
On the Relationship between Finite Domain
ABAM and PreUCONA

Asma Alshehri and Ravi Sandhu

Institute for Cyber Security & Department of Computer Science,
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

nmt366@my.utsa.edu, ravi.sandhu@utsa.edu

Abstract. Several access control models that use attributes have been
proposed, although none so far is regarded as a definitive characteriza-
tion of attribute-based access control (ABAC). Among these a recently
proposed model is the attribute-based access matrix (ABAM) model [14]
that extends the HRU model [4] by introducing attributes. In this paper
we consider the finite case of ABAM, where the number of attributes
is finite and the permissible values (i.e., domain) for each attribute is
finite. Henceforth, we understand ABAM to mean finite ABAM. A sepa-
rately developed model with finite attribute domains is PreUCONA [10],
which is a sub-model of the usage control UCON model [9]. This paper
explores the relationship between the expressive power of these two finite
attribute domain models. Since the safety problem for HRU is undecid-
able it follows safety is also undecidable for ABAM, while it is known
to be decidable for PreUCONA [10]. Hence ABAM cannot be reduced
to PreUCONA. We define a special case of ABAM called RL-ABAM2
and show that RL-ABAM2 and PreUCONA are equivalent in expressive
power, but each has its own advantages. Finally, we propose a possible
way to combine the advantages of these two models.

1 INTRODUCTION

Attribute-Based Access Control (ABAC) is a form of access control that has
recently caught the interest of both academic and industry researchers. High-
level definitions and descriptions of ABAC are generally accepted, but heretofore
there has been no particular unified model or standardization of ABAC. The
National Institute of Standards and Technology (NIST) recently described a high
level access control model that uses attributes [5, 6]. Jin et al [7] have proposed
a unified ABAC model that can be configured to the traditional access control
models (i.e., DAC, MAC and RBAC). Researchers have also studied combining
attributes with RBAC. Kuhn et al [8] presented models that combine ABAC
and RBAC in various ways, while Yong et al [13] proposed extending the roles
of the RBAC with attributes. Al-Kahtani et al [1] introduced the notion of using
attributes in user-role assignment of RBAC model. Chadwick et al [3] describe
the use of X.509 certificates to enforce RBAC. Bennett et al [2] showed that
online social network policies can be cast in an ABAC framework. Thus there

2 Asma Alshehri and Ravi Sandhu

has been a tradition of research on combining or relating attributes to various
access control models, old and new.

A novel approach to combining attributes with the access matrix was devel-
oped by Zhang et al [14], who defined the attribute-based access matrix (ABAM)
model by adding attributes to the classic HRU model [4]. In the HRU model each
cell [si, oj] of the access matrix contains a set of rights that subject si can ex-
ercise over object oj . In general, a subject is also an object while every object
is not necessarily a subject. Subjects and objects are collectively called entities.
ABAM additionally associates a set of attributes ATT (o) with each entity o.
A notable aspect of ABAM is that its commands not only test for and modify
rights in access matrix cells like in HRU, but can further test for and modify
attribute values. In the finite ABAM the set of attributes is finite and each at-
tribute can take values from only a finite fixed set. Henceforth we understand
ABAM to mean finite ABAM. The ABAM model is reviewed in Section 2.1.

The features of attribute testing and modification, also called attribute mu-
tability, were adapted in ABAM [14] from the earlier UCON model [9]. UCON
incorporates various additional features such as ongoing authorization and up-
dates, as well as obligations and conditions. Here we focus on a sub-model of
UCON called PreUCONA [10, 9] where attribute testing and modification are
carried out prior to allowing access. Similar to finite ABAM, in finite PreUCONA

the set of attributes is finite and each attribute of an entity can only take on a
finite set of permissible values. Henceforth, we understand PreUCONA to mean
finite PreUCONA. PreUCONA is reviewed in Section 2.2.

