
RABAC : Role-Centric
Attribute-Based Access Control

Xin Jin1, Ravi Sandhu1 and Ram Krishnan2

1 Institute for Cyber Security & Department of Computer Science
2 Institute for Cyber Security & Dept. of Elect. and Computer Engg.

University of Texas at San Antonio
xjin@cs.utsa.edu, {ravi.sandhu, ram.krishnan}@utsa.edu

Abstract. Role-based access control (RBAC) is a commercially dom-
inant model, standardized by the National Institute of Standards and
Technology (NIST). Although RBAC provides compelling benefits for
security management it has several known deficiencies such as role explo-
sion, wherein multiple closely related roles are required (e.g., attending-
doctor role is separately defined for each patient). Numerous extensions
to RBAC have been proposed to overcome these shortcomings. Recently
NIST announced an initiative to unify and standardize these extensions
by integrating roles with attributes, and identified three approaches: use
attributes to dynamically assign users to roles, treat roles as just another
attribute, and constrain the permissions of a role via attributes. The first
two approaches have been previously studied. This paper presents a for-
mal model for the third approach for the first time in the literature. We
propose the novel role-centric attribute-based access control (RABAC)
model which extends the NIST RBAC model with permission filtering
policies. Unlike prior proposals addressing the role-explosion problem,
RABAC does not fundamentally modify the role concept and integrates
seamlessly with the NIST RBAC model. We also define an XACML pro-
file for RABAC based on the existing XACML profile for RBAC.

Keywords: NIST-RBAC, attribute, XACML, access control

1 INTRODUCTION AND MOTIVATION

Role-based access control (RBAC) [12, 26] is a commercially successful
and widely used access control model. Access permissions are assigned to
roles and roles are assigned to users. Roles can be created, modified or dis-
abled with evolving system requirements. Since the first formalizations
[26] it has been recognized that traditional formulations of RBAC are
inefficient in handling fine grained access control. RBAC can accommo-
date fine grained authorizations by dramatically increasing the number
of distinct roles with slightly different sets of permissions. However, this
solution incurs significant cost of correctly assigning permissions to large

numbers of roles. For instance, consider the familiar doctor-patient prob-
lem. In a hospital, a doctor is only allowed to view the record of his own
patients. In the NIST RBAC model [12], a doctor role needs to be defined
for each patient. Thus, the number of roles will be dramatically increased
while they share mostly the same permissions. Anecdotal information in-
dicates that in practice organizations work around these limitations in
ad hoc ways. The research community has also proposed several ad hoc
extensions to RBAC (see section 2).

Recently Kuhn et al [23] announced a NIST initiative to unify and
standardize various RBAC extensions by integrating roles with attributes,
thereby combining the benefits of RBAC and attribute-based access con-
trol (ABAC) to synergize the advantages of each. An informal review
of ABAC concepts is provided in Karp et al [22]. Even with the relative
immaturity of ABAC formal models the NIST approach is a promising
avenue for injecting the benefits of ABAC into RBAC and vice versa. We
note that there are access control proposals that go beyond attributes
such as [14, 21]. However, we are motivated by the NIST ongoing initia-
tive in extending RBAC through attributes, so models which go beyond
ABAC are beyond our scope.

Kuhn et al [23] identify three alternatives for integrating attributes
into RBAC as follows.

– Dynamic Roles. The first option uses user and context attributes
to dynamically assign roles to users. It is similar to attribute-based
user-role assignment [4]. This does help with automated user-role as-
signment to the myriad roles arising from role explosion, but does
not address the corresponding role-permission assignment explosion
(which has been considered in a recent model [19]). Context attributes
have been studied in the literature [9–11].

– Attribute Centric. In this option roles are simply another attribute
of users [7, 20]. There is no permission-role assignment relationship.
This method largely discards the advantages of RBAC which are well
demonstrated and mature [15].

