
Adopting Provenance-Based Access Control in
OpenStack Cloud IaaS

Dang Nguyen, Jaehong Park, and Ravi Sandhu

Institute for Cyber Security, University of Texas at San Antonio
ytc141@my.utsa.edu, {jae.park, ravi.sandhu}@utsa.edu

Abstract. Provenance-based Access Control (PBAC) has recently
risen as an effective access control approach that can utilize readily pro-
vided history information of underlying systems to enhance various as-
pects of access control in a computing environment. The adoption of
PBAC capabilities to the authorization engine of a multi-tenant cloud
Infrastructure-as-a-Service (IaaS) such as OpenStack can enhance the
access control capabilities of cloud systems. Toward this purpose, we in-
troduce tenant-awareness to the PBACC [14] model by capturing tenant
as contextual information in the attribute provenance data. Built on this
model, we present a cloud service architecture that provides PBAC au-
thorization service and management. We discuss in depth the variations
of PBAC authorization deployment architecture within the OpenStack
platform and implement a proof-of-concept prototype. We analyze the
initial experimental results and discuss approaches for potential improve-
ments.

1 Introduction

Digital provenance data captures history information of system events.
The utilization of provenance in computing platforms has demonstrated
many benefits in different computing fields [4, 6, 7, 18]. In computer secu-
rity, the utilization of provenance information facilitates the achievement
of many security goals including intrusion detection and insider-threats
detection. Harnessing provenance data to provide enhanced access con-
trol in different systems and platforms has been the basis of many recent
works [2, 3, 8, 17]. The Provenance-based Access Control (PBAC)
approach, as outlined in [12, 14, 15], captures application-specific prove-
nance data and uses the information to enable enhanced access control in
the underlying application system.

PBAC can effectively be employed in a multi-tenant1 Infrastructure-
as-a-Service (IaaS) cloud environment. Here, users (e.g., Virtual Machine

1 We define a tenant from the perspective of a Cloud Service Provider (CSP), as an
independent customer of the CSP responsible for paying for services used by that
tenant. Payment is the norm in a public cloud while in a community cloud there
often will be other methods for a tenant to obtain services. From the perspective of



Fig. 1. A provenance-aware cloud ar-
chitecture overview

Fig. 2. An Overview of OpenStack Autho-
rization

(VM) creators) and data objects (e.g., VM images, VM snapshots, VM
instances) are involved in multiple tenants that are being configured with
different authorization settings. The utilization of PBAC within a multi-
tenant environment under multiple controlling principals can serve to
elevate the authorization capabilities of cloud IaaS infrastructures, in-
cluding but not limited to secure information flow control and prevention
of privileges abuse. For example, a VM resource can be created in one
tenant, shared and potentially modified in another tenant and then saved
as an image for later use. Tenant administrators can specify access con-
trol on the shared VM resource based on its provenance data capturing
its pedigree in the original tenant. In order to achieve these authorization
goals with PBAC, it is essential to enable tenant-awareness in PBAC, a
topic we discuss in this paper.

In this work, we focus our study in the IaaS layer of the cloud comput-
ing paradigm. Our contributions include a centralized-service architecture
that enables provenance-awareness as well as cross-tenant utilization of
provenance data for authorization. We proceed to describe the compo-
nents, and their interactions, of the three service types depicted in Figure
1. We also identify a variety of architecture approaches the services can be
deployed in the context of a cloud environment with and without cross-
service provenance data sharing. We include several design criteria that
can impact the choice of deployment approaches.

the tenant, a tenant could be a private individual, an organization big or small, a
department within a larger organization, an ad hoc collaboration, and so on. This
aspect of a tenant is typically not visible to the CSP in a public cloud.



2 Preliminaries

Cloud computing paradigm has recently risen as a popular approach that
allows efficient utilization of computing resources that can simultaneously
minimize related costs and achieve massive scalability at the same time.
The concept has real-world practicality and development efforts are heav-
ily invested by both academic and industrial sectors [5]. One of the impor-
tant properties of cloud computing is multi-tenancy [10], where resources
within a physical system are allocated and divided between tenants. The
notion of tenants allows organized and secure administration of resources
and management of privileged users/consumers of the resources.