In this paper we investigate the theoretical relationship between ABAM
and PreUCONA. Our first observation is that ABAM is an extension of HRU
and thereby inherits the undecidable safety results of HRU. On the other hand
PreUCONA is known to have decidable safety analysis [10]. It follows that ABAM
cannot be reduced to PreUCONA. On the other hand, we show how PreUCONA

can be reduced to ABAM (Section 3). This construction inspires us to define
a restricted version of ABAM named RL-ABAM2, which stands for right-less
ABAM with two parameters as will be explained (Section 4). We then prove
that PreUCONA and RL-ABAM2 theoretically have equivalent expressive power
(Section 5). Section 6 concludes the paper.

2 BACKGROUND

In the following we respectively review the ABAM and PreUCONA models.

2.1 The ABAM Model

ABAM is defined in terms of access control matrix and commands in the tradi-
tion of HRU [4], TAM [11] and other access matrix based formal models. The
basic components of the ABAM model are subjects and their attributes, ob-
jects and their attributes, access rights, access matrix, primitive operations and
commands. These are explained below.

ABAM and PreUCONA 3

Subjects and Objects. Entities in ABAM are objects O and subjects S.
Subjects are active entities that can invoke access requests or execute permissions
on objects. Subjects can be the target of access requests so S ⊆ O. Objects that
are not subjects are called pure objects. When an object is created, a unique
identity (ID) recognized by the system is given to that object and cannot be
changed after the creation. This ID is never reused.

Attributes and Attribute Tuples. In ABAM, the set of attributes GATT is
attached to each entity. Each attribute is a variable with a specific data type.
An attribute of an entity can be assigned an atomic value vi, which comes from
domain Vi for that attribute, or a set value {v1, .., vi, .., vk} ⊆ Vi. Also, a null
value will be assigned if the entity does not have that attribute. For entity o,
the set of attributes of o come from GATT= {a1, .., ai, .., an}, and the value vi
of each attribute ai is from the domain V (ai) = {v1, .., vi, .., vm}. The ordered
set of attributes and domains Gv = [a1:V (a1), ..., ai:V (ai) , ..., an:V (an)] is a
combination of GATT and V (ai). The attribute value tuple for entity o is ATT (o)
= (a1 = v1, ... , ai = vi, ... , an = vn), where vi ∈ Vi or vi ⊆ Vi for 1 ≤ i ≤ n.
The result of updating ai from vi to v′i changes ATT (o) to ATT ′(o) = (a1 = v1,
... , ai = v′i, ... , an = vn). An entity attribute is denoted as ent.att where ent
refers to entity name and att is the attribute name.

Rights and Access Matrix. An access matrix is a matrix with columns repre-
senting all objects (subjects and pure objects), and rows representing the set of
all subjects. Each object in the columns and rows is associated with its attribute
tuple. Access rights in the [si, oj] cell of the matrix specify the access that sub-
ject si has to object oj . All entities in rows (subjects) can access other entities
in the column (subjects and pure objects) by executing given access rights (e.g.,
read, write, execute). The set of all access rights is denoted by R and each cell
[s, o] is a subset of R. Figure 1 shows an example of an access matrix [14].

Attribute Predicates. A predicate P is a Boolean expression constructed
using attributes and constants with appropriate relation symbols. There are two
kinds of predicates. A unary predicate has one attribute variable and a constant,
e.g. Alice.credit ≤ 100. A binary predicate has two different attribute variables,
e.g. s1.roles ⊂ s2.roles. Binary predicates can be built over attributes from the
same entity or two different entities.

Fig. 1. ABAM access matrix [14]

4 Asma Alshehri and Ravi Sandhu

Primitive Operations. A primitive operation is the basic action that a subject
can execute over an object which cause changes in the status of the access matrix.
The primitive operations are defined as follows.

1. Enter r into [s,o]: Enters generic right r into cell [s, o] in the access matrix.
2. Delete r from [s,o]: Deletes generic right r from cell [s, o] in the access matrix.
3. Create subject s:ATT(s): Creates a new subject s with attribute tupleATT (s).
4. Destroy subject s: Removes subject s and its attribute tuple from the system.
5. Create object o:ATT(o): Creates a new object o with attribute tuple ATT (o).
6. Destroy subject s: Removes object o and its attribute tuple from the system.
7. Update attribute ent.att = v′: Updates the attribute tupleATT (o) toATT ′(o)

= (a1 = v1, ... , ai = v′i, ... , an = vn) where vi ∈ Vi and vi 6= v′i.