– Role Centric. The general idea in the third option is that the maxi-
mum permissions available in each session are determined by the roles
activated, which can be further reduced based upon attributes. How-
ever, Kuhn et al [23] do not elaborate on this option or provide details
about this approach. Moreover, to our knowledge, there are no pub-
lished formal models in the literature corresponding to this option.

Our central contribution is to develop a formal model for the role-
centric approach for the first time. We propose the role-centric attribute-

based access control (RABAC) model which extends the NIST RBAC
model with permission filtering policies. RABAC is a more convenient
term otherwise identical to “RBAC-A, role-centric” in [23]. RABAC over-
comes role explosion without fundamentally modifying RBAC. In partic-
ular, RABAC integrates seamlessly with the NIST RBAC model thereby
offering a path for practical deployment. We also establish feasibility of
implementation by providing an XACML profile for RABAC based on
the existing standard XACML profile for the NIST RBAC model.

The rest of this paper is as follows. Section 2 discusses related work.
Section 3 develops RABAC along with its formal definition and func-
tional specifications. Section 4 defines the XACML profile for RABAC
and presents implementation example. Section 5 concludes the paper.

2 RELATED WORK

The role explosion problem, wherein multiple closely related roles need to
be defined to achieve fine-grained access control, has been recognized since
the early days of RBAC, predating publication of the NIST RBAC model
[12]. There has been considerable previous work on extending RBAC to
avoid role explosion. Giuri [18] introduced the concepts of parameterized
privileges and role templates to restrict a role to access a subset of objects
based on the instantiated parameters. Other similar proposals include pa-
rameterized role [3, 17], conditional role [6], object sensitive role [13] and
attributed role [28]. The above proposals change the fundamental process
of role-permission assignment as permissions assigned to roles can only
be determined when a role is instantiated or activated. There is a lack of
accompanying administrative models for these extensions in such context
and they do not fit into the existing administration models such as [25].
Compared with roles in the NIST RBAC model, these extensions increase
the complexity of role mining and engineering, which is the costliest com-
ponent of RBAC [16].

Numerous other extensions of RBAC have been proposed [15]. We
briefly mention a few here. TrustBAC [8] incorporated the advantages of
both RBAC and credential based access control models. But only user
attribute trust level is considered. A family of extended RBAC models
called role and organization based access control (ROBAC) models were
proposed and formalized in [29]. However, it is not designed for access
control within the same organization. Kumar et al [24] extended RBAC
by introducing the notions of role context and context filters. However,
context filters are applied only during the process of defining roles.

Fig. 1. RABAC Model

3 RABAC MODEL

In this section, we present the RABAC model as an extension of the NIST
RBAC model. The model is first discussed informally and then formally
defined in two parts similar to NIST RBAC model: reference model and
functional specification.

3.1 Model Overview

The RABAC model is informally depicted in figure 1. It fully incorpo-
rates the NIST RBAC model and adds the following new elements: user
attributes (UATT), object attributes (OATT) and permission filtering
policy (PFP). We give a brief overview of these new elements below.

Attributes are functions which take certain entities and return values
for defined properties of that entity (user or object).3 Each user and object
is associated with a finite set of attributes. Examples of user attributes
are Department, Title and Specialization. Examples of object attributes
are Type and Status. The range of each attribute is represented by a finite
set of atomic values. For example, the range of Department is a set of all
department names in the organization. Additionally we allow attributes
to be set-valued. For instance, a set-valued Department attribute would
allow a user to belong to multiple departments. Each attribute can either
be atomic or set-valued from its declared range. Every attribute must be
declared to be either atomic or set-valued.

The Permission Filtering Policy (PFP), as suggested by its name,
constrains the available set of permissions based on user and object at-
tributes. It is depicted conceptually in figure 2. The avail session perm
function, as defined by NIST RBAC model, gives the permission set

3 More generally, attributes can be associated with other entities including sessions,
environment, system, etc. User and object attributes suffice for purpose of RABAC.

