
Object-to-Object Relationship-Based Access
Control: Model and Multi-Cloud Demonstration

Tahmina Ahmed, Farhan Patwa and Ravi Sandhu

Institute for Cyber Security and Department of Computer Science

University of Texas at San Antonio

San Antonio, Texas, USA

tahmina.csebuet@gmail.com, farhan.patwa@utsa.edu and ravi.sandhu@utsa.edu

Abstract—Relationship Based Access Control (ReBAC) has
been recognized as a distinctive form of access control since the
advent of online social networks (OSNs). In the OSN context,
ReBAC typically expresses authorization policy in terms of
interpersonal relationship between users. OSN-inspired ReBAC
models primarily focus on user-to-user relationships, although
some have also considered user-to-resource and resource-to-
resource relationships. An OSN has very specific type of resources
(photos, comments, notes etc.) which are closely related to users,
so it is natural to consider resource relationships in OSNs as
occurring through users. However user-independent resource-
to-resource (or object-to-object) relationships have been around
for decades in information systems. For instance, object-oriented
systems maintain inheritance, composition and association re-
lationships among objects, version control systems use derived-
from relationships between different versions, and digital content
management systems use fundamental-relationships between dif-
ferent media files. To our knowledge no existing ReBAC model
considers user-independent generic relationships between objects,
as a useful means to express authorization policies. This paper
proposes a novel Object-to-Object ReBAC model (OOReBAC)
which uses object relationships for controlling access to objects.
We build a proof-of-concept implementation of OOReBAC using
the open source OpenStack cloud platform and specifically its
Swift object storage service.

Keywords-access control; authorization; ReBAC; object rela-
tionship; Openstack; Swift

I. INTRODUCTION

Recent growth of on-line social networks (OSNs) such

as Facebook, Twitter and LinkedIn, has introduced a dis-

tinct form of authorization based on relationships between

the accessing user and the content owner, commonly called

relationship-based access control (ReBAC). Traditional access

control models (DAC—discretionary access control, MAC—

mandatory access control, RBAC—role-based access control

and even ABAC—attribute-based access control) utilize user

identity or some kind of user credentials (security label, role,

age, sex, organizational affiliation etc.) to evaluate the access

authorization of the user to resources. ReBAC introduces

the concept of considering relationship path or path pattern

between accessing user and target resources for authorization,

bringing a new dimension to access control authorization.
Most ReBAC models build upon user-to-user relationships

[1], [2], [3], [4], [5], [6], [7], while a few of them also consider

user-to-resource and resource-to-resource relationships [8]. An

OSN has very specific kind of resources such as photos,

comments, notes etc. Tagging a user in a photo establishes

a user-to-resource relation, and commenting on a photo is

an example of a resource-to-resource relationship. For the

special nature of OSNs, relationship between resources is

meaningful primarily in context of users. Thus OSN-inspired

ReBAC models typically focus on user-to-user and user-to-

resource relationships as compared to resource-to-resource

relationships.

Recently access control researchers have expanded the con-

cept of ReBAC for general computing systems beyond the

social environment [9], [10]. These models consider orga-

nizational structure as a relationship graph where nodes are

users, resources or any kind of logical entities such as groups,

projects, organizations etc. Though these models consider

any kind of resources in the relationship graph they include

users as part of the graph, and the authorization policy is

expressed in terms of a path or path pattern including the

accessing user and target resource/user as endpoints. None of

the existing models consider only resource-to-resource rela-

tionship without user, while this kind of relationship is actually

very important in enterprise environments. Object-oriented

systems, version control systems, digital access management,

digital library, recommender systems, and document clustering

already maintain user-independent relationships between ob-

jects. Though there is considerable use of relationship between

objects (equivalently resources) in enterprise environments, to

our knowledge there is no formal ReBAC model so far which

considers object-to-object relationships independent of users.

This paper propose a novel object-to-object relationship

based access control model called OOReBAC, as the first

model to explicitly consider user-independent object-to-objects

relationship as the basis for authorization. As a proof of

concept implementation we demonstrate our theoretical model

in the open source cloud IaaS platform OpenStack [11] and

specifically in its object storage Swift service [12].