The first six are essentially similar to their counterparts in HRU, whereas
the seventh is new to ABAM.

Commands. A command in ABAM involves three parts: parameters (entities
with possibly new attribute values), conditions, and a sequence of primitive
operations. ABAM commands allow primitive operation to be executed if the
condition on existing rights is satisfied, as well as the specified predicates on
attributes of the entities evaluate to true. The set of all commands is Gα =
{α1, α2, .., αh}. Each individual command is defined as follows.

Command αi(X1 : ATT (X1), X2 : ATT (X2), .., Xk : ATT (Xk))
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ ...rm ∈ [Xsm, Xom] ∧ p1 ∧ p2 ∧ ...pn
then op1; op2; ...; opl end

The name of the command is αi. X1, X2, . . . , Xk are subject or object pa-
rameters; r1, r2, ..., rm are generic rights; s1, s2, ..., sm and o1, o2, ..., om are in-
tegers between 1 and k; ATT (X1), ATT (X2), ..., ATT (Xk) specify new values
of attributes for the respective entities (if any is updated by the command);
p1, p2, ..., pn are predicates built over old or new attribute tuples ofX1, X2, ..., Xk.
The “if” part of the command is called the condition of α. Update operations
can update an attribute from an old value vi ∈ Vi to a different new value
v′i ∈ Vi or from an old value set {v1, v2, .., vr} ⊆ Vi to a new different subset
of Vi. The operations op1; op2; ...; opl in the body of the command are executed
sequentially and the entire command executes atomically. Each opi consists of
one of the seven primitive operations enumerated above.

Command Example. The following ABAM command enables the first sub-
ject to update attribute a2 of the second subject to v′i, provided the specified
condition is true.

Command Update(s1 : ATT (s1), s2 : ATT (s2))
if r1 ∈ [Xs1, Xs2] ∧ s1.a1 = vi ∧ s1.a2 ≤ s2.a2
then update attribute s2.a2 = v′i end

ABAM and PreUCONA 5

An ABAM command allows only conjunctive form of condition. In case of
a disjunctive form of condition, we need to have one command for each com-
ponent condition. For negated predicates, ABAM command accomodates it by
simply defining a normal predicate for a negated one. Therefore, without loss of
generality, we can consider the condition of ABAM command to be an arbitrary
propositional logic formula.

2.2 The PreUCONA Model

We now describe the PreUCONA model.

Subject, Objects, Attributes, and Rights. The PreUCONA model has
objects as resources and subjects as user processes. Similar to the ABAM model,
subjects are a subset of objects. Each object has a finite set of attributes and
a unique name. Object attributes can be accessed by using dot notation to
associate object name with attribute name, as in nameobject.nameattribute, e.g.,
o.security = ‘high’. This model supports the dynamic creation and deletion of
objects. The permission defined over an object is called a usage right.

Usage Control Scheme. There are three components of a usage control
scheme UΘ.

– an object schema OS∆,
– a set of usage rights UR = {r1, r2, ..., rm}, and
– a set of usage control commands {UC1, UC2, ..., UCn}

The object schema OS∆ is the combination of the attributes of objects and
domains from which attribute values come. OS∆ = (a1 : Ω1, a2 : Ω2, ..., an : Ωn),
where each ai is the name of an attribute, and Ωi is the domain of ai that has
a finite set of values which can be assigned to the attribute ai. Each object will
have an ordered attribute value tuple AV T =< v1, v2, ..., vn >, where n is the
number of attributes in the object schema and each vi ∈ Ωi. Attributes can be
assigned to an atomic value or a set value. Also, attributes can be set to a default
value from the domain at creation time.

Usage rights defines the rights ri that can be granted by a usage control
command. UR is finite. Giving a right to a subject to be executed on an object
depends on the attribute value of subjects and objects as specified by usage
control commands discussed below.

The usage control commands comprise a finite set of commands. Each com-
mand has a name that is linked with the authorized right r when executing this
command. There are two formal parameters for each command, s and o. Sub-
ject s is the actor that seeks to access the target object o with right r. Also,
commands can be either non-creating commands in which the object o exists
before the execution of the command, or creating commands in which the object
o is created during the execution of the command. The structure of creating and
non-creating commands is shown in Table 1.