In IaaS platforms, we focus on a multi-tenant single-cloud like a pri-
vate cloud rather than a multi-cloud environment that is depicted in a
hybrid cloud model [10]. In single-cloud environment, all services and as-
sociated resources within a cloud are provided by a single provider. Essen-
tially, from the perspective of the tenants, there is a central provenance-
aware authorization service that can normalize access control configura-
tions and resolve conflicts across tenants. We adopt this setting in the
incorporation of PBAC into cloud IaaS platforms as it naturally allows
PBAC to be deployed without much cross-tenant complications.

In multi-cloud environment, individual cloud provider may permit
controlled resources movement across cloud boundaries. In this case, it
is a little bit more complicated to deploy PBAC as some forms of prove-
nance data sharing are required. In our previous work [13], we proposed
several approaches in addressing these concerns through the use of sticky
provenance data and cascading sub-queries across tenants. In this paper,
we do not explore these issues in depth.

3 Tenant-aware Provenance-based access control

We start with an overview of Provenance-based Access Control (PBAC)
models as presented in [12, 14, 15].

Base PBAC Model (PBACB): The base PBAC Model (PBACB)
[15] is an access control model which bases the authorization decision on
provenance data. In order to effectively utilize provenance information,
the PBACB model makes use of a specific provenance data model which
captures provenance data in directed-acyclic graph format [11]. Such cap-
turing format allows effective ways to extract information through graph
traversal queries.

Contextual PBAC Model (PBACC): The mechanism provided
by the PBACB model lays a solid foundation for access control that uti-
lizes provenance information. An extended model, PBACC [14], further



Fig. 3. A Tenant-aware PBACC Model

enhances PBACB. Specifically, the extended model can capture and uti-
lize contextual information associated with the primary entities of system
events as attributes and store these as additional provenance data.

As depicted in Figure 3, the primary components of PBACC can be
briefly described as follows. Subjects represent human users interacting
with a system. Actions represent the type of possible interaction a sub-
ject can perform in the system. Objects (or Resources) represent the
type of data entities that exist within a system that require authorization
protection for security goals. To interact with a system, a human user,
through associated subjects, initiates Requests that will be evaluated
based on Policies to determine the access decision (granted or denied).
Provenance Data contains information on past system events as results
of granted access requests and includes two types.2 Base provenance data
captures primary component-information of granted and executed access
requests while Attribute provenance data captures the contextual infor-
mation associated with the executed access requests.

In order to adopt tenant-awareness, we take the straightforward ap-
proach to view tenant as a special type of contextual information that can
also be captured as attribute provenance data, as modeled in PBACC . We
then use the relation type “associated with” to capture the semantic re-
lations between tenants and other components such as: Subjects, Actions,
Objects, Dependency Lists, Policies, and Provenance Data. Essentially, a
set of atomic, or “base”, application-specifically defined causality depen-
dency edges between provenance graph vertices can be expressed with
regular-expression based patterns. The graph vertices represent model
components that constitute the primary entities of a system such as users
or resources. This approach allows more expressive capture of relations
between the model components. Meaningful combinations of dependency

2 While provenance data can capture access requests that are not granted, for sim-
plicity, we assume only granted accesses are stored in provenance data.



path expressions can be captured with abstract dependency-name con-
structs which represent more abstract application-specific semantics of
the underlying system. An example is a dependency name “wasOrigi-
nallyUploadedBy” which captures any combination of dependency path
expressions of actions, which can be multiple instances of modify or copy
and ultimately upload, on a particular virtual image. Further application
of attribute edges on the upload action instance can reveal the cloud user
who originally uploaded the virtual image. These constructs can also be
used for PBAC policy specifications. When an access request is gener-
ated, the access evaluation module extracts the request information to
locate the appropriate policies for evaluation. When an access request is
granted, the current contextual information is stored as provenance data.
This contextual information is uniquely anchored to the action instance
of the access transaction in provenance data.

4 Provenance-aware Access Control Cloud Architecture
In this section, we discuss a provenance-aware architecture that can en-
able PBAC capabilities in cloud environment. Specifically, we describe
the main components and their interactions, and how the services can be
deployed given various design criteria.

