
Uni-ARBAC: A Unified Administrative Model
for Role-Based Access Control

Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan

Institute for Cyber Security
University of Texas at San Antonio

prosun.csedu@gmail.com, {ravi.sandhu, ram.krishnan}@utsa.edu

Abstract. Many of the advantages of Role Based Access Control (RBAC)
accrue from the flexibility of its administrative models. Over the past
two decades, several administrative models have been proposed to man-
age user-role, permission-role and in some cases role-role relations. These
models are based on different administrative principles and bring inher-
ent advantages and disadvantages. In this paper, we present a unified
model, named Uni-ARBAC, for administering user-role and permission-
role relations by combining many of the administrative principles and
novel concepts from prior models. For example, instead of administer-
ing individual permissions Uni-ARBAC combines permissions into tasks
which are assigned to roles as a unit. Slightly differently, users are as-
signed to user-pools from where individual users are assigned to roles.
The central concept of Uni-ARBAC is to integrate user-role and task-role
administration into a more manageable unit called an Administrative
Unit (AU). AUs partition roles, tasks and user-pools and they are orga-
nized in a rooted tree hierarchy. Administrative users are assigned to AUs
with possibility of restricting their authority to user-role assignment or
task-role assignment. While most existing models assume existence of ad-
ministrative roles for managing regular roles, we present an approach for
engineering AUs based on structured partitioning of roles and tasks.

1 Introduction

Role Based Access Control (RBAC) [6, 17] is one of the most widely de-
ployed and studied access control models. Instead of directly assign-
ing permissions to users, RBAC assigns permissions to roles and users
to roles. While the number of roles in a large organization might vary
from dozens to thousands, the number of users or permissions could
vary from tens of thousands to hundreds of thousands and even mil-
lions. Thus, maintaining the user-role and permission-role relations are
the most commonly carried out administrative actions in RBAC. While
some models also speak to administering the role-role hierarchy [5, 15],
it is evident that modifications to the role-role relationship can have sig-
nificant impact, so it might be advisable to keep this authority relatively



centralized. Hence, we limit our scope in this paper to decentralized ad-
ministration of the user-role and permission-role relations.

To a large degree the advantages of RBAC accrue from the flexibility
of administering the permission-role and user-role relations. In this re-
gard, several administrative models have been proposed in the literature
(see Section 2). These models are based on different administrative prin-
ciples and offer inherent advantages and disadvantages. Each one incor-
porates some novel and putatively useful concepts relative to the others.
To our knowledge, there has been no effort so far to comprehensively
consolidate the various novel concepts introduced in different admin-
istrative models into a coherent unified model that potentially brings
together the inherent advantages of the individual models.

In this paper, we present a novel unified model, named Uni-ARBAC,
for administering user-role and permission-role relations by combining
many of the existing administrative principles and novel concepts. For
example, instead of administering individual permissions, Uni-ARBAC
combines permissions into tasks and assigns tasks to roles. For admin-
istrative purposes, Uni-ARBAC decouples users and tasks from roles
following the decoupling principle of ARBAC02 [13]. Uni-ARBAC uti-
lizes user-pools as sets of candidate users who can be assigned to a role,
while tasks act as permission-pools. One advantage of using tasks as
permission-pools is that tasks can be designed during role engineering
according to some top-down approaches (e.g. [11]). User-pools on the
other hand can be designed via the organization structure.

Uni-ARBAC integrates user-role and task-role administration into a
more manageable unit, we call Administrative Unit (AU). AUs partition
roles, tasks and user-pools, and are organized in a rooted tree hierarchy.
Administrative users are assigned to AUs with possibility of restricting
their authority to user-role assignment or task-role assignment. The par-
titioning of roles and tasks across AUs leads us to propose an engineer-
ing process for AUs for given role hierarchy and/or task hierarchy. The
potential for engineering AUs in this manner is a significant advantage
of Uni-ARBAC.

This paper makes the following contributions. We have presented a
unified model (Uni-ARBAC) for administering user-role and permission-
role relation for RBAC. Uni-ARBAC combines several novel concepts and
administrative principles from prior models into a more powerful and
manageable unit called administrative unit (AU). We proposed an engi-
neering approach for developing AUs. While most other administrative
models assume the existence of separate administrative roles,we relax



this assumption and our approach for engineering administrative units
can also be used for engineering administrative roles.