Fig. 2. Permission Filtering Process

Fig. 3. Methodology for Creating Functional Packages

associated with the roles activated in a given session. In RABAC the
avail session perm function represents the maximum permission set avail-
able in a session. These permission sets are further constrained by filtering
policy. The security architect specifies a set of filter functions {F1, F2, F3

. . . Fn} for this purpose. Each filter function is a boolean expression based
on user and object attributes. The TargetF ilter function maps each ob-
ject to a subset of the filter functions. This mapping is based on the
attributes of the object via attribute expressions called conditions which
determine whether or not each filter function is applicable. The applicable
filter functions are invoked one by one against each of the permissions in
avail session perm. If any of the functions return FALSE, the permission
is blocked and removed from the available permission set for this ses-
sion. At the end of this process, we get the final available permission set.
It should be noted that this description specifies the net result. Various
optimizations can be used so long as the net result is as indicated.

With the newly defined PFP component, we are able to modify the
logical approach for defining packages of functional components in the
NIST RBAC model [12] as shown in figure 3. RABAC adds the dashed
rectangle at the last stage. This indicates that PFP can be integrated
into each of the RBAC model components independently.

Table 1. NIST RBAC Sets and Functions used in RABAC

– USERS, ROLES, OPS, and OBS (users, roles, operations, and objects);
– PRMS = 2 (OPS × OBS), the set of permissions;
– SESSIONS, the set of sessions;
– user sessions(u: USERS) → 2SESSIONS, the mapping of user u onto a set of sessions;
– avail session perms(s: SESSIONS) → 2PRMS, the permissions available to a user

in a session.
– PA ⊆ PRMS × ROLES, a many-to-many mapping permission-to-role assignment;
– assigned permissions(r: ROLES) → 2PRMS, the mapping of role r onto a set of

permissions;

Table 2. Additional Sets and Functions of RABAC

– UATT and OATT represent finite sets of user and object attribute functions re-
spectively.

– For each att in UATT ∪ OATT, Range(att) represents the attribute’s range, a
finite set of atomic values.

– attType: UATT ∪ OATT → {set, atomic}. Specifies attributes as set or atomic
valued.

– Each attribute function maps elements in USERS and OBS to atomic or set values.

∀ua ∈ UATT. ua : USERS →
{
Range(ua) if attType(ua) = atomic

2Range(ua) if attType(ua) = set

∀oa ∈ OATT. oa : OBS →
{
Range(oa) if attType(oa) = atomic

2Range(oa) if attType(oa) = set

– FILTER = {F1, F2, F3, . . . Fn} is a finite set of boolean functions.
For each Fi ∈ FILTER. Fi: SESSIONS × OPS × OBS→ {T, F}.

3.2 RABAC Reference Model

The basic sets and functions in the NIST RBAC model are shown in
table 1. These sets and functions will also apply to RABAC. We define
additional sets and functions for RABAC in table 2. UATT is a set of
attribute functions for the existing users (i.e., USERS). Each attribute
function in UATT maps a user to a specific value. This could be atomic
or set valued as determined by the type of the attribute (as specified by
attType). We specify similar sets and functions for objects. The notation
used here for attributes is adapted from [20]. FILTER is a set of boolean
functions defined by the security architects. The Fi are applied to sessions
to constrain permissions associated with that session (discussed below).

Table 3. Permission Filtering for RABAC

1. Permission filtering policy.
Language LFilter is used to specify each filter function Fi(se:SESSIONS, ops:OPS,
obs:OBS) in FILTER, where se, ops and obs are formal parameters.

2. Conditions.
For each Fi ∈ FILTER there is a conditioni which is a boolean expression specified
using language LCondition.

3. TargetFilter is a function which maps each object to its applicable filter functions
as a set. It is illustrated with the pseudo code shown as follows:
TargetFilter(obs:OBS)
{

filter := {};
condition1: filter := filter ∪ F1;
condition2: filter := filter ∪ F2;
. . .
conditionn: filter := filter ∪ Fn;
return filter;

}
Where F1, F2 . . . Fn ∈ FILTER and obs is formal parameter.