4.1 Architecture Overview

An overview of the architecture of our approach is depicted in Figure 1.
We identify the three major types of services within this architecture as
follows:

Cloud Service (CS) essentially provides a particular IaaS service to
client tenants. The types of services include computing (management of
virtual resources), authorization, virtual networks, and so on. Examples
of the services can be Amazon Web Services Elastic Compute, OpenStack
Nova, etc. These services essentially provide the functionality of the cloud.

Provenance Services (PS) is an IaaS service we propose with the
purpose of capturing and managing provenance data that can be gener-
ated from any other typical cloud service. The provenance data captures
the history information of system events occurring within the cloud ser-
vices and can be utilized for many purposes. Our focused usage is on
PBAC.

PBAC-enabled Authorization Services (PBAS) is an IaaS ser-
vice we propose with the purpose of providing authorization capabilities
to all other cloud services that require authorization. The authorization
service is capable of providing PBAC features, but at the same time it
can also provide other forms of access control including Role-based Access
Control, Attribute-based Access Control, etc. Our focus in this paper is
on the provision of PBAC capability for the authorization service.



Fig. 4. A Provenance Service for Cloud
IaaS

Fig. 5. A PBAC-enabled Authorization
Service for Cloud IaaS

In summary, the three service types altogether establish an infrastruc-
ture that enables PBAC in a IaaS cloud. Specifically, the Cloud Service
provides the PS with raw system events that PS selectively stores at
provenance storage. The stored provenance data is then used to provide
PBAS which enhances the security to the Cloud Service. While this work
mainly focuses on the scenario where access requests are granted, we also
note that it is possible to capture and store the information relating to
access requests being denied. This information can allow additional con-
trol capability in a system. For example, if the provenance data of an
object reflects that there exists three consecutive instances of request de-
nial for a particular action type within certain recent request interval, it
may lock the object from any future access or raise a flag indicating a
potential threat or vulnerability within the system and request immedi-
ate attention with appropriate countermeasures. In this paper, we do not
consider denied events as part of provenance data for simplicity and leave
it for future study.

4.2 Conceptual Architecture

In this subsection, as shown in Figures 4 and 5 we identify and describe
the interaction between the logical architectural components of the three
service types. These components establish the fundamental and functional
aspects of our architecture approach and can be applied to whichever
deployment methods that are discussed later in the paper.

Components Any regular cloud service includes:



– Policy Enforcement Point (PEP): is responsible for receiving and en-
forcing an access request from a user. The enforcement is based on
the evaluation results of that access request generated from the au-
thorization service.

– A User is able to generate a request to the cloud service through any
forms of interfaces such as web browsers (e.g., OpenStack Dashboard)
or command-line interfaces (e.g., OpenStack Nova pythonclient).

The provenance service includes:

– Provenance Data Collector (PDC): is responsible for receiving raw
system events data captured from a granted service action request
being executed within individual services and potentially performing
some filtering to select necessary data only.

– Provenance Data Manager (PDM): is responsible for transforming the
collected raw data received from the PDC into provenance graph data
format as well as managing the resulting provenance data. The man-
agement responsibilities include storing and loading provenance data
in and from a database, as well as forming and executing provenance
graph queries, and formatting and returning query results thereafter.

– Database (DB): represents persistent storage.

The PBAC-enabled authorization service includes:

– Policy Administration Point (PAP): is responsible for managing ac-
cess control policies by enabling policies specification, storage and
retrieval.

– Policy Information Point (PIP): is responsible for looking up relevant
information that is necessary for making an access decision. In regard
to PBAC, the PIP is tasked with delivering responses to provenance
data requests to the relevant provenance service.

– Policy Decision Point (PDP): serves as the main computing process
in deciding how a request should be resolved. In particular, the PDP
receives the requests from the PEP, looks up the policy from the PAP,
and requests information from the PIP to make decisions, which are
then returned to the PEP.

Interactions We proceed to describe how the services perform when-
ever an access request comes in, as illustrated in Figure 4 and Figure 5.
When a request is initiated by a user through any user client interface,
the PEP receives the request and proceeds to verify the request with the
authorization service by forwarding the request with relevant content to
the PDP that resides in the PBAS service. In Figure 4, this interaction is
abstracted in steps 2 and 3. It is further elaborated in Figure 5 through
steps 2-11. Figure 4 demonstrates what happens after the access request



evaluation process is completed. Essentially, if a request is granted, the
PEP will enforce the execution of the requested action. The correspond-
ing system event is then captured and sent to the PDC component of
the provenance service where certain filtering can be performed to re-
move unnecessary data. The filtered data is then passed to the PDM for
formatting into appropriate provenance data graphs for storage for later
use. This completes a functional cycle in the context of an access request
being directed at a cloud service.