The remainder of this paper is organized as follows. We discuss re-
lated work in Section 2 highlighting the concepts we have adopted from
prior administrative models. We present our model in Section 3 and
some variations of the model in Section 4. Section 5 discusses our ap-
proach for engineering AUs. We conclude the paper in Section 6.

2 Background and Related Work

In this section, we review prior models for administering RBAC, empha-
sizing those of their driving principles which have been incorporated in
Uni-ARBAC. These concepts and principles are summarized in Table 1.

The value of grouping permissions into a higher level abstraction
has often been recognized in the literature. Task-role based access con-
trol (TRBAC) [12] proposes the notion of a task as a group of permissions
which constitute a fundamental unit of business work in an enterprise.
Similar to TRBAC, two-sorted RBAC [9] and scenario-based role engi-
neering [11] organize tasks into another higher level abstract.

One of the central notions of RBAC administration is to separate
user-role and permission-role assignments. Introduced in ARBAC97 [15],
this notion is adopted by many other models including [13, 14, 16]. Uni-
ARBAC accepts this separation to be at the core of the model.

Another essential concept of ARBAC97 is to keep administration of
roles separate from regular roles. To this end, ARBAC97 introduced the
concept of administrative roles. Uni-ARBAC adopts the former separa-
tion principle, but eschews the use of administrative roles for this pur-
pose. Instead, Uni-ARBAC introduces a more sophisticated construct of
Administrative Units to achieve the desired separation.

ARBAC02 [13] is another influential model for administrative RBAC.
It documents a number of problems with ARBAC97 and introduces the
notions of user-pools and permission-pools. Uni-ARBAC adopts the user-
pool and user-pool hierarchy from ARBAC02, while on the permission
side it adopts the task and task hierarchy from [12] as discussed above.

Crampton et al. developed a model called SARBAC [4, 5] based on
the concept of administrative scope, which confines the side effects of
role hierarchy modification in a highly disciplined manner relative to
ARBAC97. Notably, administrative scope becomes a means to define ad-
ministrative roles which are otherwise assumed to be given in ARBAC97
and ARBAC02. Administrative scope is mathematically defined based



Table 1: Concepts motivating Uni-ARBAC (* denotes source of the concept)

Concepts & Principles
ARBAC97
[15]

ARBAC02
[13]

SARBAC
[4], [5]

UARBAC
[10]

Role graph
model [18]

Uni-
ARBAC

Task & task hierarchy X
Separation of user &
permission administration

X* X X X X

Separation of regular roles
from administration

X* X X X

User pools & user pool hierarchy X* X
Administrative structure design X* X X
Reversibility & administrative
structure flexibility

X* X

Senior most administrators X* X

on the given role hierarchy. Uni-ARBAC incorporates the general notion
that the role hierarchy should influence the administrative structure.
However, it departs from the strict mathematical definition of SARBAC
to accommodate a heuristic top-down approach in designing adminis-
trative units, based on the role-hierarchy and task-role allocation.

The UARBAC [10] model proposes a number of principles for RBAC
administration, such as scalability and flexibility, psychological accept-
ability and economy of mechanism. As noted earlier Uni-ARBAC de-
parts from UARBAC on the question of whether or not administrative
permissions should be assigned to regular roles. However, all the other
principles of UARBAC are considered similarly desirable in Uni-ARBAC.
As it stands some of the UARBAC principles, such as psychological ac-
ceptability and scalability, are qualitative and difficult to convincingly
claim for a given model. Here we confine our attention to the two princi-
ples of reversibility and administrative structure flexibility, which have
been explicitly adopted from UARBAC into Uni-ARBAC. The reversibil-
ity principle requires that administrative operations should be reversible.
This is incorporated in Uni-ARBAC by coupling grant and revoke oper-
ations for user-role or task-role assignment in a single administrative
unit. The principle of administrative structure flexibility (called policy
neutrality in [10]) argues against the tight coupling of administrative
structure to role hierarchy, such as in SARBAC.