6 Asma Alshehri and Ravi Sandhu

Non-Creating Commands Creating Commands

Command-Namer(s, o) Command-Namer(s)
PreCondition: fb(s, o)→ {yes, no}; PreCondition: fb(s)→ {yes, no};
PreUpdate: PreUpdate: create o;

s.ai1 := f1, ai1(s, o); s.ai1 := f1, ai1(s);
... ...
s.aip := f1, aip(s, o); s.aip := f1, aip(s);
o.aj1 := f2, aj1(s, o); o.a1 := f2, a1(s);
... ...
o.ajq := f2, ajq(s, o); o.an := f2, an(s);

Table 1. PreUCONA commands

In the PreCondition section, the Boolean function fb(s, o) takes the attribute
values of s and o as input and returns true or false. In case of false, the command
terminates without executing any updating or granting rights r, while in case of
true, the update attribute operations in the PreUpdate section will be executed,
and the operation permitted by right r is allowed. Zero or more of the attributes
of the input s and o are updated individually to new values that are calculated
from their old values, which existed before the command execution.

The structure of a creating command is mostly similar. The input parameter
is only s, and the function fb(s) is a Boolean function that takes the attributes of
s as an input and returns a true or false value. In case of false, the command
terminates without executing any creating, updating, or granting rights r, while
in the case of true, the command of creating an object should be executed before
doing any updating of the object attributes. Zero or more of the attributes of
the input s and new object o are updated individually to new values that are
calculated from old values of s, which existed before the command execution.

3 Expressing PreUCONA IN ABAM

In this section we consider how to express PreUCONA in ABAM. The reduc-
tions we consider in this paper are state-matching reductions [12], which is the
accepted formal criteria for theoretical equivalence of access control models.

There are two challenges in reducing PreUCONA to ABAM. First, the for-
mulas in the PreCondition part of Table 1 are arbitrary computable Boolean
functions, whereas ABAM only permits propositional logic formulas. Second,
the update functions in the body of a PreUCONA command are arbitrary com-
putable functions. In ABAM only specific new values are allowed in the update
operation. However, due to the finite domain assumption these functions from
PreUCONA can be computed for all possible attribute values of s and o, and
the results can be “compiled” into multiple ABAM commnds. We show how to
do this for the body of the PreUCONA command. An analogous construction
applies to the PreCondition part, but is not shown here for lack of space and
straightforward similarity.

ABAM and PreUCONA 7

The attributes assignment formulas can be handled by having an ABAM
command for each possible combination of attribute values. Consider an update
operation s.ai := f(s, o). There are only a finite number of possible results for the
value of s.ai, depending on the value domain of ai and whether ai is atomic or set
valued. For each possible value of ai we can determine which input combinations
of the attribute values of s and o will produce that result, if only by exhaustive
enumeration of f for these combinations. The example below illustrates this idea
more concretely.

The PreUCONA components are subjects (S), objects (O), usage rights (UR)
and an object schema OS∆. To express PreUCONA in ABAM, we can define
the following analogous ABAM components where the subscript ABAM is used
to distinguish the ABAM component from the corresponding PreUCONA com-
ponent.

– OABAM = O and SABAM = S
– RABAM = UR = {ur1, ur2, ..., urk}
– MABAM with a row for every SABAM with its attribute tuple, and a column

for every OABAM with its attribute tuple.
– [si, oj] = φ, where si ∈ SABAM , and oi ∈ OABAM
– GATT = {a1, .., ai, .., an}
– GV = OS∆ = [a1 : Ω1, a2 : Ω2, ..., an : Ωn]

We illustrate the construction of ABAM commands by the following exam-
ple. Let the object schema OS∆ = [a1 : {1, 2}, a2 : {2, 3}, a3 : {1, 2, 3}] and usage
rights UR = {update}. The initial values for s and o attributes are [1,2,3] and
[2,3,1] respectively for [a1, a2, a3]. Commandupdate is as follows:

Commandupdate(s, o)
PreCondition: s.a1 ≤ 2 ∨ o.a2 ≤ 3
PreUpdate: o.a3 := max(s.a3, o.a3);

Since s.a3 = 3 and o.a3 = 1, the new value of o.a3 is 3 which is the maximum
of two values. The corresponding ABAM components of the PreUCONA schema
will be as follows.

