
On the Cost-Effectiveness 
of TrustZone Defense on 
ARM Platform
NAIWEI LIU, WANYU ZANG, MENG YU, RAVI SANDHU

UTSA ICS LAB; ROOSEVELT UNIVERSITY



Contents
Abstract and Introduction

Related Work

Cache-Based Security Threats and Attack

Design and Implementations

Experimental Results

Evaluation

Future Work

Conclusion

2



Abstract and Introduction
Abstract

 In Recent years, many research efforts had been made on secure and safe environment on ARM platform.

 ARM structure and chips based on ARM had been taking up a lot of number of products in the market.

 Security problems and potential risks had been discussed.

 Cache and similar design brings in ‘trouble’ for security purposes.

 Uniqueness on ARM-based products made things even tougher to solve.

 What will we do?

 Design defense framework for ARM

 Evaluate by experiments

 Optimization

3



Abstract and Introduction
Introduction

 Last-Level Cache (LLC) is always the target of side-channel attack. On x86 structure, it is always L3 
cache that is attacked.

 Last-level cache side-channels are effective enough to extract user’s private information.

 Side-channel: collecting information like performance counters, timing, power consumption, etc. And 
process the information to derive information about the victim.

 Most frequently used: access time based side-channels.

4



Abstract and Introduction
Introduction (Continued)

 Side-channel attack based via LLC can be dangerous, even without compromising OS.

 Both on single OS machine and Virtual Machines (VMs) can be attacked.

 Typical type: FLUSH+RELOAD

 LLC is shared.

 FLUSH+RELOAD can be practical using unprivileged instructions.

 AES key of OpenSSL is recovered by this attack in lab test.

 Threats to the Internet of Things (IoT) and devices

 Modern TrustZone Design on ARM platform

5



Abstract and Introduction
Introduction (Continued)

 Contributions

 Research on side-channel and covert-channel attack: bandwidth and effect.

 Investigation on Flush operations on ARM platform and overhead.

 Study of TrustZone technology and previous security design based on TrustZone.

 Investigation on critical instructions related to TrustZone operations.

 Test of cache flush operations: overhead and effect.

 Different discussion based on ARMv8-A and ARMv8-M structures.

6



Related Work
Side Channel Attacks

 LLC based side-channel attacks: Flush+Reload, Prime+Probe

 Effectiveness of LLC based side-channels

7



Related Work
Security Design and Protections

 Hardware Solution: Intel SGX, ARM TrustZone

 Hardware isolation for an enclave

 New instructions to establish, protect

 Call gate to enter

 Remote attestation

 Processor manufacturer is the root of the trust

 Prime+Probe Attack: March, 2017

 Target to DRAM

8



Related Work
ARM TrustZone

 Based on ARM Cortex-A and Cortex-M series

 Privileged instructions to call entry/exit

 Light-weighted comparing with other protection

 ARM helps in creating Trusted Execution 
Environments (TEE)

 Cache Problems

 ARM Cortex-A series

 ARM Cortex-M series (ARMv8-M)

9



Related Work
Previous Defense Strategy against Side-Channels

 LLC-level Protection (memory access control)

 Cache enclaves (Trusted vs. Untrusted)

 Scheduler-based solutions

 Others

Cache Flush against Side-Channels

 Benefits: easy to implement, ensure safety

 Problems: high overhead, not adaptive to every situation

10



Cache-Based Security Threats and Attack
Overview

Users’ memory access are not protected by TrustZone – Covert Channel (Sharing resources)

TrustZone Entry/Exit without Flushing cache – Side-Channel (Malicious collecting access time)

 Flush+Reload Attack

 Prime+Probe Attack

Malicious eavesdropping

11



Cache-Based Security Threats and Attack
Side-Channel Attack Experiment

Flush+Reload Attack

 step 0: attacker maps shared library → shared memory, shared in cache

 step 1: attacker flushes the shared line

 step 2: victim loads data while performing encryption

 step 3: attacker reloads data → fast access if the victim loaded the line

Prime+Probe Attack

 step 0: attacker fills the cache (prime)

 step 1: victim evicts cache lines while performing encryption

 step 2: attacker probes data to determine if the set was accessed

12



Design and Implementations
TrustZone-Related Instructions

 ARMv8-A

 Test Environment: ARM Juno r1 Board, with A57 and A53 chips; QEMU as testing benchmark.