It remains to consider the Role-Graph Administration Model [18]. It
partitions roles into units called administrative domains. The model ex-
plicitly includes a single highest administrative domain which includes
the MaxRole and MinRole from the underlying Role-Graph model. Uni-
ARBAC adopts this concept embodying it in the highest administrative
unit at the root of the administrative unit tree hierarchy.



Fig. 1: The Uni-ARBAC Model for User-Role and Task-Role Administration

In addition to the administrative models discussed above, there are
other notable models developed in various applied contexts, especially
in temporal/location aware RBAC [1, 2], Enterprise RBAC [7, 8]), event
driven RBAC [3], administration of cryptographic RBAC [19] etc.

3 The Uni-ARBAC Model

In this section, we describe the Uni-ARBAC model, along with formal
definitions. The overall structure of Uni-ARBAC is illustrated in Figure
1. We consider Uni-ARBAC in two parts: the operational model for RBAC
with respect to regular roles and permissions, and the administrative
model for administering the user-role and task-role relations of the for-
mer. These are respectively discussed in the following two subsections.

3.1 Uni-ARBAC Operational Model

The sets and relations in the top part of Figure 1 represent the Uni-
ARBAC operational model, which is slightly different from the standard
RBAC model [6]. The most salient difference is that there is a level of
indirection in role-permission assignment, so permissions are assigned
to tasks and tasks are assigned as a unit to roles. As discussed in Sec-
tion 2, this additional indirection has emerged in several different ad-
ministrative models in the literature. Additionally tasks are organized
in a partial order �t, whereby a senior task inherits all permissions from
its juniors. For example, in Figure 2(b), task t1 is senior to tasks t2 and
t3, so it inherits permissions from both of them, and so on. User-role as-
signment remains unchanged from standard RBAC, so individual users
are assigned to and deassigned from roles. For simplicity, we have not
considered the standard RBAC concepts of sessions and role activation.



Table 2: Uni-ARBAC Operational Model

I. Traditional RBAC Sets & Relations
- U,R and P (users, roles and permission)
- RH ⊆ R×R, partial order on roles �
- UA ⊆U ×R, user-role assignment relation

II. Added RBAC Sets & Relations
- T , set of tasks
- TH ⊆ T × T , partial order on tasks �t
- PA ⊆ P × T , permission-task assignment rel.
- TA ⊆ T ×R, task-role assignment relation

III. Derived Function
- authorized perms(r : R)→ 2P , defined as
authorized perms(r) = {p | (∃t, t′ ∈ T )

(∃r′ ∈ R)[r � r′ ∧ t �t t′∧
(t, r′) ∈ TA∧ (p, t′) ∈ PA]}

IV. Authorization Function
- can exercise permission(u : U,p : P ) =

(∃r ∈ R)[p ∈ authorized perms(r)
∧(u,r) ∈UA]

The Uni-ARBAC operational model is formalized in Table 2. Item I
specifies the familiar components carried over from traditional RBAC.
Item II specifies the additional components which effect the additional
indirection between permissions and roles via tasks. Item III formalizes
the interaction between the role hierarchy, task hierarchy, and permission-
task and task-role assignments. The interaction is schematically depicted
in Figure 3 and formally expressed in the authorized perms function. The
authorization function in item IV specifies the authorization required
for a user to exercise a permission, which is that the permission must
be authorized to at least one role assigned to the user. A familiar role
hierarchy from the literature and an example task hierarchy are shown
in Figures 2(a) and 2(b), respectively.

3.2 Uni-ARBAC Administrative Model

We now turn to the Uni-ARBAC administrative model illustrated in the
lower part of Figure 1, and formalized in Table 3. The administrative
model introduces a number of additional components. First we have the
notion of user-pools and user-pool hierarchy adopted from ARBAC02 [13].
An example user-pool hierarchy is shown in Figure 2(c). This example
has three independent user-pools DP, DevP and EP, with DevP being se-
nior to a number of other user-pools, i.e., CTP, CPLP, MTP and MPLP.
Motivation for the user-pool hierarchy in this instance is by virtue of
qualifications, so every user in the CPLP pool is also eligible to be a de-
veloper in the DevP pool. The hierarchy obviates the need to do multi-
ple assignments of a user to both pools in such cases. Users are assigned
to user-pools via the UUPA user to user-pool assignment relation. The
user-pool notion is formally specified in item I of Table 3.

