
Object-to-Object Relationship-Based Access
Control: Model and Multi-Cloud Demonstration

Tahmina Ahmed, Farhan Patwa and Ravi Sandhu
Institute for Cyber Security and Department of Computer Science

University of Texas at San Antonio
San Antonio, Texas, USA

tahmina.csebuet@gmail.com, farhan.patwa@utsa.edu and ravi.sandhu@utsa.edu

Abstract—Relationship Based Access Control (ReBAC) has
been recognized as a distinctive form of access control since the
advent of online social networks (OSNs). In the OSN context,
ReBAC typically expresses authorization policy in terms of
interpersonal relationship between users. OSN-inspired ReBAC
models primarily focus on user-to-user relationships, although
some have also considered user-to-resource and resource-to-
resource relationships. An OSN has very specific type of resources
(photos, comments, notes etc.) which are closely related to users,
so it is natural to consider resource relationships in OSNs as
occurring through users. However user-independent resource-
to-resource (or object-to-object) relationships have been around
for decades in information systems. For instance, object-oriented
systems maintain inheritance, composition and association re-
lationships among objects, version control systems use derived-
from relationships between different versions, and digital content
management systems use fundamental-relationships between dif-
ferent media files. To our knowledge no existing ReBAC model
considers user-independent generic relationships between objects,
as a useful means to express authorization policies. This paper
proposes a novel Object-to-Object ReBAC model (OOReBAC)
which uses object relationships for controlling access to objects.
We build a proof-of-concept implementation of OOReBAC using
the open source OpenStack cloud platform and specifically its
Swift object storage service.

Keywords-access control; authorization; ReBAC; object rela-
tionship; Openstack; Swift

I. INTRODUCTION

Recent growth of on-line social networks (OSNs) such
as Facebook, Twitter and LinkedIn, has introduced a dis-
tinct form of authorization based on relationships between
the accessing user and the content owner, commonly called
relationship-based access control (ReBAC). Traditional access
control models (DAC—discretionary access control, MAC—
mandatory access control, RBAC—role-based access control
and even ABAC—attribute-based access control) utilize user
identity or some kind of user credentials (security label, role,
age, sex, organizational affiliation etc.) to evaluate the access
authorization of the user to resources. ReBAC introduces
the concept of considering relationship path or path pattern
between accessing user and target resources for authorization,
bringing a new dimension to access control authorization.

Most ReBAC models build upon user-to-user relationships
[1], [2], [3], [4], [5], [6], [7], while a few of them also consider
user-to-resource and resource-to-resource relationships [8]. An
OSN has very specific kind of resources such as photos,

comments, notes etc. Tagging a user in a photo establishes
a user-to-resource relation, and commenting on a photo is
an example of a resource-to-resource relationship. For the
special nature of OSNs, relationship between resources is
meaningful primarily in context of users. Thus OSN-inspired
ReBAC models typically focus on user-to-user and user-to-
resource relationships as compared to resource-to-resource
relationships.

Recently access control researchers have expanded the con-
cept of ReBAC for general computing systems beyond the
social environment [9], [10]. These models consider orga-
nizational structure as a relationship graph where nodes are
users, resources or any kind of logical entities such as groups,
projects, organizations etc. Though these models consider
any kind of resources in the relationship graph they include
users as part of the graph, and the authorization policy is
expressed in terms of a path or path pattern including the
accessing user and target resource/user as endpoints. None of
the existing models consider only resource-to-resource rela-
tionship without user, while this kind of relationship is actually
very important in enterprise environments. Object-oriented
systems, version control systems, digital access management,
digital library, recommender systems, and document clustering
already maintain user-independent relationships between ob-
jects. Though there is considerable use of relationship between
objects (equivalently resources) in enterprise environments, to
our knowledge there is no formal ReBAC model so far which
considers object-to-object relationships independent of users.

This paper propose a novel object-to-object relationship
based access control model called OOReBAC, as the first
model to explicitly consider user-independent object-to-objects
relationship as the basis for authorization. As a proof of
concept implementation we demonstrate our theoretical model
in the open source cloud IaaS platform OpenStack [11] and
specifically in its object storage Swift service [12].