The rest of the paper is organized as follows. Section II

provides motivation of using object relationship for autho-

rization. Section III provides detail characteristics of our

proposed model, Section IV gives the formal definition of

OOReBAC model. Section V provides an example application

of OOReBAC policy configuration. Section VI provides the

implementation detail of the defined model for OpenStack

object storage Swift. Section VII presents related work which

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.47

297

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.47

297

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.47

297

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.47

297

Fig. 1. Object Relationships in Object-Oriented Systems (Inheritance,
Composition and Association).

considers using relationship in authorization. Section VIII

concludes the paper.

II. MOTIVATION

Object-to-object relationships have been considered in in-

formation systems for decades. Object-oriented systems are

built upon the concept of object relationships. Inheritance

maintains an “is-a” relationship where one object (superclass)

allows its properties to pass to the other object (subclass)

[13]. Composition maintains an “is-part-of” relationship be-

tween two objects when life cycle of two objects are de-

pendent on one another [14]. Association maintains a “is-

linked-to” relationship between two objects when the objects

are independent of each other during their life cycle while

somehow associated with each other [15], [16]. Figure 1

shows object relationships use in object-oriented systems. Here

car is-a vehicle (inheritance), an engine is-part-of a vehicle

(composition) and a car is-linked-to a road (association).

Digital library uses categorical relationships between items.

Digital asset management maintains fundamental relationship

between different media file variations [17]. Relationships

between different versions and contents are a core feature in

content management systems. Version control system main-

tains “derived from” relationship with different versions of an

object [18]. Figure 2 shows the directed acyclic graph that

maintains the history of a Git (a version control system) project

where each node is a commit/version/revision of the project.

Co-citation [19] maintains a coupling relationship between

two documents depending upon the frequency with which

the documents are cited together. Document clustering uses

correlation between documents [20]. Object relationships are

also used in organizing and accessing large volumes of data. In

May 2016 Panama paper leaks, the International Consortium

of Investigative Journalists got 2.6 TB of data and 11.5 million

files from the Mossac Fonseca company [21]. They have used

neo4j graph database [22] to make the object-relational graph

so as to organize and publish the data.

In the rest of this section we motivate the importance of

building an access control model based on object relationships

via some sample use cases.

Use Case 1: An enterprise content management system has

contents such as images, web contents, electronic documents,

videos or other media. A typical use of such a system is

Fig. 2. History of a Git (a Version Control System) Project is a DAG
[23].

document collaboration where a single document is accessed

by several users and that document needs to have its own

version control. Maintaining relationship between different

versions and managing access for multiple users requires

object-to-object relationship between versions, through which

users can access the exact version of interest.

Use Case 2: Consider a patient’s health records in different

specialities where a person went to his primary care physician

with certain symptoms such as chest pain, the primary care

physician created a record of his symptoms and medications he

was taking at that time and referred him to a gastroenterologist,

the gastroenterologist created a record of his symptoms and

investigations and depend upon the results referred him to a

cardiologist, the cardiologist then referred him to an endocri-

nologist who also referred him to an ophthalmologist and a

nephrologist. In every stage of his treatment a new document

is created considering the the speciality the doctor is treating

him and a relationship between every document has been

established. In every stage of his treatment a new document is

created considering the the speciality the doctor is treating

him and a relationship between every document has been

established. The doctor who creates a particular document has

a direct access to that document. Every time a specific doctor

tries to give him a treatment he needs to look at his medical

history and current treatments by other specialists using the

relationship between the records. Figure 3 shows the treatment

scenario of the patient. If the nephrologist needs to see the

records of the gastroenterologist for that patient, he can use

298298298298

Fig. 3. Object Relationship in Medical Record.

the relationship between records to do so.

Use Case 3: Resource relationship is also important for ac-

cessing different versions of a particular software. For example

consider the scenario where different versions of a software

maintain a relationship and the company who developed the

software declares that user who purchased a registered version

of that software can access all the earlier versions without any

registration. Here to access different versions of that particular

software a user needs to use the relationship between them.

III. OBJECT-TO-OBJECT RELATIONSHIP-BASED ACCESS

CONTROL MODEL CHARACTERISTICS

In this section we discuss the general characteristics of an

object-to-object relationship model for access control. To our

knowledge this is a first step towards this direction. Hence

we will keep our model simple, raising the question as to

what are the minimum requirements to realize such a model.