The central mechanism in Uni-ARBAC is the administrative unit.
The set of administrative units is denoted as AU , while individual ad-
ministrative units are indicated as au, aui , auj , etc. Uni-ARBAC requires



Fig. 2: Examples of Uni-ARBAC hierarchies



Fig. 3: Interaction of role and task
hierarchies in operational model Fig. 4: Scope of control of an AU

that each au manages an exclusive set of roles which is not under the
purview of another au. The roles function in item II of Table 3 is a
partitioning assignment in that it must satisfy the requirements that
roles(aui) ∩ roles(auj ) = ∅ for aui 6= auj , and

⋃
au∈AU roles(au) = R. The

effect of partitioning is that each role is allocated to exactly one au for
administration. Each au only manages the roles it is directly assigned.
The effect of the role hierarchy is limited to the operational model.

The partitioning concept is further applied in Uni-ARBAC to tasks
and user-pools via the tasks and user pools functions in item II of Ta-
ble 3. These functions must satisfy the requirements tasks(aui)∩tasks(auj ) =
∅ for aui 6= auj ,

⋃
au∈AU tasks(au) = T , user pools(aui)∩user pools(auj ) =

∅ for aui 6= auj , and
⋃

au∈AU user pools(au) = UP .
In this manner an administrative unit manages a explicitly assigned

partition of roles, to which it can assign users from an assigned parti-
tion of user-pools and tasks from an assigned partition of tasks. Unlike
for roles, Uni-ARBAC extends the authority of an au to junior tasks and
user-pools, for which purpose we define the tasks∗ and user pools∗ func-
tions in item III of Table 3. The net effect is illustrated in Figure 4, and
further discussed in context of item V of Table 3. An example parti-
tioning of roles, tasks and user-pools across four administrative units is
shown in Figure 2(d). We also note that for a given au it is permissible
to assign an empty partition of roles, tasks or user-pools. While, such
situations may be unusual, the model does not prohibit them.

Next we consider assignment of users to administrative units (item
IV of Table 3). Users can be assigned via the TA admin or the UA admin
relation. The former authorizes the task-role assigment power of an au,
while the latter authorizes the user-role assignment power. In this way,
these two capabilities can be separately assigned to users, even though
they are coupled in the au. This embodies the separation of user and
permission assignment principle of Section 2. A user assigned to any au
via TA admin or UA admin is said to be an administrative user.



Table 3: Uni-ARBAC administrative model

I. User-Pools Sets & Relations
- UP , set of user-pools
- UPH ⊆UP ×UP , partial order �up
- UUPA ⊆U ×UP , user to user-pool

assignment relation

II. AU and Partitioned Assignments
- AU , set of administrative units
- roles(au : AU )→ 2R, assignment of roles
- tasks(au : AU )→ 2T , assignment of tasks
- user pools(au : AU )→ 2UP ,

assignment of user-pools

III. Derived Functions
- tasks∗(au : AU )→ 2T , defined as

tasks∗(au) = {t′ | (∃t ∈ tasks(au))t �t t′}
- user pools∗(au : AU )→ 2UP , and

user pools∗(au) = {up′ | (∃up ∈
user pools(au))up �up up′}

IV. Administrative User Assignments
- TA admin ⊆U ×AU
- UA admin ⊆U ×AU
- AUH ⊆ AU ×AU , rooted tree

partial order �au

V. Authorization Functions
- can manage task role(u : U,t : T ,r : R) =

(∃aui , auj )[(u,aui ) ∈ TA admin∧
aui �au auj ∧ r ∈ roles(auj )∧ t ∈ tasks∗(auj )]

- can manage user role(u1 : U,u2 : U,r : R) =
(∃aui , auj )[(u1, aui ) ∈UA admin∧
aui �au auj ∧ r ∈ roles(auj )∧ (∃up ∈UP )

[(u2,up) ∈UUPA∧up ∈ user pools∗(auj )]