In Figure 5, upon receiving the request from the PEP (2), the PDP
proceeds to perform the evaluation procedure which includes, in sequen-
tial order, retrieving the correct policies through the PAP (3,4), search-
ing for information required for policy rules evaluation through the PIP
(5,6,9,10), and computing the actual evaluation decisions and returning
the final results back to the PEP for enforcement (11). In our architec-
ture, the PIP is responsible for looking up relevant provenance informa-
tion in the provenance service for carrying out PBAC-related policy rules.
The PIP performs this task by communicating with the PDM component
of the provenance service by sending query templates. The PDM loads
provenance data from its storage, forms appropriate queries and executes
them to extract necessary provenance information to return to the PIP.

We proceed to demonstrate the above process with an example. Sup-
pose a user Alice requests to delete a particular virtual machine, “vm1”,
in a tenant. The policy states that only a user who creates and stops a
virtual machine instance can delete it. The PEP receives the request from
Alice and delivers necessary information to the PDP. The PDP parses the
request information, matches the request to the correct policy through the
PAP to extract appropriate rules for the action “delete”. The PIP is then
sending information including “vm1” and dependency path patterns, e.g
“wasVMCreatedBy”, that express the semantics of creating and stopping
users of a virtual machine instance to the PDM. The PDM forms appro-
priate queries using the provided information, executes the queries and
returns the results back to the PDP. As Alice is shown to be the user who
created and stopped “vm1”, the PDP sends the approval to the PEP
which starts the enforcement of the action. Upon completion, the PEP
sends the events information to the PDC. The PDM can then at least
generate provenance data which captures the fact that Alice performed
“delete” on “vm1”.

4.3 Deployment Architecture in OpenStack systems

Given the above logical architecture discussion, we shift the focus to how
the services can be deployed in a cloud IaaS OpenStack system.

Most extant OpenStack cloud services often embed their own autho-
rization service components that can enable authorization mechanisms



including RBAC and ABAC. 3 In order to enable PBAC authorization
mechanism for the extant OpenStack services, we identify several deploy-
ment architectures based on where PS and PBAS are implemented, which
presents their own strengths and weaknesses.

First, similar to the current deployment of authorization components,
these services can be integrated as structural components of an extant
cloud service. In a cloud environment where sharing provenance data in
multiple services is not a necessity, this integrated services deployment
can significantly reduce the communication decision latency that takes
place. Current standalone services, such as Nova and Glance, communi-
cates over HTTP REST interface that can introduce expensive latency.
Communication between components within the same service, as either
inter-process or intra-process, is much less expensive in comparison. How-
ever, the extant cloud service will have more computing load to deal with
as it will be required to maintain its own PBAS and PS components. Es-
sentially, the integrated service has to collect, store and manage its own
provenance data. This can also reduce the ease of services integration
as it becomes more difficult to update changes to any of the embedded
services.

Furthermore, in a cloud environment where cross-service provenance
data sharing is necessary for purposes such as PBAC, a deployment of
integrated PBAC-enabling services is required to employ provenance data
sharing mechanisms. As each service stores and manages its own prove-
nance data, PBAC decisions of a service require the provenance data of a
different service. The requiring service has to initiate a request to the dif-
ferent service, therefore introduces communication decision latency over
HTTP channels. In order to mitigate decision latency, each service can
take the approach of maintaining duplicate provenance data of all relevant
services. However, this introduces the necessity to synchronize all prove-
nance data storage, and results in synchronization latency over HTTP
channels. In scenarios where immediate synchronization is vital to the
correctness of a PBAC decision, synchronization latency will affect deci-
sion runtime even if the evaluation process is done locally to the extant
service. In scenarios where periodic synchronization is acceptable, optimal
decision latency can be achieved.

Individual cloud service management of locally maintained prove-
nance data can be complicated. The complications can be alleviated with
the standalone deployment method with the cost of communication la-
tency. Essentially, a standalone provenance service enables central prove-

3 The Swift component utilizes a different form of authorization than most other
OpenStack services.



nance data storage and management, which facilitates duplication and
synchronization.