The rest of the paper is organized as follows. Section II
provides motivation of using object relationship for autho-
rization. Section III provides detail characteristics of our
proposed model, Section IV gives the formal definition of
OOReBAC model. Section V provides an example application
of OOReBAC policy configuration. Section VI provides the
implementation detail of the defined model for OpenStack
object storage Swift. Section VII presents related work which

Fig. 1. Object Relationships in Object-Oriented Systems (Inheritance,
Composition and Association).

considers using relationship in authorization. Section VIII
concludes the paper.

II. MOTIVATION

Object-to-object relationships have been considered in in-
formation systems for decades. Object-oriented systems are
built upon the concept of object relationships. Inheritance
maintains an “is-a” relationship where one object (superclass)
allows its properties to pass to the other object (subclass)
[13]. Composition maintains an “is-part-of” relationship be-
tween two objects when life cycle of two objects are de-
pendent on one another [14]. Association maintains a “is-
linked-to” relationship between two objects when the objects
are independent of each other during their life cycle while
somehow associated with each other [15], [16]. Figure 1
shows object relationships use in object-oriented systems. Here
car is-a vehicle (inheritance), an engine is-part-of a vehicle
(composition) and a car is-linked-to a road (association).
Digital library uses categorical relationships between items.
Digital asset management maintains fundamental relationship
between different media file variations [17]. Relationships
between different versions and contents are a core feature in
content management systems. Version control system main-
tains “derived from” relationship with different versions of an
object [18]. Figure 2 shows the directed acyclic graph that
maintains the history of a Git (a version control system) project
where each node is a commit/version/revision of the project.
Co-citation [19] maintains a coupling relationship between
two documents depending upon the frequency with which
the documents are cited together. Document clustering uses
correlation between documents [20]. Object relationships are
also used in organizing and accessing large volumes of data. In
May 2016 Panama paper leaks, the International Consortium
of Investigative Journalists got 2.6 TB of data and 11.5 million
files from the Mossac Fonseca company [21]. They have used
neo4j graph database [22] to make the object-relational graph
so as to organize and publish the data.

In the rest of this section we motivate the importance of
building an access control model based on object relationships
via some sample use cases.

Use Case 1: An enterprise content management system has
contents such as images, web contents, electronic documents,
videos or other media. A typical use of such a system is

Fig. 2. History of a Git (a Version Control System) Project is a DAG
[23].

document collaboration where a single document is accessed
by several users and that document needs to have its own
version control. Maintaining relationship between different
versions and managing access for multiple users requires
object-to-object relationship between versions, through which
users can access the exact version of interest.

Use Case 2: Consider a patient’s health records in different
specialities where a person went to his primary care physician
with certain symptoms such as chest pain, the primary care
physician created a record of his symptoms and medications he
was taking at that time and referred him to a gastroenterologist,
the gastroenterologist created a record of his symptoms and
investigations and depend upon the results referred him to a
cardiologist, the cardiologist then referred him to an endocri-
nologist who also referred him to an ophthalmologist and a
nephrologist. In every stage of his treatment a new document
is created considering the the speciality the doctor is treating
him and a relationship between every document has been
established. In every stage of his treatment a new document is
created considering the the speciality the doctor is treating
him and a relationship between every document has been
established. The doctor who creates a particular document has
a direct access to that document. Every time a specific doctor
tries to give him a treatment he needs to look at his medical
history and current treatments by other specialists using the
relationship between the records. Figure 3 shows the treatment
scenario of the patient. If the nephrologist needs to see the
records of the gastroenterologist for that patient, he can use

Fig. 3. Object Relationship in Medical Record.

the relationship between records to do so.
Use Case 3: Resource relationship is also important for ac-

cessing different versions of a particular software. For example
consider the scenario where different versions of a software
maintain a relationship and the company who developed the
software declares that user who purchased a registered version
of that software can access all the earlier versions without any
registration. Here to access different versions of that particular
software a user needs to use the relationship between them.