 ARMv8-M

 Test Environment: ARM Development Kits with Cortex-M4

13



Design and Implementations
Experiments on TrustZone 
Instructions

ARMv8-M

Our experiments on ARMv8-M are 
using ARM Versatile V2M-MPS2 
Motherboard with an ARM Cortex-
M4 chip. It offers 8Mb of single 
cycle SRAM, and 16Mb of 
PSRAM. It supports the application 
of different ARM Cortex-M classes, 
from Cortex-M0, to M3, M4, and 
M7. 

14



Experimental Results
Experiments on TrustZone Instructions

ARMv8-A

 We use Ubuntu 16.10 as the normal world OS, with 26 processes running on background, including 
the workload we use for testing. We count the smc-related instructions that belongs to TrustZone-
related operations, and analyze the attributions of them.

Type Percentage

Non-secure to Secure 

Test R/W

2.87%

Secure to Non-secure 

Test R/W

2.91%

Others (Access from 

Background)

0.01%

15



Experimental Results
Experiments on TrustZone Instructions

ARMv8-A

With every smc-related instruction, we 
operate Flush on cache.

16



Experimental Results
Experiments on TrustZone Instructions

ARMv8-A

We change the overall percentage of smc 
instructions and see the overhead 
difference.

17



Experimental Results
Experiments on TrustZone 
Instructions

Cortex-M

Our experiments on ARMv8-M are 
using ARM Versatile V2M-MPS2 
Motherboard with an ARM Cortex-
M4 chip. It offers 8Mb of single 
cycle SRAM, and 16Mb of 
PSRAM. It supports the application 
of different ARM Cortex-M classes, 
from Cortex-M0, to M3, M4, and 
M7. 

18



Experimental Results
Experiments on TrustZone Instructions

Cortex-M

Using Testing Program as shown above.

Operation Direction Cost on Average (Clock Cycles)

SG Non-Secure to 

Secure

3.5

BXNS/BLX

NS

Secure to Non-

Secure

5.2

19



Experimental Results
Experiments on TrustZone Instructions

ARMv8-M

We change TrustZone entry/exit frequency by 
setting different parameters in inner and outer 
loop. The overhead can be limited to less than 
5%.

20



Evaluation
On the cost-effectiveness balance of defending by Flush operations

 Flush operations are necessary, but they cost much;

 We can never wipe out the risk, but can cut down bandwidth;

 Adaptive strategy can be used to keep the balance of performance and effectiveness;

 Even better on ARMv8-M chips.

21



Evaluation
On TrustZone related instructions

 Most of the apps and users are not ‘making use of’ TrustZone features;

 On IoT devices, TrustZone is not costing much resources;

 It is possible to move some of the hardware/software security design into TrustZone surface;

 Cortex-M series chips perform better than Cortex-A series chips.

 On Cortex-A series chips or x86 chips, cache flush operations are just some instructions with privileges. 
However, the case are different on ARMv8-M. The allocation of a memory address to a cache address is 
defined by the designers of the applications.

 Because of the special structure of ARMv8-M, the cache Flush operations are sets of DSB (Data 
Synchronization Barrier) operations, with address-related instructions.

22



Future Work
Implementations and Experiments

 Design and implement a defense framework based on ARMv8-M.

 Test the performance of defense framework using some benchmarks, and optimize the framework to 
good effectiveness and lower overhead.

 Port defense framework to new ARMv8-M boards: M23 and M33 series chips.

Theory Work

 Study adaptive control method in theory to match the experimental results, and predict the optimal 
solution of best adaptive control in defense.

 Investigate entropy theory based on experimental results, predictions and related theory.

 Discuss performance of implemented defense framework in theory, and try to have theoretical conclusion 
on defense against cache-based attack.

23



Conclusion
Cache-based attack are new focal point on security design, with risks of leaking information 
through side-channel and covert channels.

Flushing cache is effective to cut down the risk, but with high performance overhead, and 
sometimes not affordable.

On IoT devices, the performance of connecting with TrustZone can be better, which brings the 
possibility to making use of TrustZone.

24



Thank you!
Naiwei Liu, UTSA ICS Lab, Naiwei.liu@utsa.edu

Ravi Sandhu, UTSA ICS Lab, ravi.sandhu@utsa.edu

Meng Yu, Roosevelt University, myu04@Roosevelt.edu

25

mailto:Naiwei.liu@utsa.edu
mailto:ravi.sandhu@utsa.edu
mailto:myu04@Roosevelt.edu