A typical access request in any access control model arises

when a user (or subject) tries to perform an action on a

resource or object. So a set of users, a set of objects and a set

of actions are mandatory components for any access control

model. Our main focus is on expressing authorization policy

considering object relationships, so the model obviously needs

a set of possible (binary) relationship types and a data structure

(preferably a relationship graph) to store relationships between

objects. To keep the model definition simple we will consider

only one type of symmetric relationship.

We need a special direct access from a user to object which

can be maintained by a system function or access control

list (ACL), starting from where additional related objects can

be accessed. We propose to limit, in an object specific and

Fig. 4. Object-to-Object Relationship Based Access Control.

Fig. 5. Policy Level Example.

action specific manner, the number of relationship links (or

hopcount) that can be traversed to access a related object from

a given starting point. For example if the system specifies the

relationship level of a particular object is 0 for write and 1

for read that means the object is not allowed to be accessed

through relationship chain for write, however it allows 1

level relationship chain for read. A system function would

specify the relationship level consideration for authorization

of a particular object for a particular action.

Figure 4 shows how the model relationship and access

would work. The system has two users u1 and u2, and 3

objects o1, o2, o3. The relationships are {{o1,o2}, {o2, o3}}.

The system function ACL would take an object as input and

returns a list of users. Here ACL(o1) = {u1}, ACL(o2) =

{} and ACL(o3) = {u2}. When user u1 tries to access o1

he can directly do that without using relationships. When

u1 tries to access o2 or o3 the access control system needs

to consider relationship between {o1, o2} and {{o1, o2},

{o2,o3}} respectively.

Figure 5 shows the policy level specification of objects. Here

ACL(o1) = {u1}, ACL(o2) = {}, ACL(o3) = {}, ACL(o4) =

{}. There are two actions in the system, a1 and a2. We have

the following values of policy level as listed in Figure 5.

policyLevel(a1,o1) = 2, policyLevel(a2,o1) = 0

policyLevel(a1,o2) = 1, policyLevel(a2,o2) = 0

policyLevel(a1,o3) = 3, policyLevel(a2,o3) = 2

299299299299

Fig. 6. OOReBAC Model.

policyLevel(a1,o4) = 2, policyLevel(a2,o4) = 0

When u1 tries to do an action a1 or a2 on o1 the access

request would be granted as u1 is in ACL of o1. When u1 tries

to do action a1 on o2 the access would be granted because

though u1 is not in o2’s ACL, however o2 allows upto 1

level of relationship chaining for action a1 authorization and it

maintains a 1 level relationship with o1 and u1 is in o1’s ACL.

When u1 tries to do a2 on o2 the authorization would denied

as u1 is not in o2’s ACL and o2 allows 0 level relationship

chaining for action a2. When u1 tries to do a1 or a2 on o3

both of the actions would be granted. On the other hand when

u1 tries to do a1 or a2 on o4 both the actions will be denied.

IV. OOREBAC: MODEL DEFINITION

In this section we define a model OOReBAC which con-

siders object to object relationships in authorization policy.

The model components are as follows: U is a set of users. A

user is a human being who performs action on objects. O is

a set of objects. Objects are resources in the system which

need to be protected. R is a set of symmetric relationships
between objects. G = 〈 O, R 〉 is the relationship graph where

objects are nodes and relationship between objects are edges.

There is a system function ACL which takes an object as

input and returns a set of users as output. There is another

system function policyLevel which takes an object and an

action as input and returns a natural number indicating the

relationship level that object would allow for authorization

of that particular action. A is a set of actions. Each action

a ∈ A has a single authorization policy Authza(u:U, o:O)
which takes u and o as inputs and returns true or false.

Here u and o are formal parameters. The authorization policy

is a boolean function which considers object relationships,

ACL and policyLevel. If Authza (u,o) returns true then u is

authorized to do action a on object o. On the other hand if

Authza(u,o) returns false then u is not authorized to do action

a on o.

Fig. 7. An Example of OOReBAC State I1.

Figure 6 shows the model components. Table I shows

the formal representation of the model definition and the

language for authorization policy. OOReBAC is an operational

model. Create/delete users or objects, add/update relationships

between objects, configure/update ACL or policy levels are

administrative operations and out of scope of OOReBAC

model. These would be specified in an administrative model.