VI. Administrative Actions
- assign task to role(u : U,t : T ,r : R)

Authorization:
can manage task role(u,t, r) = True
Effect: TA′ = TA∪ {(t, r)}

- revoke task f rom role(u : U,t : T ,r : R)
Authorization:
can manage task role(u,t, r) = True
Effect: TA′ = TA\{(t, r)}

- assign user to role(u1 : U,u2 : U,r : R)
Authorization:
can manage user role(u1,u2, r) = True
Effect: UA′ = UA∪ {(u,r)}

- revoke user f rom role(u1 : U,u2 : U,r : R)
Authorization:
can manage user role(u1,u2, r) = True
Effect: UA′ = UA\{(u,r)}

For convenience in maintaining the TA admin and UA admin rela-
tions, Uni-ARBAC also defines a hierarchy �au on administrative units.
Assignment of user u to a senior aui for task-role administration, i.e.,
(u,aui) ∈ TA admin, effectively also assigns u for task-role administra-
tion to all auj for aui �au auj . Likewise for (u,aui) ∈UA admin. For sim-
plicity, Uni-ARBAC requires �au to be a rooted tree hierarchy. One effect
of this is that there is a seniormost au. An example administrative units
tree is shown in Figure 2(d).

The authorization functions of Uni-ARBAC are specified in item V
of Table 3 as boolean functions that return true or false. The function
can manage task role(u : U,t : T ,r : R) specifies the conditions for user
u to assign/revoke task t to/from role r. The requirement is schemati-
cally depicted in Figure 5. User u must be assigned as a TA Admin to
the unique administrative unit auj which has jurisdiction over role r, or
alternately so assigned to an administrative unit aui �au auj . In either
case task t must be assigned to auj or be junior to a task assigned to auj .



Fig. 5: Task-role authorization Fig. 6: User-role authorization

The can manage user role(u1 : U,u2 : U,r : R) similarly specifies the
conditions for user u1 to assign/revoke user u2 to/from role r, and is
schematically depicted in Figure 6. User u1 must be assigned as UA Admin
to the unique administrative unit auj which has jurisdiction over role r,
or alternately to an administrative unit aui �au auj . In either case user
u2 must be assigned via UUPA to a user-pool which is directly assigned
to auj or to some user-pool junior to a user-pool directly assigned to auj .

Item VI of Table 3 formalizes the four administrative actions of Uni-
ARBAC. Assigning and revoking have the same authorization and the
effect is self-explanatory. The alignment of authorization for assign and
revoke embodies the principle of reversibility of administrative actions
discussed in Section 2.

3.3 Uni-ARBAC Invariants

Invariants are properties that hold for the lifetime. For the moment as-
sume we start with an initial state in which both TA and UA are empty,
i.e., the roles have no tasks or users assigned. Let us denote TA where all
possible TA assignments have been made as TAmax. It is evident that,

TAmax =
⋃

au∈AU
{(t, r)|t ∈ tasks∗(au)∧ r ∈ roles(au)}.

Because of reversibility of assign and revoke, and the independence of
each assignment from another, in any state TA must satisfy

∅ ⊆ TA ⊆ TAmax. (1)

It is further evident that any value of TA bounded as in equation 1 is
realizable. We can either build up from an empty TA or build down from
TAmax. In fact we can take the system from any value of TA compliant
with equation 1 to any other compliant value. Further, we can relax our
assumption of an empty TA in the initial state. Any initial state with
TA compliant with equation 1 will ensure that TA is maintained within



Table 4: Uni-ARBAC with Aggressive Inheritance

V’. Modified Authorization Functions
- can manage task role(u : U,t : T ,r : R) = (∃aui , auj , auk)[(u,aui ) ∈ TA admin∧

aui �au auj ∧ aui �au auk ∧ r ∈ roles(auj )∧ t ∈ tasks∗(auk)]
- can manage user role(u1 : U,u2 : U,r : R) = (∃aui , auj , auk)[(u1, aui ) ∈UA admin

∧aui �au auj∧ aui �au auk ∧ r ∈ roles(auj )∧ (∃up ∈UP )[(u2,up) ∈UUPA∧
up ∈ user pools∗(auk)]

these bounds. Finally, let TA0 denote TA in the initial state. Any (t, r) ∈
TA0/T Amax cannot be revoked and will persist in all subsequent states.
These observations can be proved formally but are quite evident. As an
example, the upper bound of TA for the administrative unit hierarchy of
Figure 2(d) does not contain the pair of (t1,CP L). Thus the task t1 cannot
be assigned to the role CP L using the instance of the AUs in Figure 2(d).