In addition, several variety of these two deployment methods, which
we term hybrid deployment, can be employed to alleviate some of the
issues faced by the above two deployment approach. For example, since
not all provenance data is required for PBAC uses, only PBAC-relevant
provenance data is necessarily duplicated in individual regular cloud ser-
vices. Other provenance data, which can be used for auditing, can be
stored and managed by standalone provenance service. In this paper, we
use the standalone architecture for our OpenStack implementation and
experiments.

5 An OpenStack Implementation

In this section, we will focus on the application of our approach on the
open-source cloud management platform of OpenStack.

5.1 Overview of OpenStack Authorization Architecture

At the IaaS layer, OpenStack comprises several components that provide
services to enable a fully functional cloud platform. Each of these com-
ponents controls access to specific resources through locally maintained
JSON policy files. At the IaaS layer, the resources to be protected are
composed of API functions and virtual resources such as virtual machine
images and instances.

Figure 2 captures a simplified view of the authorization as similarly
performed by most OpenStack components. While the solid arrows denote
information flow, the fine-dashed arrow indicates the Keystone component
is responsible for providing identity service to other OpenStack compo-
nents. This also provides authorization-required information indirectly
using a token. When an access request is made, (1) authentication cre-
dentials need to be submitted to Keystone for validation. Once validated,
(2) Keystone returns a token which contains necessary authorization in-
formation such as roles. (3) The token is then included in the request
that is sent to the specific service component. (4) Authorization informa-
tion is extracted from the token and used in evaluating the rules specified
in the policy file native to that service. (5) The final evaluation and/or
enforcement result is then returned to the requester.

Policy rules can be specified as individual rules of each criteria or a
combination of rules. For Grizzly release, OpenStack authorization engine
supports two types of rules: RBAC [16] where decisions are based on role
field, ABAC [8] where decisions are either based on the value of a specific
field or the comparison of multiple fields’ values.



Fig. 6. Nova Implementation Architecture with PBAS Service

The authorization engine of OpenStack is evolving as additional blue-
prints and feature proposals are raised and delivered by the open-source
community on a daily basis. Currently, OpenStack does not possess or
support any variations of PBAC in its authorization schemes. As our
demonstration and discussion of PBAC’s usefulness in a multi-tenant
cloud IaaS exhibit, it is useful to incorporate PBAC mechanisms into
the OpenStack authorization platform for history-based, dynamic and
finer-grained access controls.

5.2 Implementation and Evaluation

In this section, we describe and discuss our implementation of a proof-
of-concept prototype that realize the above proposed architecture for en-
abling a PBAC-enabled authorization service within the OpenStack plat-
form. Specifically, we will demonstrate how the OpenStack Computing
(Nova) service can utilize the PBAC-enabled authorization for making
access control decisions in addition to the current authorization schemes
Nova is employing. 4 A similar process can be applied on the other ser-
vices in OpenStack. In this paper, we implement our solution for Nova
and Glance components and evaluate the performance runtime for each
component under different experiments. Afterward, we provide an analy-
sis of the runtime results.

OpenStack Nova Architecture First, we describe the current imple-
mentation approaches in the OpenStack Nova architecture.5 As depicted

4 An implementation of the provenance service is also available. However, since the
emphasis is more on the PBAC aspect, we do not discuss the details of this com-
ponent and the associated evaluation. Henceforth, Figure 6 does not depict the PS
components.

5 Similar architecture applies to Glance, the VM image repository in OpenStack.



in Figure 6, the Nova components include:6 Web Dashboard is the poten-
tial external component that talks to the API, which is the component
that receives HTTP requests, converts commands and communicates with
other components via the queue or HTTP. Auth Manager is a python class
component that is responsible for users, projects and roles. It is used by
most components in the system for authentication purposes. Network is
responsible for the virtual networking resources. Conductor is responsible
for manage database operations.

There are two methods of communication between the service compo-
nents: intra-service communication is done via AMQP mechanisms while
inter-service communication is done via HTTP REST mechanisms. These
are represented in Figure 6 as continuous lines and dashed lines respec-
tively. Communication between sub-components of the same service can
be done locally, such as invocation of the Auth Manager.