III. OBJECT-TO-OBJECT RELATIONSHIP-BASED ACCESS
CONTROL MODEL CHARACTERISTICS

In this section we discuss the general characteristics of an
object-to-object relationship model for access control. To our
knowledge this is a first step towards this direction. Hence
we will keep our model simple, raising the question as to
what are the minimum requirements to realize such a model.
A typical access request in any access control model arises
when a user (or subject) tries to perform an action on a
resource or object. So a set of users, a set of objects and a set
of actions are mandatory components for any access control
model. Our main focus is on expressing authorization policy
considering object relationships, so the model obviously needs
a set of possible (binary) relationship types and a data structure
(preferably a relationship graph) to store relationships between
objects. To keep the model definition simple we will consider
only one type of symmetric relationship.

We need a special direct access from a user to object which
can be maintained by a system function or access control
list (ACL), starting from where additional related objects can
be accessed. We propose to limit, in an object specific and

Fig. 4. Object-to-Object Relationship Based Access Control.

Fig. 5. Policy Level Example.

action specific manner, the number of relationship links (or
hopcount) that can be traversed to access a related object from
a given starting point. For example if the system specifies the
relationship level of a particular object is 0 for write and 1
for read that means the object is not allowed to be accessed
through relationship chain for write, however it allows 1
level relationship chain for read. A system function would
specify the relationship level consideration for authorization
of a particular object for a particular action.

Figure 4 shows how the model relationship and access
would work. The system has two users u1 and u2, and 3
objects o1, o2, o3. The relationships are {{o1,o2}, {o2, o3}}.
The system function ACL would take an object as input and
returns a list of users. Here ACL(o1) = {u1}, ACL(o2) =
{} and ACL(o3) = {u2}. When user u1 tries to access o1

he can directly do that without using relationships. When
u1 tries to access o2 or o3 the access control system needs
to consider relationship between {o1, o2} and {{o1, o2},
{o2,o3}} respectively.

Figure 5 shows the policy level specification of objects. Here
ACL(o1) = {u1}, ACL(o2) = {}, ACL(o3) = {}, ACL(o4) =
{}. There are two actions in the system, a1 and a2. We have
the following values of policy level as listed in Figure 5.

policyLevel(a1,o1) = 2, policyLevel(a2,o1) = 0
policyLevel(a1,o2) = 1, policyLevel(a2,o2) = 0
policyLevel(a1,o3) = 3, policyLevel(a2,o3) = 2

Fig. 6. OOReBAC Model.

policyLevel(a1,o4) = 2, policyLevel(a2,o4) = 0

When u1 tries to do an action a1 or a2 on o1 the access
request would be granted as u1 is in ACL of o1. When u1 tries
to do action a1 on o2 the access would be granted because
though u1 is not in o2’s ACL, however o2 allows upto 1
level of relationship chaining for action a1 authorization and it
maintains a 1 level relationship with o1 and u1 is in o1’s ACL.
When u1 tries to do a2 on o2 the authorization would denied
as u1 is not in o2’s ACL and o2 allows 0 level relationship
chaining for action a2. When u1 tries to do a1 or a2 on o3

both of the actions would be granted. On the other hand when
u1 tries to do a1 or a2 on o4 both the actions will be denied.

IV. OOREBAC: MODEL DEFINITION

In this section we define a model OOReBAC which con-
siders object to object relationships in authorization policy.
The model components are as follows: U is a set of users. A
user is a human being who performs action on objects. O is
a set of objects. Objects are resources in the system which
need to be protected. R is a set of symmetric relationships
between objects. G = ⟨ O, R ⟩ is the relationship graph where
objects are nodes and relationship between objects are edges.
There is a system function ACL which takes an object as
input and returns a set of users as output. There is another
system function policyLevel which takes an object and an
action as input and returns a natural number indicating the
relationship level that object would allow for authorization
of that particular action. A is a set of actions. Each action
a ∈ A has a single authorization policy Authza(u:U, o:O)
which takes u and o as inputs and returns true or false.
Here u and o are formal parameters. The authorization policy
is a boolean function which considers object relationships,
ACL and policyLevel. If Authza (u,o) returns true then u is
authorized to do action a on object o. On the other hand if
Authza(u,o) returns false then u is not authorized to do action
a on o.

Fig. 7. An Example of OOReBAC State I1.

Figure 6 shows the model components. Table I shows
the formal representation of the model definition and the
language for authorization policy. OOReBAC is an operational
model. Create/delete users or objects, add/update relationships
between objects, configure/update ACL or policy levels are
administrative operations and out of scope of OOReBAC
model. These would be specified in an administrative model.

