorized for
the requested content of the file.

5.3 Evaluation

An evaluation of our implementation is shown in Figure 12. The evalu-
ation has been made against concurrent download requests to the Swift
proxy server. The X-axis shows size of the JSON document requested for

Fig. 12. Performance evaluation

download while the Y-axis shows the average download time for 10 con-
current request. Our evaluation shows a performance hit of nearly 60%
over no authorization protection.

6 Conclusion

This paper presents an attribute based protection model for JSON docu-
ments. In the proposed model, JSON elements are annotated with security-
label attribute values with labeling policies. We specify authorization poli-
cies using these attribute values. The advantage of the separation of la-
beling and authorization policies is that they can be specified and ad-
ministered independently possibly by different level of administrators. In
this regard, we have presented an operational model to specify authoriza-
tion policies that evaluates access request. Further, we have specified two
different models for assigning security-label attribute values on JSON ele-
ments based on content and paths. We have presented a proof-of-concept
of the proposed models in OpenStack IaaS cloud platform.

Acknowledgement

This research is partially supported by NSF Grants CNS-1111925 and
CNS-1423481.

References

1. The official YAML website. www.yaml.org. accessed 07/2016.

2. Apache Cassandra. http://cassandra.apache.org/. accessed 09/2015.
3. Apache CouchDBTM. http://couchdb.apache.org/. accessed 09/2015.
4. MongoDB. http://www.mongodb.org/. accessed 09/2015.
5. Twitter API. https://dev.twitter.com/docs/api/1.1/overview. accessed 09/2015.
6. Youtube API. https://developers.google.com/youtube/v3/. accessed 09/2015.
7. Nabil R Adam, Vijayalakshmi Atluri, Elisa Bertino, and Elena Ferrari. A content-

based authorization model for digital libraries. IEEE KDE, 14(2):296–315, 2002.
8. Elisa Bertino, Silvana Castano, Elena Ferrari, and Marco Mesiti. Controlled access

and dissemination of XML documents. In 2nd ACM WIDM, pages 22–27, 1999.
9. Elisa Bertino, Silvana Castano, Elena Ferrari, and Marco Mesiti. Specifying and

enforcing access control policies for XML document sources. World Wide Web,
3(3):139–151, Springer, 2000.

10. Elisa Bertino and Elena Ferrari. Secure and selective dissemination of XML doc-
uments. ACM TISSEC, 5(3):290–331, 2002.

11. Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. A comparison of logical-
formula and enumerated authorization policy ABAC models. In DBSEC. Springer,
2016.

12. Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Label-based access control:
An ABAC model with enumerated authorization policy. In Proc. of the 2016 ACM
Int. Workshop on Attribute Based Access Control, pages 1–12, 2016.

13. Ji-Won Byun, Elisa Bertino, and Ninghui Li. Purpose based access control of
complex data for privacy protection. In 10th ACM SACMAT, 2005.

14. James Clark and Steve DeRose. XML path language (XPath) version 1.0, 1999.
15. Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and

Pierangela Samarati. A fine-grained access control system for XML documents.
ACM TISSEC, 5(2):169–202, 2002.

16. Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. Secure XML querying with
security views. In ACM SIGMOD/PODS, pages 587–598, 2004.

17. Irini Fundulaki and Maarten Marx. Specifying access control policies for XML
documents with XPath. In 9th ACM SACMAT, pages 61–69, 2004.

18. Stefan Goessner. JSONPath Syntax. http://goessner.net/articles/JsonPath/. ac-
cessed 09/2015.

19. Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. Qfilter: fine-grained run-
time XML access control via NFA-based query rewriting. In ACM CIKM, 2004.

20. Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. XML access
control using static analysis. ACM TISSEC, 9(3):292–324, 2006.

21. Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–
19, 1993.

22. Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-
based access control models. IEEE Computer, 29(2):38–47, 1996.