We can make similar observations with respect to the maximal pos-
sible values of UA as follows, UAmax =⋃
au∈AU

{(u,r)|(∃up ∈UP )[(u,up) ∈UUPA∧ r ∈ roles(au)∧up ∈ user pools∗(au)]}

so UA is bounded as follows.

∅ ⊆UA ⊆UAmax (2)

4 Variations of Uni-ARBAC

In this section we discuss some variations of Uni-ARBAC which materi-
ally alter the characteristics of the model. Uni-ARBAC has a rich struc-
ture so it is not surprising that many variations are possible. Some are
relatively incremental, such as allowing the administrative hierarchy to
be a general partial order rather than a rooted tree. Here we discuss a
few variations that raise some substantial policy issues.

4.1 Aggressive Inheritance Model
In this variation we allow a senior au to do more than simply the sum of
what the au itself is authorized to do plus what each of the junior au’s are
allowed. To be concrete consider the AU hierarchy of Figure 2(d), and an
administrative user u assigned as TA admin and UA admin to the Man-
agement Unit administrative unit. This user also inherits membership in
the Cloud Unit and Mobile Unit administrative units. User u is thereby
authorized, for example, to assign task t2 to role CPL and users from



user-pool CTP to role CPL. However, u cannot make assignments across
the junior administrative units, such as task t2 to role MPL and users
from user-pool MTP to role CPL. We denote this form of inheritance in
the AU hierarchy as membership inheritance.

With the alternate aggressive inheritance we allow cross assignments
across junior administrative units by a senior administrator. There is
clearly a major policy difference between the two forms of inheritance.
The senior au effectively serves as a single consolidated au with freedom
to assign any task to any role, and users from any user-pool to any role.
With aggressive inheritance the user u discussed above will be able to
assign t2 to role MPL and users from user-pool MTP to role CPL. Per-
haps more dangerously, user u will be able to assign task t1 to MPL.
The effect of aggressive inheritance is formally stated in the modified
authorization functions of Table 4. Everything else from Table 3 applies
unchanged to Uni-ARBAC with aggressive inheritance. The senior most
au at the root of the AU hierarchy can assign any task to any role and
any user (assuming every user is in at least one user-pool) to any role, so
TAmax = T ×R and UAmax = U ×R. Equation 1 and equation 2 continue
to hold. Other less aggressive variations can also be considered.

4.2 No Self-Administration Model

Consider the administrative actions assign user to role(u1 : U,u2 : U,r :
R) and revoke user f rom role(u1 : U,u2 : U,r : R) of Table 3 item VI. In
general, u1 can equal u2, so it is permissible for u1 to assign and revoke
himself to and from roles. In some contexts, this may be considered as a
conflict of interest. To avoid this, an additional check that u1 6= u2 can be
added to the can manage user role authorization function of Table 3.

5 Engineering Administrative Units

There can be different meaningful AU hierarchies for a given set of roles.
For example, for the roles in Figure 2(a), two different instances of AUs
are given in Figure 2(d) and Figure 7, based on different partitioning of
the roles. Crampton and Loizou partition roles in defining ‘administra-
tive scopes’ in [5] to confine the side effects of role hierarchy modifica-
tion in a highly disciplined manner. The AU structure in Figure 2(d) is
based on the partitioning of roles defined in administrative scope.

As we have argued, one particular partition is not suitable for all
requirements. UARBAC [10] argues that role partitioning according to



Fig. 7: Alternate AUs for roles, tasks and user-pools as given in Figure 2

administrative scope does not work well for all different types of role hi-
erarchies and there should be flexibility in the administration structure.