An instantiation of authorization policy for OOReBAC is

given below.

• A = {read, write}
• Authzread(u:U,o:O) ≡ u ∈ PpolicyLevel(read,o)

• Authzwrite(u:U,o:O) ≡ u ∈ PpolicyLevel(write,o)

An example configuration of OOReBAC and an instantia-

tion of OOReBAC policy is given below.

• U = {u1, u2, u3}
• O = { o1, o2, o3, o4}
• R = {{o1, o2}, {o2, o3}, {o3, o4}}
• ACL(o1) = {u1}

ACL(o2) = {u3}
ACL(o3) = {u2}
ACL(o4) = {u3}

• policyLevel(read, o1) = 2

policyLevel(write, o1) = 0

policyLevel(read, o2)= 2

policyLevel(write,o2) = 1

policyLevel(read,o3) = 0

policyLevel(write,o3) = 0

policyLevel(read,o4) = 2

policyLevel(write,o4) = 1

Figure 7 shows an example state I1 of this system. The

following are some actions that different users try in state I1
and their outcome.

• read(u1,o3), write(u1,o3) are denied

• read(u2, o1) is allowed, write(u2, o1) is denied

• read(u1,o4, write(u1,o4) are denied

V. OOREBAC:APPLICATIONS

Application of OOReBAC model is restricted to the systems

where single type symmetric relationship is used. For example

document co-citation, document clustering, medical record

system etc. Consider our previous use case 3 defined in

Section II shown in Figure 3. Let’s the policy specifies that

every specialist would be able to write only on a document

300300300300

TABLE I
OOReBAC Model

• U is a set of users
• O is a set of objects
• R ⊆ {z | z ⊂ O ∧ | z | = 2}
• G=〈O,R〉 is an undirected relationship graph with vertices O and

edges R
• A is a set of actions
• Pi(o1) = { o2 | there exists a simple path of length p in graph G

from o1 to o2}
• policyLevel: O × A → N

• ACL: O → 2U which returns the Access control List of a
particular object.

• There is a single policy configuration point. Authorization Policy.
for each action a ∈ A, Authza(u:U,o:O) is a boolean function
which returns true or false and u and o are formal parameters.

• Authorization Policy Language:
Each action “a” has a single authorization policy
Authza(u:U,o:O) specified using the following language.
φ := u ∈ PATHi

PATHi := ACL(P0(o)) ∪ . . . ∪ ACL(Pi(o)) where i = min(| O |
- 1, policyLevel(a,o))
where for any set X, ACL(X) =

⋃
x∈X ACL(x)

for which he/she is assigned in the ACL of that document.

Reading any document is allowed through the relationship

for a particular patient. To specify this policy in respect of

our OOReBAC model we need to first capture the OOReBAC

instantiation of the scenario as follows:

• U = { upp, ugs, ucd, uop, ued, unp }
• O = { mrpp, mrgs, mrcd, mrop, mred, mrnp }
• R = {{mrpp, mrgs}, {mrgs, mrcd}, {mrcd, mred}, {mrop,

mred},{mrnp, mred}}}
• ACL(mrpp) = {upp},

ACL(mrgs) = {ugs},

ACL(mrcd) = {ucd},

ACL(mrop) = {uop},

ACL(mred) = {ued},

ACL(mrnp) = {unp}
• Action ={read, write}
• policyLevel(read,mrpp)=∞, policyLevel(write,mrpp)=0,

policyLevel(read,mrgs)=∞, policyLevel(write,mrgs)=0,

policyLevel(read,mrcd)=∞, policyLevel(write,mrcd)=0,

policyLevel(read,mrop)=∞, policyLevel(write,mrop)=0,

policyLevel(read,mred)=∞, policyLevel(write,mred)=0,

policyLevel(read,mrnp)=∞, policyLevel(write,mrnp)=0

• Authorization policy:

Authzread(u,o) ≡ u ∈ PpolicyLevel(read,o)

Authzwrite(u,o) ≡ u ∈ PpolicyLevel(write,o)

Some sample operations and their outcomes are given

below.