An instantiation of authorization policy for OOReBAC is
given below.

• A = {read, write}
• Authzread(u:U,o:O) ≡ u ∈ PpolicyLevel(read,o)

• Authzwrite(u:U,o:O) ≡ u ∈ PpolicyLevel(write,o)

An example configuration of OOReBAC and an instantia-
tion of OOReBAC policy is given below.

• U = {u1, u2, u3}
• O = { o1, o2, o3, o4}
• R = {{o1, o2}, {o2, o3}, {o3, o4}}
• ACL(o1) = {u1}

ACL(o2) = {u3}
ACL(o3) = {u2}
ACL(o4) = {u3}

• policyLevel(read, o1) = 2
policyLevel(write, o1) = 0
policyLevel(read, o2)= 2
policyLevel(write,o2) = 1
policyLevel(read,o3) = 0
policyLevel(write,o3) = 0
policyLevel(read,o4) = 2
policyLevel(write,o4) = 1

Figure 7 shows an example state I1 of this system. The
following are some actions that different users try in state I1
and their outcome.

• read(u1,o3), write(u1,o3) are denied
• read(u2, o1) is allowed, write(u2, o1) is denied
• read(u1,o4, write(u1,o4) are denied

V. OOREBAC:APPLICATIONS

Application of OOReBAC model is restricted to the systems
where single type symmetric relationship is used. For example
document co-citation, document clustering, medical record
system etc. Consider our previous use case 3 defined in
Section II shown in Figure 3. Let’s the policy specifies that
every specialist would be able to write only on a document

TABLE I
OOReBAC Model

• U is a set of users
• O is a set of objects
• R ⊆ {z | z ⊂ O ∧ | z | = 2}
• G=⟨O,R⟩ is an undirected relationship graph with vertices O and

edges R
• A is a set of actions
• Pi(o1) = { o2 | there exists a simple path of length p in graph G

from o1 to o2}
• policyLevel: O × A → N
• ACL: O → 2U which returns the Access control List of a

particular object.
• There is a single policy configuration point. Authorization Policy.

for each action a ∈ A, Authza(u:U,o:O) is a boolean function
which returns true or false and u and o are formal parameters.

• Authorization Policy Language:
Each action “a” has a single authorization policy
Authza(u:U,o:O) specified using the following language.
ϕ := u ∈ PATHi

PATHi := ACL(P0(o)) ∪ . . . ∪ ACL(Pi(o)) where i = min(| O |
- 1, policyLevel(a,o))
where for any set X, ACL(X) =

∪
x∈X ACL(x)

for which he/she is assigned in the ACL of that document.
Reading any document is allowed through the relationship
for a particular patient. To specify this policy in respect of
our OOReBAC model we need to first capture the OOReBAC
instantiation of the scenario as follows:

• U = { upp, ugs, ucd, uop, ued, unp }
• O = { mrpp, mrgs, mrcd, mrop, mred, mrnp }
• R = {{mrpp, mrgs}, {mrgs, mrcd}, {mrcd, mred}, {mrop,

mred},{mrnp, mred}}}
• ACL(mrpp) = {upp},

ACL(mrgs) = {ugs},
ACL(mrcd) = {ucd},
ACL(mrop) = {uop},
ACL(mred) = {ued},
ACL(mrnp) = {unp}

• Action ={read, write}
• policyLevel(read,mrpp)=∞, policyLevel(write,mrpp)=0,

policyLevel(read,mrgs)=∞, policyLevel(write,mrgs)=0,
policyLevel(read,mrcd)=∞, policyLevel(write,mrcd)=0,
policyLevel(read,mrop)=∞, policyLevel(write,mrop)=0,
policyLevel(read,mred)=∞, policyLevel(write,mred)=0,
policyLevel(read,mrnp)=∞, policyLevel(write,mrnp)=0

• Authorization policy:
Authzread(u,o) ≡ u ∈ PpolicyLevel(read,o)

Authzwrite(u,o) ≡ u ∈ PpolicyLevel(write,o)

Some sample operations and their outcomes are given
below.