PBAC-enabled authorization implementation In order to incor-
porate and enforce PBAC-enabled authorization service, the following
components were implemented to extend Nova.

– PBAC Authorization Client : a Python class that implements an au-
thorization method that can be invoked whenever an API/ Sched-
uler/ Network/ Compute method is invoked. The client sends HTTP
requests to the PBAC authorization server.

– PBAC Authorization Server : a Python class that resides on the PBAC-
enabled authorization service. Receives HTTP requests from the PBAC
authorization client, forwards the requests to and receives the deci-
sions from the PDP, and returns the decisions to the PBAC autho-
rization client.

– PDP, PIP, and PAP Python implementation for the corresponding
architecture components.

Since all access control policies are specified in JSON, we implemented a
policy parser class that can interpret policy statements specifying PBAC
rules in JSON.
Evaluation and Discussion In order to evaluate our proof-of-concept
prototype, we created and ran the provenance service and the PBAC-
enabled authorization service in a Devstack installation of the OpenStack
platform. 7 The Devstack is under the OpenStack Grizzly release and is
deployed on a virtual machine that has 4GB of memory and runs on
Ubuntu 12.04 OS installation. We generated mock provenance data that

6 This is a partial list of Nova components.
7 We note that in this paper we do not provide experiments for measuring provenance

data update processes after granted action request enforced. Having such results can
further enrich our insights and belongs in our future line of work.



simulates life cycles of VM images and instances across tenants and is
stored in Resource Description Format (RDF)[9] with the Python RD-
Flib library [1]. We measured the execution performance of the following
experiments.

Experiment 1 (e1): The execution time of a Glance command and
a Nova command that require checking the associated policy for RBAC
requirements (the original DevStack system).

Experiment 2 (e2): The execution time of the commands with the
presence of an authorization service which evaluates the RBAC policy the
service maintains and additionally PBAC policy where the authorization
service also manage provenance service operations.

Experiment 3 (e3): The execution time of the commands with the
independent presence of both a provenance service and a PBAC-enabled
authorization service. The PBAC-enabled authorization service performs
both normal RBAC requirements as well as PBAC requirements, where
necessary provenance information is obtained from the provenance ser-
vice.

For each experiment and each command, we performed 10 runs and
took the average run-time. As noted in [14], the size and shape of the
underlying provenance graph pose significant impact on query run-time.
In this work we evaluated PBAC queries that require depth traversal.
Specifically we chose to test the two scenarios where graph traversal takes
distances of 20 and 1000 edges. These edge parameters were selected to
respectively reflect a normal and an extreme use case of a VM image and
instance within a cloud IaaS environment. The mock provenance data
captures a VM image that is uploaded and modified multiple times and
used to create a VM instance, which is suspended, resumed, and taken
as a snapshot by multiple cloud users. The policy is specified following
the informal grammar provided in [15]. A sample policy rule can specify
that a user is only allowed to resume a VM instance if and only if he
suspended that instance or a user is only allowed take a snapshot of a
VM instance if he uploaded the VM image that instance is created from.
The performance results are given in Table 1.

Based on the shown results, we make the following observations. First,
compared to the regular execution (e1 approach) of Glance or Nova com-
mands, the incorporation of PBAC services (either e2 or e3 approaches)
introduces some overhead for traversal distance of 20 edges, specifically
between the 10 to 40 percent range. We also observe that the deploy-

Traversal Distance Glance(e1) Glance(e2) Glance(e3) Nova(e1) Nova(e2) Nova(e3)
No PBAC 0.55 - - 0.75 - -
20 Edges - 0.607 0.642 - 0.902 1.062

1000 Edges - 0.788 0.852 - 3.620 4.102

Table 1. Evaluation Runtime (secs)



ment of separate PBAC and Provenance services also introduces some
overhead, specifically between the 5 and 18 percent range due to the
additional communication time between provenance service and PBAC
service. We observe that for the case of 1000 edges distance, the addi-
tional overhead is as expected as depth traversal require recursive imple-
mentation. However, the overhead is much more expensive for the Nova
command in comparison to the Glance command. The reason for this lies
in the authorization implementation of the Nova command. Specifically,
the execution of the Nova command generates several authorization calls
in contrast to only one from the Glance command. As the number of
edges increases, this additional cost increases exponentially.