Table 4. Common Policy Language

φ ::= φ ∧ φ|φ ∨ φ|(φ)|¬φ| ∃ x ∈ set.φ|∀ x ∈ set.φ| set setcompare set | atomic ∈ set |
atomic atomiccompare atomic

setcompare ::=⊂ | ⊆ | *
atomiccompare ::= < | = | ≤

The permission filtering process is configured in three steps. As illus-
trated in the first part of table 3, security architects firstly define each
filter function Fi in terms of user and object attributes by means of the
language LFilter (defined below). Security architects also need to select
a subset of the filter functions that apply to an object. This is done by
the TargetF ilter function which requires specification of a boolean con-
dition based on object attributes for each filter function Fi. As shown in
the second part of table 3, there are n such conditions, one for each Fi.
Each condition is defined using the language LCondition (defined below).
For an object, the TargetF ilter function is illustrated in the third part
of table 3. It evaluates each conditioni based on the object’s attributes
to determine whether or not the filter function Fi is applicable. Thus it
selects a subset of the filter functions applicable for any specific object.

The languages LFilter and LCondition are defined by adopting the
common policy language (CPL) from [20] as shown in table 4. CPL de-

fines the logical structure but is not a complete language. It is required
to specify the non-terminal symbols set and atomic to build complete in-
stances of CPL. LFilter, the language used to specify each filter function
Fi, is an instance of CPL where set and atomic are as follows.

set::= setua (sessionowner(se)) | setoa(obs) | ConsSet
atomic::= atomicua (sessionowner(se)) | atomicoa(obs) | ConsAtomic
setua ∈ {ua | ua ∈ UATT ∧ attType(ua) = set }
atomicua ∈ {ua | ua ∈ UATT ∧ attType(ua)= atomic }
setoa ∈ {oa | oa ∈ OATT ∧ attType(oa) = set }
atomicoa ∈ {oa | oa ∈ OATT ∧ attType(oa) = atomic }

ConsSet and ConsAtomic are constant sets and atomic values. se
and obs are formal parameters of each filtering function. LFilter use the
attributes of the involved user and object. Thereby, LFilter is able to
constrain permissions dynamically based on various relationships between
user and object attributes. We define the sessionowner function to return
the owner of a session as follows.

sessionowner(se:SESSIONS) = u such that se∈user sessions(u)

In the above definition, user sessions(u: USERS) is already defined in
the NIST RBACmodel to return the sessions for a given user. LCondition,
the language for specifying conditions, is an instance of CPL where set
and atomic are as follows.

set::= setoa(obs) | ConsSet
atomic::= atomicoa(obs) | ConsAtomic

Each condition can only refer to the attributes of the object obs being
accessed. setoa and atomicoa are the same as in LFilter.

3.3 Functional Specification

Our definitions of functional specifications for RABAC are based on those
already defined in NIST RBAC model. The key extensions of this model
focus on access decisions. Thus, we redefine the CheckAccess function
from NIST RBAC and define a new function called FilteredSession-
Perm. We specify these functions in table 5. Function FilteredSes-
sionPerm returns final available permissions for each specific session.
Function CheckAccess is used to check each request (ops, obs).

4 XACML PROFILE FOR RABAC

XACML [1] is a standard language for specifying attribute based access
control policy. Because of its reputation, considerable work has been done

Table 5. Functional Specifications

Functions Updates

FilteredSessionPerm perset = avail session perm(se);
(se: SESSIONS) For each (ops, obs) ∈ perset do

if TargetFilter(obs) = {} break;
For each function ∈ TargetFilter(obs) do

if ¬function(se, ops, obs)
perset = perset \ {(ops, obs)}; break;

return perset;

CheckAccess result = ((ops, obs)∈FilteredSessionPerm(se));
(se: SESSIONS,
ops: OPS,
obs: OBS,
result: BOOLEAN)

for XACML in implementing RBAC as well as its administration model
[27]. XACML profile for RBAC [5] has been defined to guide implementing
RBAC via XACML. For the purpose of demonstrating implementation
feasibility of RABAC, we show that RABAC can be easily implemented
in XACML. Specifically, we propose a XACML profile for RABAC based
on that for RBAC. We then give a specific implementation example for
this profile.