1) read(unp, mrpp) : authorized

2) read(ucd, mrnp) : authorized

3) write(unp, mrnp) : authorized

4) write(unp, mrpp) : denied

5) write(unp, mrpp) : denied

VI. IMPLEMENTATION

Using object-to-object relationship brings in a new dimen-

sion when we consider relationship between objects from

cross-origin environment. Organizations often use multicloud

environment for independent and parallel work, including

reducing reliance on any single vendor, increasing flexibility

through choice, and mitigating against disasters, etc. This is

similar to the use of best-of-breed applications from multiple

developers on a personal computer, rather than the defaults

offered by the operating system vendor. Using multiple infras-

tructure providers for different workloads, deploying a single

workload load balanced across multiple providers (active-

active), or deploying a single workload on one provider,

with a backup on another (active-passive) [24], are common

multicloud applications. Sharing resources between multiple

clouds IaaS is very important in today’s multicloud world.

Using object-to-object relationship can be one way to share

our objects between different clouds.

For this implementation we use homogeneous multicloud

and the platform is open source cloud IaaS OpenStack [11]

for both clouds. In OpenStack we have used OpenStack object

storage Swift. In this section we provide a brief description of

the implementation of OOReBAC. We first review OpenStack

object storage Swift and its original authorization module.

A. Swift Storage Structure

Swift is a highly available, distributed, eventually consistent

object/blob store. Organizations can use Swift to store lots

of data efficiently, safely, and cheaply [12]. Swift users use

RESTful API [25] to upload or download objects to and from

Swift object storage. Inside Swift, a project is assigned as an

account. The account holds containers. Containers are similar

to directories, however containers cannot be nested. A user

associated with a Swift account can have multiple containers.

To manage accounts, containers and objects Swift uses account

servers, container servers and object servers accordingly.

1) Swift Authorization for Object Access and its limitations:
In OpenStack object storage Swift authorization (request to

an object access) is currently done by Access Control List

(ACL). Swift has two levels of ACL: Account Level ACL and

container level ACL [26]. Container Level ACL is associated

with containers in terms of read (download any object of that

container) or write (upload an object in the container) or list

[27]. Account ACLs allow users to grant account level access

to other users. The limitations of Swift authorizations are:

• It cannot express object level ACL. To specify object

level ACL every object needs to be stored in a separate

container.

• It cannot give user access to a particular object if the user

is not a member of the account/project.

• It doesn’t support multicloud resource sharing.

Our proposed model for Swift authorization can be named

as relationship based resource sharing for OpenStack object

storage Swift. It enables the following features.

• Object specific ACL.

301301301301

Fig. 8. MultiCloud Implementation of OOReBAC Model.

Algorithm 1 authorize(u,f,G)

if u in ACL(f) then
return true

else
policyLevel = policyLevel(f)

for depth limited search upto min(policyLevel, |O| - 1)

do
if if any of the file’s ACL contains u then

return true

end if
end for
return false

end if

• Allow users to access objects through relationship along

with ACL.

• Allow users outside projects/accounts to access an object

through relationship.

• Overall this proposed model would be able to work in

multicloud environment.

To enable these features we are proposing an authorization

service for Swift access control.

B. Proposed Authorization Service for Swift

An authorization service for Swift would take care of the

authorization of objects. We would store all the container level

ACL and relationship between files in authorization service.

The collaboration between different clouds are done through

federation. Once federation is established every file can be

accessed by two types of user, local user and federated user.

Swift operations are of two types: Administrative Operations
and User Operations. Creating ACL entry for a particular

object, updating ACL, creating relationship between objects,

updating relationship, configuring policy levels and updating

policy levels are Administrative Operations.

The proposed OOReBAC theoretical model is defined for

operational authorization and does not include an administra-

tive model. Therefore, for our implementation we have defined

a simple administrative model for Swift authorization service.

This administrative model allows an admin user from any of

the collaborating clouds to configure and update relationships,

ACLs and policy levels. To configure and update relationship

admin user and at least one file for which relationship is

being configured should be from same cloud. To configure and

update ACL and policyLevel admin user and the corresponding

file should be from same cloud. Admin user can directly

issue a RESTAPI command from Swift to the authorization

service database to create relationships, update relationships,

create an ACL, update an ACL, create policy level and update

policy level. In Swift User Operations are uploading a file

and downloading a file. Only the creator of the container can

upload a file. In our implementation the upload operation is

kept as it is. The authorization of downloading a file is done

through authorization service.