1) read(unp, mrpp) : authorized
2) read(ucd, mrnp) : authorized
3) write(unp, mrnp) : authorized
4) write(unp, mrpp) : denied
5) write(unp, mrpp) : denied

VI. IMPLEMENTATION

Using object-to-object relationship brings in a new dimen-
sion when we consider relationship between objects from
cross-origin environment. Organizations often use multicloud
environment for independent and parallel work, including
reducing reliance on any single vendor, increasing flexibility
through choice, and mitigating against disasters, etc. This is
similar to the use of best-of-breed applications from multiple
developers on a personal computer, rather than the defaults
offered by the operating system vendor. Using multiple infras-
tructure providers for different workloads, deploying a single
workload load balanced across multiple providers (active-
active), or deploying a single workload on one provider,
with a backup on another (active-passive) [24], are common
multicloud applications. Sharing resources between multiple
clouds IaaS is very important in today’s multicloud world.
Using object-to-object relationship can be one way to share
our objects between different clouds.

For this implementation we use homogeneous multicloud
and the platform is open source cloud IaaS OpenStack [11]
for both clouds. In OpenStack we have used OpenStack object
storage Swift. In this section we provide a brief description of
the implementation of OOReBAC. We first review OpenStack
object storage Swift and its original authorization module.

A. Swift Storage Structure

Swift is a highly available, distributed, eventually consistent
object/blob store. Organizations can use Swift to store lots
of data efficiently, safely, and cheaply [12]. Swift users use
RESTful API [25] to upload or download objects to and from
Swift object storage. Inside Swift, a project is assigned as an
account. The account holds containers. Containers are similar
to directories, however containers cannot be nested. A user
associated with a Swift account can have multiple containers.
To manage accounts, containers and objects Swift uses account
servers, container servers and object servers accordingly.

1) Swift Authorization for Object Access and its limitations:
In OpenStack object storage Swift authorization (request to
an object access) is currently done by Access Control List
(ACL). Swift has two levels of ACL: Account Level ACL and
container level ACL [26]. Container Level ACL is associated
with containers in terms of read (download any object of that
container) or write (upload an object in the container) or list
[27]. Account ACLs allow users to grant account level access
to other users. The limitations of Swift authorizations are:

• It cannot express object level ACL. To specify object
level ACL every object needs to be stored in a separate
container.

• It cannot give user access to a particular object if the user
is not a member of the account/project.

• It doesn’t support multicloud resource sharing.
Our proposed model for Swift authorization can be named

as relationship based resource sharing for OpenStack object
storage Swift. It enables the following features.

• Object specific ACL.

Fig. 8. MultiCloud Implementation of OOReBAC Model.

Algorithm 1 authorize(u,f,G)
if u in ACL(f) then

return true
else

policyLevel = policyLevel(f)
for depth limited search upto min(policyLevel, |O| - 1)
do

if if any of the file’s ACL contains u then
return true

end if
end for
return false

end if

• Allow users to access objects through relationship along
with ACL.

• Allow users outside projects/accounts to access an object
through relationship.

• Overall this proposed model would be able to work in
multicloud environment.

To enable these features we are proposing an authorization
service for Swift access control.

B. Proposed Authorization Service for Swift

An authorization service for Swift would take care of the
authorization of objects. We would store all the container level
ACL and relationship between files in authorization service.
The collaboration between different clouds are done through
federation. Once federation is established every file can be

accessed by two types of user, local user and federated user.
Swift operations are of two types: Administrative Operations
and User Operations. Creating ACL entry for a particular
object, updating ACL, creating relationship between objects,
updating relationship, configuring policy levels and updating
policy levels are Administrative Operations.

The proposed OOReBAC theoretical model is defined for
operational authorization and does not include an administra-
tive model. Therefore, for our implementation we have defined
a simple administrative model for Swift authorization service.
This administrative model allows an admin user from any of
the collaborating clouds to configure and update relationships,
ACLs and policy levels. To configure and update relationship
admin user and at least one file for which relationship is
being configured should be from same cloud. To configure and
update ACL and policyLevel admin user and the corresponding
file should be from same cloud. Admin user can directly
issue a RESTAPI command from Swift to the authorization
service database to create relationships, update relationships,
create an ACL, update an ACL, create policy level and update
policy level. In Swift User Operations are uploading a file
and downloading a file. Only the creator of the container can
upload a file. In our implementation the upload operation is
kept as it is. The authorization of downloading a file is done
through authorization service.