4.1 Proposed Profile

The standard XACML RBAC profile is limited to core and hierarchical
RBAC. Our RABAC profile is similarly limited. We will only discuss
those components of the standard XACML RBAC profile that need to be
changed for RABAC. The RABAC profile is guided by the following.

– Permission Filtering Policies (PFP) are stored in a separate file from
permission and role policy files for ease of administration.

– The result of role policy and PFP policy may be different. We need
policy combination algorithm which gives deny if and only if PFP
returns deny (Note that only positive permissions are defined for role
policy in NIST RBAC model). Otherwise, the final result is permit.

– The result from different filter functions upon the same group of ob-
jects should be deny-override. Thereby if any one of them returns
false, the final result for PFP will be false.

In light of these observations, we design an extension where the PDP
(Policy Decision Point) loads one more kind of policy files for PFP com-
ponents in addition to the role policy file as shown in figure 4. The

Fig. 4. Part of Proposed XACML Profile for RABAC

implementation for role and permission policy set remains the same.
To implement PFP, a TargetF ilter <PolicySet> should be defined for
each condition in the TargetF ilter function defined in the model. Condi-
tions in TargetF ilter are implemented with target tag in XACML pol-
icy. Each TargetF ilter <PolicySet> contains policy references to actual
filter function <Policy>. Each reference represents a filter function de-
fined in the model. The role policy and PFP policy may return different
results. Since PFP is used only to reduce permissions there should not be
PFPs that evaluate to permit. Thus, the role policy returns permit while
the PFP policy may return two kinds of result NotApplicable (no policy
specified) orDeny (not allowed). We can determine that policy combining
algorithm should be deny-override. The request is with the same format
as that in XACML profile for RBAC except that the XACML subject is
associated with multiple attributes in addition to role.

4.2 Example

We show the usage of our model in the doctor-patient problem in col-
laborative hospitals. The scenario is: Doctor, Patient and V isitDoc are
roles in each hospital. Doctor are allowed to read their Patients’ record
at any time. V isitDoc are only allowed to read authorized documents
which are revealed for collaboration purpose with other hospitals. The
request will only be approved during working hours made from any hos-
pital certified devices. In addition, visiting doctors from other hospital

Table 6. RABAC Configuration for Doctor-Patient Problem

1. Basic sets and function
UATT={doctorof, uproj} OATT={type, recordof, oproj}
attType(doctorof)= attType(uproj) = attType(oproj)= set
attType(type)= attType(recordof)= atomic
Range(uproj) = Range(oproj)={proj1, proj2, proj3 . . . }
Range(type)= {PatientRecord, AuthorizedDoc . . .}
Range(doctorof)= Patient
Patient is all patients maintained by the hospital, Patient⊆U.
Range(recordof)= U
FILTER= {FPatient, FAuthorized}
2. Permission filtering policy
FPatient(se: SESSIONS, o: OBS, read)
{

recordof(o)∈doctorof(sessionowner(se));
}
FAuthorized(se: SESSION, o: OBS, read)
{

(∃ proj1 ∈ oproj(o). ∃ proj2 ∈ uproj(sessionowner(se)).proj1=proj2)∧
(8:00≤time(sessionowner(se)) ∧ time(sessionowner(se)) ≤ 17:00) ∧
device(sessionowner(se)) ∈ { set of hospital certified devices }

}
TargetFilter(o: OBS)
{

filter = {};
case type(o) = PatientRecord: filter = filter ∪ FPatient;
case type(o) = AuthorizedDoc: filter = filter ∪ FAuthorized;
return filter;