Figure 8 shows the implementation detail of the model. In

this figure we are considering two clouds c1 and c2. First we

need to establish federation between these two clouds. The

authorization service would contain all the ACL information

of every files, relationship information and policy level infor-

mation. To configure our OOReBAC model for this implemen-

tation platform users should contain cloud and current account

information along with their name as user identification. Files

or objects also need to contain filename along with cloud

name, account name and container name. Each user is identi-

fied as username@cloudname:accountname, each file is iden-

tified as filename@cloudname:accountname:containername.

When a download request comes from a user for a local file,

the user’s request triggers a RESTAPI call to the authorization

service. The authorization service looks up the ACL table to

determine if this user has direct access to the file. If so it

returns true, else it goes to the policyLevel table to find out

how many levels of relationship the file allows. Then it looks

up to the policy level depth in relationship table whether any of

the file up to that depth has an ACL authorizing the accessing

user. If it finds any it returns true, otherwise it returns false.

Algorithm 1 shows the pseudocode of the algorithm in the

authorization service to evaluate access authorization. Here we

have used depth limited search upto a fix depth considering

the policy level of a particular object for a particular action.

Depth limited search searches upto a fix limited depth for all

possible paths. Depth first search is a special case of depth

limited search where limit is ∞. The overall time complexity

of the algorithm is O(| O | |O|), although with small policy

limits the performance will be considerably better.

Table II specifies the administrative commands and oper-

302302302302

TABLE II
Functional specification.

Functions Conditions Updates
Administrative Actions

CreateRelationship admin ∈ role(u) ∧ RelationshipSet(filename1) ∪= {filename2}
(u,filename1,filename2) cloud(filename1) = cloud(u) RelationshipSet(filename2) ∪= {filename1}

∧ filename1
∈ RelationshipSet(filename2)
∧ filename2
∈ RelationshipSet(filename1)

DeleteRelationship admin ∈ role(u) ∧ RelationshipSet(filename1) \= {filename2}
(u,filename1,filename2) cloud(filename1) = cloud(u) RelationshipSet(filename2) \= {filename1}

filename1 ∈ RelationshipSet(filename2)
∧ filename2 ∈ RelationshipSet(filename1)

IncludeAUserinACL Role(u) ∈ Admin∧ ACLSet(filename1) ∪= {username1}
(u,filename1,username1) cloud(filename1) = cloud(u)∧

username1
∈ ACLSet(filename1)
ExcludeAUserFromACL Role(u) ∈ Admin∧ ACLSet(filename1) \= {username1}
(u,filename1,username1) cloud(filename1) = cloud(u)∧

username1 ∈ ACLSet(filename2)
ConfigurePolicyLevel Role(u)∈ Admin ∧ PolicyLevel(filename)= num
(u,filename,num) cloud(filename1) = cloud(u)

num ≤ | O |
Operational Command

download u∈ U allow user u to download file filename1
(u,filename1) ∧ authorize(u,filename1,G)

TABLE III
Relationship.

SourceFileName TargetFileList
f1@cloud1:account1:container1 {f2@cloud1:account1:container1,

f3@cloud2:account1:container1}
.

TABLE IV
ACL.

Filename UserList
f1@cloud1:account1:container1 {u1@cloud1:account1,

u2@cloud1:account1}
.

ational commands of the implemented model for the autho-

rization service. Administrative function CreateRelationship
creates relationship between two files by cloud admin. It

takes a user and two filename as input. It checks whether the

cloud admin and the first file are from same cloud and that

no relationship exists between the two files. Administrative

function DeleteRelationship deletes an existing relationship

between two files, IncludeAUserinACL includes a user in the

ACL list of a file by the cloud admin. ExludeAUserinACL
excludes a user in the ACL list of a file by the cloud admin,

and ConfigurePolicyLevel configures the policy level of a file

by the cloud admin.The only user operation is download. It

takes a user and a file as input, and checks whether the user

is an existing user and using the authorize algorithm from

authorization service it returns true or false.