Figure 8 shows the implementation detail of the model. In
this figure we are considering two clouds c1 and c2. First we
need to establish federation between these two clouds. The
authorization service would contain all the ACL information
of every files, relationship information and policy level infor-
mation. To configure our OOReBAC model for this implemen-
tation platform users should contain cloud and current account
information along with their name as user identification. Files
or objects also need to contain filename along with cloud
name, account name and container name. Each user is identi-
fied as username@cloudname:accountname, each file is iden-
tified as filename@cloudname:accountname:containername.

When a download request comes from a user for a local file,
the user’s request triggers a RESTAPI call to the authorization
service. The authorization service looks up the ACL table to
determine if this user has direct access to the file. If so it
returns true, else it goes to the policyLevel table to find out
how many levels of relationship the file allows. Then it looks
up to the policy level depth in relationship table whether any of
the file up to that depth has an ACL authorizing the accessing
user. If it finds any it returns true, otherwise it returns false.

Algorithm 1 shows the pseudocode of the algorithm in the
authorization service to evaluate access authorization. Here we
have used depth limited search upto a fix depth considering
the policy level of a particular object for a particular action.
Depth limited search searches upto a fix limited depth for all
possible paths. Depth first search is a special case of depth
limited search where limit is ∞. The overall time complexity
of the algorithm is O(| O | |O|), although with small policy
limits the performance will be considerably better.

Table II specifies the administrative commands and oper-

TABLE II
Functional specification.

Functions Conditions Updates
Administrative Actions

CreateRelationship admin ∈ role(u) ∧ RelationshipSet(filename1) ∪= {filename2}
(u,filename1,filename2) cloud(filename1) = cloud(u) RelationshipSet(filename2) ∪= {filename1}

∧ filename1 ̸∈ RelationshipSet(filename2)
∧ filename2 ̸∈ RelationshipSet(filename1)

DeleteRelationship admin ∈ role(u) ∧ RelationshipSet(filename1) \= {filename2}
(u,filename1,filename2) cloud(filename1) = cloud(u) RelationshipSet(filename2) \= {filename1}

filename1 ∈ RelationshipSet(filename2)
∧ filename2 ∈ RelationshipSet(filename1)

IncludeAUserinACL Role(u) ∈ Admin∧ ACLSet(filename1) ∪= {username1}
(u,filename1,username1) cloud(filename1) = cloud(u)∧

username1 ̸∈ ACLSet(filename1)
ExcludeAUserFromACL Role(u) ∈ Admin∧ ACLSet(filename1) \= {username1}
(u,filename1,username1) cloud(filename1) = cloud(u)∧

username1 ∈ ACLSet(filename2)
ConfigurePolicyLevel Role(u)∈ Admin ∧ PolicyLevel(filename)= num
(u,filename,num) cloud(filename1) = cloud(u)

num ≤ | O |
Operational Command

download u∈ U allow user u to download file filename1
(u,filename1) ∧ authorize(u,filename1,G)

TABLE III
Relationship.

SourceFileName TargetFileList
f1@cloud1:account1:container1 {f2@cloud1:account1:container1,

f3@cloud2:account1:container1}
.

TABLE IV
ACL.

Filename UserList
f1@cloud1:account1:container1 {u1@cloud1:account1,

u2@cloud1:account1}
.

ational commands of the implemented model for the autho-
rization service. Administrative function CreateRelationship
creates relationship between two files by cloud admin. It
takes a user and two filename as input. It checks whether the
cloud admin and the first file are from same cloud and that
no relationship exists between the two files. Administrative
function DeleteRelationship deletes an existing relationship
between two files, IncludeAUserinACL includes a user in the
ACL list of a file by the cloud admin. ExludeAUserinACL
excludes a user in the ACL list of a file by the cloud admin,
and ConfigurePolicyLevel configures the policy level of a file
by the cloud admin.The only user operation is download. It
takes a user and a file as input, and checks whether the user
is an existing user and using the authorize algorithm from
authorization service it returns true or false.