– OABAM = O and SABAM = S
– RABAM = UR = {update}
– MABAM with a row for every SABAM with its attribute tuple, and a column

for every OABAM with its attribute tuple.
– [si, oj] = φ, where si ∈ SABAM , and oi ∈ OABAM
– GATT = {a1, a2, a3}
– GV = OS∆ = [a1 : {1, 2}, a2 : {2, 3}, a3 : {1, 2, 3}]

The possible ABAM commands for PreUCONA commandupdate are given in
Table 2. Since attribute a3 has only three possible values we need three ABAM
commands. This construction easily extends to multiple attributes. It is evident
will need a large number of commands for each PreUCONA command that uses
such formulas.

8 Asma Alshehri and Ravi Sandhu

Updating to value 1 Updating to value 2 Updating to value 3

Command update(s :
ATT (s), o : ATT (o))

Command update(s :
ATT (s), o : ATT (o))

Command update(s :
ATT (s), o : ATT (o))

if s.a1 ≤ 2 ∨ o.a2 ≤ 3 ∧
(s.a3 = 1 ∨ o.a3 = 1)

if s.a1 ≤ 2 ∨ o.a2 ≤ 3 ∧
((s.a3 = 1 ∧ o.a3 = 2) ∨
(s.a3 = 2 ∧ o.a3 = 1)(

if s.a1 ≤ 2 ∨ o.a2 ≤ 3 ∧
((s.a3 = 1 ∧ o.a3 = 3) ∨
(s.a3 = 2 ∧ o.a3 = 3) ∨
(s.a3 = 3 ∧ o.a3 = 1) ∨
(s.a3 = 3 ∧ o.a3 = 2) ∨
(s.a3 = 3 ∧ o.a3 = 3))

update attribute o.a3 = 1 update attribute o.a3 = 2 update attribute o.a3 = 3
enter update into [s, o]; enter update into [s, o]; enter update into [s, o];
delete update from [s, o]; delete update from [s, o]; delete update from [s, o];
end end end

Table 2. Possible ABAM commands

4 Right-Less ABAM with Two Parameters (RL-ABAM2)

PreUCONA has the ability to grant a non-persistent right for each command.
In other words, by the end of any command execution, the given right is taken
back from the actor. In contrast, an ABAM command has the power of granting
one or more rights to the actor, maintining the given rights in the corresponding
cell of the actor, and permitting two or more parameters (more targets) for each
command. These ABAM features will cause difficulties for expressing ABAM
in PreUCONA. Moreover, unrestricted use of rights in ABAM will result in
undecidable safety as in HRU [4], whereas PreUCONA has decidable safety [10].
Therefore, in general it is not possible to reduce ABAM to PreUCONA. These
considerations lead us to focus on a restricted form of ABAM inspired by the
construction in the previous section.

4.1 RL-ABAM2 Definition

RL-ABAM2 is the reduced model of ABAM, where RL indicates “right less” and
the two denotes the number of parameters required in a command. Object, sub-
ject, attributes, attribute tuples, rights, access matrix, predicates, and primitive
operations are all the same as in ABAM. However, an RL-ABAM2 command
has more limited characteristics than an ABAM command in terms of number of
parameters, the if statement section, and the existence of rights. In RL-ABAM2,
a command is defined as follows:

Command αi(X1 : ATT (X1), X2 : ATT (X2))
if p1 ∧ p2 ∧ ...pn
then
op1; op2; ...; opl ;
enter r1 into [X1, X2];
delete r1 from [X1, X2];

ABAM and PreUCONA 9

...
enter rk into [X1, X2];
delete rk from [X1, X2];
end

In the above RL-ABAM2 command, the number of parameters is only two.
Moreover, the rights check part is eliminated in the “if” statement section, so
the predicates P are the only part that appears. The body of the command will
have all kinds of operations, but every right entered into any cell needs to be
deleted prior to the end of the command. In general, the RL-ABAM2 model is
a special case of ABAM model.