Tables III, IV, and V shows the structure of the Relationship,

ACL and policyLevel table in the authorization service. In

Relationship table the graph is stored as adjacency list format.

In ACL table ACL information are stored as file specific

userlist and in Policy Level table file specific policylevel is

stored.

TABLE V
Policy Level

FileName Policy Level
f3@cloud1:account2:container3 (download,2)
.

VII. RELATED WORK

Access Control based on user relationships emerged initially

for online social networking (OSN). This is commonly referred

to as relationship-based access control (ReBAC) [28]. A

number of ReBAC models have been proposed in literature

specially for OSN, most containing user-to-user relationship

only [1], [2], [3], [4], [5], [6], [7]. Some models also include

user-to-resource and resource-to-resource relationships [8],

[9]. Recently, there has been consideration of applicability

of ReBAC beyond the OSN context [9], [10]. Some models

consider attributes of users and relationships [6]. A number

of administrative models also have been proposed for ReBAC

[10], [29].

Most of the above mentioned models are for online so-

cial network and the main feature of online social network

is interpersonal relationship. So the core concerns of these

models are based on user-to-user relationship. Though some

of them addressed user-to-resource or resource-to-resource

relationship, these are also considered in context of users. The

main reason behind this consideration is OSN has very specific

type of resources such as photos, comments, notes etc. which

are closely related to users rather than resource-to-resource

independently. Though some models [9] expanded the concept

of ReBAC for general computing system they still need users

in the relationship graph.

On the other hand, object relation without involvement

of user is already a well accepted concept. There are some

previous work that use special kind of object relationships

303303303303

for authorization. Object-oriented systems maintains specific

form of relationships among objects (inheritance, composition,

association etc.). Some access control model defined for

object-oriented system use this type of specific relationship

to access object [14].

VIII. CONCLUSION

This paper presents an object to object relationship based ac-

cess control model (OOReBAC), giving a different perspective

on ReBAC from the traditional one. In today’s interconnected

world object relationship becomes a very important feature for

enterprise systems. Using this relationship to specify autho-

rization policy would allow an access control model to specify

finer-grained access control. We also have demonstrated a

proof-of-concept implementation of the proposed model for

open source cloud IaaS OpenStack platform. We have used

OpenStack object storage Swift to specify and use object-to-

object relationship in multicloud environment. The application

of this simple model is restricted to systems where single

symmetric relationship between objects is used. Though we are

motivated by object-to-object relationship in object-oriented

systems and version control systems, our proposed model is

more influenced by ReBAC in social context. It only considers

one type of symmetric relationship whereas object-oriented

systems contain different types of asymmetric relationship

(inheritance, composition, and association). Version control

system considers one type of relationship “derived from”

however the graph is a directed acyclic graph (DAG) and the

relationship is asymmetric. As it is our first attempt towards

this direction, we have kept the model definition simple to

fundamentally understand the actual impact of considering

object relationships in authorization policy. The proposed

OOReBAC model is unable to configure object-oriented sys-

tems or version control systems. It would be interesting future

work to develop a model evolved from OOReBAC, which

can instantiate access control for an already existing object

relationship application such as object-oriented systems and

version control systems.

ACKNOWLEDGMENT

This research is partially supported by NSF Grants CNS-

1111925 and CNS-1423481.

REFERENCES

[1] G. Bruns, P. W. Fong, I. Siahaan, and M. Huth, “Relationship-based
access control: its expression and enforcement through hybrid logic,” in
CODASPY, 2012, pp. 117–124.

[2] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access control in
web-based social networks,” ACM Transactions on Information and
System Security (TISSEC), vol. 13, no. 1, p. 6, 2009.

[3] P. W. Fong, M. Anwar, and Z. Zhao, “A privacy preservation model for
facebook-style social network systems,” in Computer Security–ESORICS
2009. Springer, 2009, pp. 303–320.

[4] P. W. Fong, “Relationship-based access control: protection model and
policy language,” in Proceedings of the first ACM conference on Data
and application security and privacy. ACM, 2011, pp. 191–202.

[5] Y. Cheng, J. Park, and R. Sandhu, “A user-to-user relationship-based ac-
cess control model for online social networks,” in Data and applications
security and privacy XXVI. Springer, 2012, pp. 8–24.