Tables III, IV, and V shows the structure of the Relationship,
ACL and policyLevel table in the authorization service. In
Relationship table the graph is stored as adjacency list format.
In ACL table ACL information are stored as file specific
userlist and in Policy Level table file specific policylevel is
stored.

TABLE V
Policy Level

FileName Policy Level
f3@cloud1:account2:container3 (download,2)
.

VII. RELATED WORK

Access Control based on user relationships emerged initially
for online social networking (OSN). This is commonly referred
to as relationship-based access control (ReBAC) [28]. A
number of ReBAC models have been proposed in literature
specially for OSN, most containing user-to-user relationship
only [1], [2], [3], [4], [5], [6], [7]. Some models also include
user-to-resource and resource-to-resource relationships [8],
[9]. Recently, there has been consideration of applicability
of ReBAC beyond the OSN context [9], [10]. Some models
consider attributes of users and relationships [6]. A number
of administrative models also have been proposed for ReBAC
[10], [29].

Most of the above mentioned models are for online so-
cial network and the main feature of online social network
is interpersonal relationship. So the core concerns of these
models are based on user-to-user relationship. Though some
of them addressed user-to-resource or resource-to-resource
relationship, these are also considered in context of users. The
main reason behind this consideration is OSN has very specific
type of resources such as photos, comments, notes etc. which
are closely related to users rather than resource-to-resource
independently. Though some models [9] expanded the concept
of ReBAC for general computing system they still need users
in the relationship graph.

On the other hand, object relation without involvement
of user is already a well accepted concept. There are some
previous work that use special kind of object relationships

for authorization. Object-oriented systems maintains specific
form of relationships among objects (inheritance, composition,
association etc.). Some access control model defined for
object-oriented system use this type of specific relationship
to access object [14].

VIII. CONCLUSION

This paper presents an object to object relationship based ac-
cess control model (OOReBAC), giving a different perspective
on ReBAC from the traditional one. In today’s interconnected
world object relationship becomes a very important feature for
enterprise systems. Using this relationship to specify autho-
rization policy would allow an access control model to specify
finer-grained access control. We also have demonstrated a
proof-of-concept implementation of the proposed model for
open source cloud IaaS OpenStack platform. We have used
OpenStack object storage Swift to specify and use object-to-
object relationship in multicloud environment. The application
of this simple model is restricted to systems where single
symmetric relationship between objects is used. Though we are
motivated by object-to-object relationship in object-oriented
systems and version control systems, our proposed model is
more influenced by ReBAC in social context. It only considers
one type of symmetric relationship whereas object-oriented
systems contain different types of asymmetric relationship
(inheritance, composition, and association). Version control
system considers one type of relationship “derived from”
however the graph is a directed acyclic graph (DAG) and the
relationship is asymmetric. As it is our first attempt towards
this direction, we have kept the model definition simple to
fundamentally understand the actual impact of considering
object relationships in authorization policy. The proposed
OOReBAC model is unable to configure object-oriented sys-
tems or version control systems. It would be interesting future
work to develop a model evolved from OOReBAC, which
can instantiate access control for an already existing object
relationship application such as object-oriented systems and
version control systems.

ACKNOWLEDGMENT

This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.

REFERENCES

[1] G. Bruns, P. W. Fong, I. Siahaan, and M. Huth, “Relationship-based
access control: its expression and enforcement through hybrid logic,” in
CODASPY, 2012, pp. 117–124.

[2] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access control in
web-based social networks,” ACM Transactions on Information and
System Security (TISSEC), vol. 13, no. 1, p. 6, 2009.

[3] P. W. Fong, M. Anwar, and Z. Zhao, “A privacy preservation model for
facebook-style social network systems,” in Computer Security–ESORICS
2009. Springer, 2009, pp. 303–320.

[4] P. W. Fong, “Relationship-based access control: protection model and
policy language,” in Proceedings of the first ACM conference on Data
and application security and privacy. ACM, 2011, pp. 191–202.

[5] Y. Cheng, J. Park, and R. Sandhu, “A user-to-user relationship-based ac-
cess control model for online social networks,” in Data and applications
security and privacy XXVI. Springer, 2012, pp. 8–24.