}

are only allowed to view authorized documents pertaining to the projects
they participate in. We present the configuration in RABAC in table 6.
The elements are to be added to original RBAC solution. In traditional
RBAC, a V isitDoc role for each collaborative project should be defined.
As new projects are created and accomplished, V isitDoc roles have to be
created and deleted. In addition, roles for each project are only different
in the permissions regarding the specific projects. In our solution, a gen-
eral V isitDoc role is defined to be able to read all authorized projects
documents. Then simple filtering policy can be specified in a straight-
forward manner (shown below). Thus, the role needed to be defined in
traditional RBAC is the same as the number of projects while only one
is needed in RABAC. Note that if the hospital requirements changes,
e.g. a visit doc can read all authorized documents in his department, the
role-permission and user-role relationship need to be changed in RBAC

while such change is not needed in RABAC. Rather we need to change
the filtering policy in RABAC, which in this case would simply delete the
corresponding filtering policy.

Following the above RABAC XACML profile we have implemented
the fore-mentioned doctor-patient problem based on SUN’s XACML im-
plementation [2]. As per the standard RBAC XACML profile the role
policy is straightforward. The TargetFilter <PolicySet> defines a policy
for filtering access on PatientRecord and AuthorizedDoc. We take the
PatientRecord as an example. The target is all patient records and there
is a reference to the corresponding filter function<Policy>. This policy
defines a deny rule for reading patient records and the rule takes effect
if resource (i.e., patient record) owner does not belong to the doctorof
attribute value of a subject. One technical problem with this implemen-
tation is that string-not-equal is not natively embedded into XACML
standard. Thus, we need to define this function which is straightforward
and not explicitly shown here. An abbreviated portion of the XACML
code for FPatiendRecord is shown below (role policy is the same as RBAC
XACML profile and policy file for FAuthorized is similar).

XACML Code for PFP in Example

1 <Policy PolicyId="PFPPatiendRecord" RuleCombiningAlgId="deny-
overrides">

2 <Target></Any Subject>
3 <Resources><!--Any PatientRecord--></Resources> </Any Action>
4 </Target>
5 <Rule RuleId="ReadRule" Effect="Deny">
6 <Target><Any Subject Resource/>
7 <Actions><Action><ActionMatch MatchId="string-equal">
8 <AttributeValue DataType="string">read</AttributeValue>
9 <ActionAttributeDesignator DataType="string"

10 AttributeId="action:action-id"/>
11 </ActionMatch></Action></Actions> </Target>
12 <Condition FunctionId="string-not-equal">
13 <Apply FunctionId="string-one-and-only">
14 <SubjectAttributeDesignator DataType="string"
15 AttributeId="doctorof"/></Apply>
16 <Apply FunctionId="string-one-and-only">
17 <ResourceAttributeDesignator DataType="string"
18 AttributeId="owner"/></Apply>
19 </Condition>
20 </Rule>
21 </Policy>

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed RABAC, a novel extension to the NIST RBAC
model in an effort to address the role explosion problem of RBAC with-

out modifying significant components of RBAC model and retaining the
static relationships between roles and permissions. It is the first model to
integrate roles and attributes using the role centric approach identified by
Kuhn et al [23]. RABAC integrates roles and attributes in a flexible and
reliable manner. In particular, we define an independent component called
the permission filtering policy (PFP) adding to the existing components
of the NIST RBAC model. We also extend the functional specification of
the NIST RBAC model and XACML profile for RBAC. Our solution es-
sentially retains the administration convenience of RBAC while ensuring
flexibility and scalability without role explosion.

There are several interesting directions for future work. Formal analy-
sis of tradeoffs between roles and attributes may provide practically useful
insights and results. The language CPL, which is used for specifying the
filtering function as well as conditions in TargetF ilter functions, can be
extended to leverage the power of XACML as these functions can be
expressed through XACML policy files.

Acknowledgment

The authors are partially supported by grants from AFOSR MURI and
the State of Texas Emerging Technology Fund.

References

1. OASIS, Extensible access control markup language (XACML), v2.0 (2005).
2. Sun’s XACML implementation. Available at http: //sunx-

acml.sourceforge.net/index.html.
3. Ali E. Abdallah and Etienne J. Khayat. A Formal Model for Parameterized Role-

Based Access Control. In Formal Aspects in Security and Trust, 2004.
4. MA Al-Kahtani and R. Sandhu. A model for attribute-based user-role assignment.