4.2 Expressing PreUCONA in RL-ABAM2

In Section 3, we discussed how to express the PreUCONA in the ABAM. In
fact, the result of expressing PreUCONA commands to ABAM commands is
RL-ABAM2 commands which have two parameters, no check for rights, and a
delete right operation for each entered right. Thus, we can state that Section 3
is already expressing PreUCONA in RL-ABAM2.

5 Expressing RL-ABAM2 in PreUCONA

In this section we show how to reduce RL-ABAM2 to PreUCONA.

5.1 General Construction

Given an RL-ABAM2 schema with the following components: objectsORL−ABAM2,
subjects SRL−ABAM2, access rights RRL−ABAM2 = {r1, .., rk}, attributes tuple
ATT (oi) = < a1 = v1, .., an = vn >, where oi ∈ ORL−ABAM2, and a list of all
attributes which are linked with their domains G− V{RL−ABAM2} = [a1:V (a1),
..., ai:V (ai), ..., an:V (an)], each RL-ABAM2 commands will have the following
structure:

Command αi (si : ATT (si), oj : ATT (oj))
if p1 ∧ p2 ∧ ...pn
then
create object X2 : ATT (X2);
update attribute si.ak = v′i;
update attribute oi.as = v′j ;
enter ri into [si, oj];
delete ri from [si.oj];
end

This structure for RL-ABAM2 commands can be assumed without loss of
generality. The create operation (if present) comes first, followed by update op-
erations, and at the end, all enter and delete operations. For each parameter,

10 Asma Alshehri and Ravi Sandhu

zero or more attributes of oj ∈ ORL−ABAM2 or si ∈ SRL−ABAM2 can be up-
dated from vi to v′i, as well as one or more rights ri ∈ (RRL−ABAM2) can be
entered into cell [si, oj] and deleted.

The corresponding PreUCONA components of the RL-ABAM2 schema are
as follows:

– Entity in PreUCONA are objects OPre UCONA

– OPre UCONA
= ORL−ABAM2

– SPre UCONA
= SRL−ABAM2

– URPre UCONA
= RRL−ABAM2

item OS∆ = G− V{RL−ABAM2}

As discussed above, RL-ABAM2 has the power of entering and deleting many
rights in one command, while a PreUCONA command grants a single right. In
the case of executing many operations over rights in the body of RL-ABAM2, ap-
plying a singleton PreUCONA command can only cover one of the RL-ABAM2
rights. Consequently, multiple PreUCONA commands are required to cover RL-
ABAM2 rights. To preserve atomicity of the RL-ABAM2 command specific at-
tributes are added as well as a special object for synchronuzation. Some parts
of the corresponding PreUCONA components of the RL-ABAM2 schema are
extended as follows:

– Entity in PreUCONA are objects OPre UCONA

– OPre UCONA
= ORL−ABAM2 ∪Olock

– SPre UCONA
= SRL−ABAM2

– URPre UCONA
= Command−RRL−ABAM2

– Auxiliary−OS∆ = [lock:V (lock), type:V (type), R to select:V (R to select),
position:V (position)]

– OS∆ = G− V{RL−ABAM2} ∪Auxiliary −OS∆

The domain for each of these additional attributes is as follows: V(lock)
= {0, 1}, V(type) = {ordinary, lock}, V(R to select) = URPre UCONA

, and
V(position) = {1,2}. The initial values for the proposed attributes are set as
follows: For all o ∈ ORL−ABAM2: o.type = ordinary, o.lock = 0, o.position
= φ, and o.R to select = φ. For O lock: O lock.type = lock, O lock.lock = 1,
O lock.position = φ, O lock.R to select = φ.