[6] ——, “Attribute-aware relationship-based access control for online so-
cial networks,” in IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 2014, pp. 292–306.

[7] P. W. Fong and I. Siahaan, “Relationship-based access control policies
and their policy languages,” in Proceedings of the 16th ACM symposium
on Access control models and technologies. ACM, 2011, pp. 51–60.

[8] Y. Cheng, J. Park, and R. Sandhu, “Relationship-based access control for
online social networks: Beyond user-to-user relationships,” in PASSAT,
2SocialCom. IEEE, 2012, pp. 646–655.

[9] J. Crampton and J. Sellwood, “Path conditions and principal matching:
a new approach to access control,” in Proceedings of the 19th ACM
symposium on Access control models and technologies. ACM, 2014,
pp. 187–198.

[10] S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sellwood, “Relationship-
based access control for an open-source medical records system,” in
Proceedings of the 20th ACM Symposium on Access Control Models
and Technologies. ACM, 2015, pp. 113–124.

[11] “http://www.openstack.org/software/icehouse.”
[12] “Swift docs,” ”http://docs.openstack.org/developer/swift/”, [Online; ac-

cessed 8-June-2016].
[13] M. P. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier,

and S. B. Zdonik, “The object-oriented database system manifesto.” in
DOOD, vol. 89, 1989, pp. 40–57.

[14] W. Kim, E. Bertino, and J. F. Garza, “Composite objects revisited,”
in Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’89. New York, NY, USA:
ACM, 1989, pp. 337–347. [Online]. Available: http://doi.acm.org/10.
1145/67544.66958

[15] J. Brunet, “Modeling the World with Semantic Objects,” in IFIP -
WG 8.1 Conf. on ”The Object Oriented Approach in Information
Systems”, Québec, Canada, Oct. 1991, p. 1. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00708949

[16] E. Andonoff, G. Hubert, A. Le Parc, and G. Zurfluh, “Modelling
inheritance, composition and relationship links between objects, object
versions and class versions,” in Advanced Information Systems Engi-
neering. Springer, 1995, pp. 96–111.

[17] “Digital asset management,” ”http://www.adobepress.com/articles/
article.asp?p=2129363”, [Online; accessed 14-June-2016].

[18] “Version control,” ”https://en.wikipedia.org/wiki/Version control”, [On-
line; accessed 14-June-2016].

[19] H. Small, “Co-citation in the scientific literature: A new measure of the
relationship between two documents,” Journal of the American Society
for information Science, vol. 24, no. 4, pp. 265–269, 1973.

[20] Z. Su, Q. Yang, H. Zhang, X. Xu, and Y. Hu, “Correlation-based docu-
ment clustering using web logs,” in System Sciences, 2001. Proceedings
of the 34th Annual Hawaii International Conference on. IEEE, 2001,
pp. 7–pp.

[21] “Panama paper leaks,” ”http://info.neo4j.com/
05262016---ICIJ-and-Panama-Papers-OnDemand LP-Video.html?
aliId=38013278”, [Online; accessed 8-June-2016].

[22] “http://www.neo4j.org/.”
[23] “Version control,” ”http://web.mit.edu/6.005/www/sp16/classes/

05-version-control/”, [Online; accessed 20-June-2016].
[24] “Multi-cloud,” ”https://en.wikipedia.org/wiki/Multicloud”, [Online; ac-

cessed 8-June-2016].
[25] “Swift api,” ”http://docs.openstack.org/developer/swift/api/object api

v1 overview.html”, [Online; accessed 8-June-2016].
[26] “Swift authorization,” ”http://docs.openstack.org/developer/swift/

overview auth.html”, [Online; accessed 8-June-2016].
[27] P. Biswas, F. Patwa, and R. Sandhu, “Content level access control for

openstack swift storage,” in Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy, ser. CODASPY ’15.
New York, NY, USA: ACM, 2015, pp. 123–126. [Online]. Available:
http://doi.acm.org/10.1145/2699026.2699124

[28] C. Gates, “Access control requirements for web 2.0 security and privacy,”
IEEE Web, vol. 2, no. 0, 2007.

[29] S. D. Stoller, “An administrative model for relationship-based access
control,” in Data and Applications Security and Privacy XXIX. Springer,
2015, pp. 53–68.