We identify two potential approaches to improve on these performance
results. First, it is possible to reduce the performance cost associated with
the increase in traversed edges by using meaningful, abstract edges that
can equivalently capture the semantics of many base edges. This can help
reduce the number of edges and thus produce, for example, a 20 edges
run-time for a 1000 edges case.

6 Conclusions and Future Work

In this paper, we identified the potentials of adopting PBAC into the cloud
Infrastructure-as-a-Service. To achieve practical deployment of PBAC,
we proposed several variations of a centralized provenance and PBAC-
enabled authorization services architecture. We demonstrated the archi-
tectural implementation in the context of the OpenStack cloud manage-
ment platform. We implemented, evaluated and analyzed the performance
runtime of our proof-of-concept prototype for the Nova and Glance com-
ponents. From the results and our analysis, our work in this paper consti-
tutes a strong foundation for enhanced authorization in cloud platforms.
In order to further consolidate the validity of our approach, we are working
on designing and performing more experiments. In addition, our proto-
type is still in preliminary stage and in need of additional development.
We plan to release the prototype as an open source project in the near
future.

Acknowledgement

This work is partially supported by NSF CNS-1111925.

References

1. https://code.google.com/p/rdflib/.
2. OASIS, Extensible access control markup language (XACML), v2.0 (2005).



3. A. Bates, B. Mood, M. Valafar, and K. Butler. Towards secure provenance-based
access control in cloud environments. In Proceedings of the third ACM conference
on Data and application security and privacy, CODASPY ’13, pages 277–284, New
York, NY, USA, 2013. ACM.

4. U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In The 3rd USENIX
Workshop on Hot Topics in Security, USENIX HotSec, pages 1–5, Berkeley, CA,
USA, July 2008. USENIX Association.

5. M. Creeger. Cloud computing: An overview.
6. R. Hasan, R. Sion, and M. Winslett. Introducing secure provenance: problems

and challenges. In Proceedings of the 2007 ACM workshop on Storage security and
survivability, StorageSS ’07, pages 13–18, New York, NY, USA, 2007. ACM.

7. R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with secure prove-
nance. Trans. Storage, 5(4):12:1–12:43, Dec. 2009.

8. X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-based access control
model covering dac, mac and rbac. In Proceedings of the 26th Annual IFIP WG
11.3 conference on Data and Applications Security and Privacy, DBSec’12, pages
41–55, Berlin, Heidelberg, 2012. Springer-Verlag.

9. G. Klyne and J. J. Carroll. Resource description framework (RDF): Concepts
and abstract syntax. World Wide Web Consortium, Recommendation REC-rdf-
concepts-20040210, February 2004.

10. P. Mell and T. Grance. The NIST definition of cloud computing. Special Publica-
tion 800-145, 2011.

11. L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V. den
Bussche. The open provenance model core specification (v1.1). volume 27, pages
743 – 756, 2011.

12. D. Nguyen, J. Park, and R. Sandhu. Dependency path patterns as the foundation
of access control in provenance-aware systems. In 4th USENIX Workshop on the
Theory and Practice of Provenance, TaPP’12. USENIX Association, Jun. 2012.

13. D. Nguyen, J. Park, and R. Sandhu. Integrated provenance data for access control
in group-centric collaboration. In Information Reuse and Integration (IRI), 2012
IEEE 13th International Conference on, pages 255–262, 2012.

14. D. Nguyen, J. Park, and R. Sandhu. A provenance-based access control model for
dynamic separation of duties. In 11th Annual Conference on Privacy, Security and
Trust, PST 2013. IEEE, Jul. 2013.

15. J. Park, D. Nguyen, and R. Sandhu. A provenance-based access control model.
In 10th Annual Conference on Privacy, Security and Trust, PST 2012. IEEE, Jul.
2012.

16. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

17. L. Sun, J. Park, and R. Sandhu. Engineering access control policies for provenance-
aware systems. In Proceedings of the third ACM conference on Data and application
security and privacy, CODASPY ’13, pages 285–292, New York, NY, USA, 2013.
ACM.

18. V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, and L. Moreau. Security issues in a
SOA-based provenance system. In In Proceedings of the International Provenance
and Annotation Workshop. Springer, 2006.