[6] ——, “Attribute-aware relationship-based access control for online so-
cial networks,” in IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 2014, pp. 292–306.

[7] P. W. Fong and I. Siahaan, “Relationship-based access control policies
and their policy languages,” in Proceedings of the 16th ACM symposium
on Access control models and technologies. ACM, 2011, pp. 51–60.

[8] Y. Cheng, J. Park, and R. Sandhu, “Relationship-based access control for
online social networks: Beyond user-to-user relationships,” in PASSAT,
2SocialCom. IEEE, 2012, pp. 646–655.

[9] J. Crampton and J. Sellwood, “Path conditions and principal matching:
a new approach to access control,” in Proceedings of the 19th ACM
symposium on Access control models and technologies. ACM, 2014,
pp. 187–198.

[10] S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sellwood, “Relationship-
based access control for an open-source medical records system,” in
Proceedings of the 20th ACM Symposium on Access Control Models
and Technologies. ACM, 2015, pp. 113–124.

[11] “http://www.openstack.org/software/icehouse.”
[12] “Swift docs,” ”http://docs.openstack.org/developer/swift/”, [Online; ac-

cessed 8-June-2016].
[13] M. P. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier,

and S. B. Zdonik, “The object-oriented database system manifesto.” in
DOOD, vol. 89, 1989, pp. 40–57.

[14] W. Kim, E. Bertino, and J. F. Garza, “Composite objects revisited,”
in Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’89. New York, NY, USA:
ACM, 1989, pp. 337–347. [Online]. Available: http://doi.acm.org/10.
1145/67544.66958

[15] J. Brunet, “Modeling the World with Semantic Objects,” in IFIP -
WG 8.1 Conf. on ”The Object Oriented Approach in Information
Systems”, Québec, Canada, Oct. 1991, p. 1. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00708949

[16] E. Andonoff, G. Hubert, A. Le Parc, and G. Zurfluh, “Modelling
inheritance, composition and relationship links between objects, object
versions and class versions,” in Advanced Information Systems Engi-
neering. Springer, 1995, pp. 96–111.

[17] “Digital asset management,” ”http://www.adobepress.com/articles/
article.asp?p=2129363”, [Online; accessed 14-June-2016].

[18] “Version control,” ”https://en.wikipedia.org/wiki/Version control”, [On-
line; accessed 14-June-2016].

[19] H. Small, “Co-citation in the scientific literature: A new measure of the
relationship between two documents,” Journal of the American Society
for information Science, vol. 24, no. 4, pp. 265–269, 1973.

[20] Z. Su, Q. Yang, H. Zhang, X. Xu, and Y. Hu, “Correlation-based docu-
ment clustering using web logs,” in System Sciences, 2001. Proceedings
of the 34th Annual Hawaii International Conference on. IEEE, 2001,
pp. 7–pp.

[21] “Panama paper leaks,” ”http://info.neo4j.com/
05262016---ICIJ-and-Panama-Papers-OnDemand LP-Video.html?
aliId=38013278”, [Online; accessed 8-June-2016].

[22] “http://www.neo4j.org/.”
[23] “Version control,” ”http://web.mit.edu/6.005/www/sp16/classes/

05-version-control/”, [Online; accessed 20-June-2016].
[24] “Multi-cloud,” ”https://en.wikipedia.org/wiki/Multicloud”, [Online; ac-

cessed 8-June-2016].
[25] “Swift api,” ”http://docs.openstack.org/developer/swift/api/object api

v1 overview.html”, [Online; accessed 8-June-2016].
[26] “Swift authorization,” ”http://docs.openstack.org/developer/swift/

overview auth.html”, [Online; accessed 8-June-2016].
[27] P. Biswas, F. Patwa, and R. Sandhu, “Content level access control for

openstack swift storage,” in Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy, ser. CODASPY ’15.
New York, NY, USA: ACM, 2015, pp. 123–126. [Online]. Available:
http://doi.acm.org/10.1145/2699026.2699124

[28] C. Gates, “Access control requirements for web 2.0 security and privacy,”
IEEE Web, vol. 2, no. 0, 2007.

[29] S. D. Stoller, “An administrative model for relationship-based access
control,” in Data and Applications Security and Privacy XXIX. Springer,
2015, pp. 53–68.

304304304304