We develop the following simple and flexible partitioning heuristics,
which are applicable to many different types of hierarchies and can be
configured to produce different partitions for a given set of roles or tasks.

1. Most senior roles in the role hierarchy contain critical tasks. They
should be administered separately. Similarly, most junior roles con-
tain tasks that most other roles inherit. They should also be admin-
istered separately.

2. For rest of the roles, iteratively select the most senior and most junior
roles until all roles are partitioned.

After partitioning and specifying role set for each AU, we can pop-
ulate tasks in the AUs using given task-role allocation. Scenario based
top-down approach for engineering roles [11] derives tasks in an inter-
mediate process and assign them to roles. Thus, we believe, the process
of engineering roles can be utilized to derive task-role allocation. On the
other hand, the process of engineering user-pools and allocating them in
AUs, assigning administrative users into AUs should also be carried out
to develop working AUs. We do not further elaborate these issues here.

6 Conclusion

In this paper, we present Uni-ARBAC, a unified model for administering
user-role and task-role relations in Role Based Access Control. It com-
bines various novel concepts and administrative principles from prior
works. It integrates user-role and permission-role administration into a
manageable unit, we call Administrative Unit. While most of the previ-
ous models assume existence of administrative roles for managing reg-
ular roles, we relax this assumption and our approach for engineering
administrative units can be used for engineering administrative roles.



Nonetheless, Uni-ARBAC has limitations. It uses several sets and re-
lations of which it administers only task-role and user-role relations.
Further research in this area is needed to realize a complete model.

7 Acknowledgement

This research is partially supported by NSF Grants CNS-1111925 and
CNS-1423481.

References

1. E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access con-
trol model. TISSEC, 4(3):191–233, 2001.

2. E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. GEO-RBAC: a spatially aware
RBAC. In Proc. of 10th SACMAT, pages 29–37. ACM, 2005.

3. P. Bonatti, C. Galdi, and D. Torres. ERBAC: event-driven RBAC. In Proc. of 18th
SACMAT, pages 125–136. ACM, 2013.

4. J. Crampton. Understanding and developing role-based administrative models. In
Proc. of 12th ACM CCS, pages 158–167, 2005.

5. J. Crampton and G. Loizou. Administrative scope: a foundation for role-based ad-
ministrative models. ACM TISSEC, 6(2):201–231, 2003.

6. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
NIST standard for role-based access control. ACM TISSEC, 4(3):224–274, 2001.

7. A. Kern. Advanced features for enterprise-wide role-based access control. In Proc.
of 18th ACSAC, pages 333–342. IEEE, 2002.

8. A. Kern, A. Schaad, and J. Moffett. An administration concept for the enterprise
role-based access control model. In Proc. of 8th ACM SACMAT, pages 3–11, 2003.

9. W. Kuijper and V. Ermolaev. Sorting out role based access control. In Proc. of 19th
ACM SACMAT, pages 63–74, 2014.

10. N. Li and Z. Mao. Administration in role-based access control. In Proc. of 2nd ACM
ASIACCS, pages 127–138, 2007.

11. G. Neumann and M. Strembeck. A scenario-driven role engineering process for
functional RBAC roles. In Proc. of 7th ACM SACMAT, pages 33–42, 2002.

12. S. Oh and S. Park. Task–role-based access control model. Information systems, 2003.
13. S. Oh and R. Sandhu. A model for role administration using organization structure.

In Proc. of 7th ACM SACMAT, pages 155–162, 2002.
14. R. Sandhu. The ASCAA principles for next-generation role-based access control. In

Proc.of 3rd ARES, 2008.
15. R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based

administration of roles. ACM TISSEC, 2(1):105–135, 1999.
16. R. Sandhu and Q. Munawer. The ARBAC99 model for administration of roles. In

Proc. of 15th Annual ACSAC, pages 229–238. IEEE, 1999.
17. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.
18. H. Wang and S. L. Osborn. An administrative model for role graphs. In Data and

Applications Security XVII, pages 302–315. Springer, 2004.
19. L. Zhou, V. Varadharajan, and M. Hitchens. Secure administration of cryptographic

role-based access control for large-scale cloud storage systems. JCSS, 80(8), 2014.