To apply a RL-ABAM2 command in PreUCONA commands, a sequence of
steps is introduced as follows:

1- Give a lock to the first parameter of the RL-ABAM2 command
2- Decide the second parameter of the Rl-ABAM2 command
3- Implement a sequence of PreUCONA commands
4- Release the lock from the first parameter (actor) of the RL-ABAM2 command

To implement the first step, a command called get lock will be executed with
the first parameter of RL-ABAM2 si and the special object O lock:

ABAM and PreUCONA 11

Command get lock (si : ATT (si), O lock : ATT (O lock))
if si.type = ordinary ∧O lock.type = lock ∧ si.lock = 0 ∧O lock.lock = 1
then
update attribute si.lock = 1;
update attribute O lock.lock = 0;
update attribute si.position = 1;
update attribute si.R to select = URPre UCONA

end

Then, the actor needs to decide the second parameter, and the below com-
mand will take care of the second step:

Command pick target(si : ATT (si), oj : ATT (oj))
if si.type = ordinary ∧ si.lock = 1 ∧ oj .lock = ordinary ∧ si.position =
1 ∧ oj .position = φ
then
update attribute oj .position = 2;
end

The third step contains an ordered series of PreUCONA commands which
depend on the number of the operation over rights in the body of an RL-ABAM2
command (URPre UCONA

= {r1, r2, ..., rk}). The structure of the ordered series
of commands is as follows:

Command−r1(si, oj)
PreCondition: fb(si, oj) ∧

si.R to select = URPre UCONA
∧ si.lock = 1

∧ si.position = 1 ∧ oj .position = 2;
PreUpdate:

create o;
si.ak = v′i;
oj .as = v′j ;
si.R to select = URPre UCONA

− {r1}

Command−r2(si, oj)
PreCondition: si.R to select = URPre UCONA

− {r1} ∧ si.lock = 1
∧ si.position = 1 ∧ oj .position = 2;

PreUpdate:
si.R to select = URPre UCONA

− {r1, r2}

12 Asma Alshehri and Ravi Sandhu

....

....
Command−rk(si, oj)

PreCondition: si.R to select = {rk} ∧ si.lock = 1 ∧ si.position = 1
∧ oj .position = 2;

PreUpdate:
oj .position = φ
si.R to select = φ

Finally, the user can release the lock and give it back to the special object
O lock by using the following command:

Command release lock (si : ATT (si), O lock : ATT (O lock))
if si.type = ordinary ∧ O lock.type = lock ∧ si.lock = 1 ∧ O lock.lock = 0 ∧
si.R to select = φ
then
update attribute si.lock = 0;
update attribute O lock.lock = 1;
update attribute si.position = φ; end

5.2 An Example

The following example shows components of RL-ABAM2 schema. The command
add-survey allows contributors to add a new health survey to their list. The con-
tributors are required to be diabetics and never participated before. Moreover,
the add-survey command permits contributors to post answers to questions and
to close the survey after finishing. By the end of the survey, post and close rights
will be taken away. The RL-ABAM2 schema is as follows: (RRL−ABAM2) =
{post, close}, G−V{RL−ABAM2} = [disease:{diabetic, epileptic}, X:{0, 1}]. Fur-
thermore, RL-ABAM2 command will have the following structure:

Command add− survey (s : ATT (s), o : ATT (o)
if s.disease = diabetic ∧ s.X = 0
then
create object o : ATT (o);
update attribute o.disease = diabetes;
update attribute X = 1;
enter post into [s, o];
delete post from [s, o];
enter close into [s, o];
delete close from [s, o]; end

The corresponding PreUCONA components of the RL-ABAM2 schema will
be as follows:

– OPre UCONA
= ORL−ABAM2 ∪Olock

– SPre UCONA
= SRL−ABAM2

ABAM and PreUCONA 13

– URPre UCONA
= {post, close}

– Auxiliary−OS∆ = [lock:{0, 1}, type:{ordinary, lock},R to select:{post, close},
position:{1, 2}]

– OS∆ = [disease:{diabetic, dpileptic}, X:{0,1}] ∪Auxiliary −OS∆

V(lock) = {0, 1}, V(type) = {ordinary, lock}, V(R to select) = URPre UCONA
,

and V(position) = {1,2}.
The initial values for the Auxiliary attributes are set as above, and to apply

a RL-ABAM2 command in PreUCONA commands, the four sequence steps will
be implemented as follows:

1- Give a lock to the first parameter of the RL-ABAM2 command by using the
get lock command.
2- Decide the second parameter of the Rl-ABAM2 command by using the pick target
command.
3- Implement a sequence of PreUCONA commands as follows:

Commandpost(s, o)
PreCondition: s.disease = disease ∧ s.X = 0 ∧

s.R to select = {post, close} ∧ s.lock = 1 ∧
s.position = 1 ∧ o.position = 2;

PreUpdate:
create o;
o.disease = diabetes;
s.X = 1;
s.R to select = {close};

Commandclose(s, o)
PreCondition: s.R to select = {close} ∧ s.lock = 1 ∧

s.position = 1 ∧ o.position = 2;
PreUpdate:

o.position = φ
s.R to select = φ

4- Release the lock from the first parameter (actor) of the RL-ABAM2 command
by using release lock command.

6 CONCLUSION

In this paper we have formally demonstrated the equivalence of PreUCONA and
RL-ABAM2, which are two finite domain ABAC models. We have argued that
ABAM being a superset of HRU cannot be reduced to PreUCONA, because of
the latter’s decidable safety result. Hence, equivalence of PreUCONA can only be
established to some proper sub-model of ABAM such as RL-ABAM2. Our con-
structions suggest the power of using formulas in PreUCONA, absence of which
in ABAM leads to having to an explosion of ABAM commands in the PreUCONA

to ABAM reduction. Conversely, the ability to activate multiple rights in a single

14 Asma Alshehri and Ravi Sandhu

RL-ABAM2 command leads to multiple PreUCONA commands in the ABAM
to PreUCONA reduction. These features could be combined in a more usable
model. Finally, the study of ABAM indicates that a safe application of access
rights could be based on the following principles. Firstly, do not use rights in the
if part of commands. Secondly, some rights could be left behind by commands
so their next use is more efficient. Our comparative study of PreUCONA and
ABAM suggests there is a meaningful place for access matrix rights, even as
access control research and practice is tending towards attributes.

Acknowledgement

This research is partially supported by NSF Grant CNS-1111925 and CNS-
1423481.

References

1. Al-Kahtani, M.A., Sandhu, R.: Rule-based RBAC with negative authorization. In:
20th IEEE ACSAC, pp. 405-415, (2004).

2. Bennett, P., Ray, I. and France, R.: Modeling of Online Social Network Policies
Using an Attribute-Based Access Control Framework. In: Information Systems
Security, pp.79-97, Springer International Publishing (2015).

3. Chadwick, D.W., Otenko, A. and Ball, E.: Role-based access control with X. 509
attribute certificates. In: IEEE Internet Computing ,7(2), pp.62-69, (2003).

4. Harrison, M.A., Ruzzo, W.L. and Ullman, J.D.:Protection in operating systems.
Communications of the ACM, 19(8), pp. 461-471 (1976).

5. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J, Cogdell, M.M,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to attribute based access
control (ABAC) definition and considerations. NIST Special Publication 800, 162
(2014).

6. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. IEEE Com-
puter, 48(2), pp. 85-88 (2015)

7. Jin, X., Krishnan, R., Sandhu, R.S.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: DBSec, pp. 41-55 (2012).

8. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. IEEE Computer, 43(6), pp. 79-81, (2010).

9. Park, J., Sandhu, R.: The UCON ABC usage control model. ACM Transactions
on Information and System Security (TISSEC), 7(8), pp. 128-174, (2004).

10. PV, Rajkumar and Sandhu, R.: Safety Decidability for Pre-Authorization Usage
Control with Finite Attribute Domains. In: IEEE Transactions on Dependable and
Secure Computing, (2015).

11. Sandhu, R.S.: The typed access matrix model.In: Research in Security and Privacy,
1992, pp. 122-136, (1992)

12. Tripunitara, Mahesh V and Li, Ninghui. A theory for comparing the expressive
power of access control models. Journal of Computer Security, 15(2):pp. 231-272,
(2007).

13. Yong, J., Bertino, E., Roberts, M.T.D.: Extended RBAC with role attributes. In:
PACIS 2006 Proceedings, paper 8, (2006).

14. Zhang, X., Li, Y., Nalla, D.: An attribute-based access matrix model. In: the 2005
ACM Symposium on Applied Computing, pp. 359-363 (2005).