ACSAC, 2002.
5. Anne Anderson. XACML profile for role based access control (RBAC). Technical

Report Draft 1, OASIS, February 2004.
6. Yubin Bao, Jie Song, Daling Wang, Derong Shen, and Ge Yu. A Role and Context

Based Access Control Model with UML. In ICYCS, 2008.
7. D.W. Chadwick, A. Otenko, and E. Ball. Implementing Role Based Access Controls

Using X.509 Attribute Certificates. IEEE Internet Computing, 2003.
8. Sudip Chakraborty and Indrajit Ray. TrustBAC: integrating trust relationships

into the RBAC model for access control in open systems. In SACMAT, 2006.
9. L. Cirio, I. F. Cruz, and R. Tamassia. A Role and Attribute based Access Control

System Using Semantic Web Technologies. In OTM Workshops, 2007.
10. Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dev, Mustaque

Ahamad, and Gregory D. Abowd. Securing context-aware applications using en-
vironment roles. In SACMAT, 2001.

11. Michael J. Covington and Manoj R. Sastry. A Contextual Attribute-Based Access
Control Model. In OTM Workshops, 2006.

12. David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed NIST standard for role-based access control.
ACM Trans. on Infor and Sys Sec, 2001.

13. Jeffrey Fischer, Daniel Marino, Rupak Majumdar, and Todd D. Millstein. Fine-
grained access control with object-sensitive roles. In ECOOP, pages 173–194, 2009.

14. Philip W. L. Fong. Relationship-based access control: protection model and policy
language. In CODASPY, 2011.

15. Ludwig Fuchs, Günther Pernul, and Ravi S. Sandhu. Roles in information security-
A survey and classification of the research area. Computers & Security, 2011.

16. M. P. Gallagher, A.C. O’Connor, and B. Kropp. The economic impact of role-based
access control. In Planning report 02-1, NIST,, March 2002.

17. Mei Ge and Sylvia L. Osborn. A design for parameterized roles. In DBSec, 2004.
18. Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In

Proc. of the second ACM workshop on RBAC. ACM, 1997.
19. Jingwei Huang, David Nicol, Rakesh Bobba, and Jun Ho Huh. A Framework

Integrating Attribute-based Policies into RBAC. In SACMAT, 2012.
20. Xin Jin, Ram Krishnan, and Ravi Sandhu. A Unified Attribute-Based Access

Control Model Covering DAC, MAC and RBAC. In DBSec, 2012.
21. Anas Abou El Kalam, Salem Benferhat, Alexandre Miege, Rania El Baida, Frederic

Cuppens, Claire Saurel, Philippe Balbiani, Yves Deswarte, and Gilles Trouessin.
Organization based access control. In POLICY, 2003.

22. A. H. Karp, H. Haury, and M. H. Davis. From ABAC to ZBAC: the evolution of
access control models,. In tech.report, HP Labs, 2009.

23. D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding Attributes to
Role-Based Access Control. IEEE Computer, 43(6):79–81, 2010.

24. Arun Kumar, Neeran Karnik, and Girish Chafle. Context sensitivity in role-based
access control. SIGOPS Oper. Syst. Rev., 36(3):53–66, 2002.

25. R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based
administration of roles. ACM Trans. on Info and Sys Sec, 1999.

26. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

27. M. Xu, D. Wijesekera, X. Zhang, and D. Cooray. Towards Session-Aware RBAC
Administration and Enforcement with XACML. In POLICY, 2009.

28. Jianming Yong, Elisa Bertino, Mark Toleman, and Dave Roberts. Extended RBAC
with role attributes. In 10th Pacific Asia Conf. on Info Sys, 2006.

29. Zhixiong Zhang, Xinwen Zhang, and Ravi Sandhu. ROBAC: Scalable role and
organization based access control models. In IEEE TrustCol, 2006.

