

Cross-Tenant Trust Models in Cloud Computing

Bo Tang and Ravi Sandhu

IRI Aug 14-16, 2013 San Francisco, CA

© ICS at UTSA

World-Leading Research with Real-World Impact!

>Introduction

Background and Motivation

Cross-Tenant Trust Model (CTTM)

- Tenant Trust Relations
- Formalized Model
- Role-Based CTTM (RB-CTTM)
- ► Related Work
- Conclusion and Discussion

Introduction

Background and Motivation
 Cross-Tenant Trust Model (CTTM)
 Tenant Trust Relations
 Formalized Model
 Role-Based CTTM (RB-CTTM)
 Related Work
 Conclusion and Discussion

Cloud Computing

Shared infrastructure \$ [\$\$\$] ----> [\$|\$|\$]

- ➢ Multi-Tenancy
 - Virtually dedicated resources
- Data Locked-in

- Collaborations can only be achieved through desktop.
- E.g.: create/edit Word documents in Dropbox.
- A suitable fine-grained cross-tenant access control model is essential

Source: http://blog.box.com/2011/06/box-and-google-docs-accelerating-the-cloud-workforce/

Microsoft and IBM: Fine-grained data sharing in SaaS using DB schema

- Only feasible in DB
- NASA: RBAC + OpenStack (Nebula)
 - Lacks ability to support multi-org collaborations
- Salesforce (Force.com): Single Sign-On + SAML
 - Focus on authentication and simple authorization
 - Heavy management of certificates

Source: http://msdn.microsoft.com/en-us/library/aa479086.aspx http://nebula.nasa.gov/blog/2010/06/03/nebulas-implementation-role-based-access-control-rbac/ http://wiki.developerforce.com/page/Single_Sign-On_with_SAML_on_Force.com

>Introduction

Background and Motivation

Cross-Tenant Trust Model (CTTM)
 Tenant Trust Relations
 Formalized Model
 Role-Based CTTM (RB-CTTM)
 Related Work

Conclusion and Discussion

Motivation

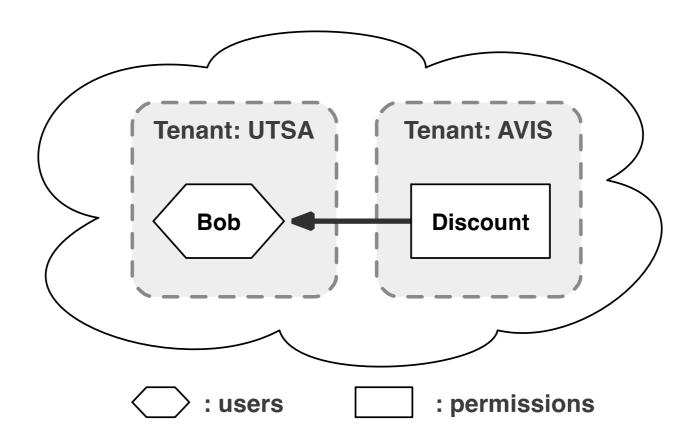


Figure 1. A car renting example of cross-tenant accesses

Centralized facility

- Resource pool
- ➤ Multi-tenancy
 - Unilateral and automatic provisioning as needed
 - Dynamically assigned virtual resources
- Temporary users and tenants

- Standardized APIs
 - Cross-tenant accesses are functionally available
- Authenticated Users
- Removable assumptions:
 - One Cloud Service
 - o But extensible to multi-cloud
 - Two Tenant Trust (rather than federation)
 - Unidirectional Trust Relations (like follow in Twitter)
 - Unilateral Trust Relations (trustor or trustee)

>Introduction

Background and Motivation

Cross-Tenant Trust Model (CTTM)

- Tenant Trust Relations
- Formalized Model
- Role-Based CTTM (RB-CTTM)
- ► Related Work

Conclusion and Discussion

- Tenant Trust (TT) relation is not partial order
 It is
 - $\mathbf{A} = \mathbf{A} \\ \mathbf{A} \\$
 - ♦ But not transitive: $A \trianglelefteq B \land B \trianglelefteq C \Rightarrow A \trianglelefteq C$
 - ♦ Neither symmetric: $A ext{ } ext{ } B ext{ } \Rightarrow B ext{ } A$
 - ♦ Nor anti-symmetric: $A ext{ } ext{ } B \land B ext{ } A \neq A ext{ } B$

Four potential trust types:

- *****Type-α: trustor can <u>give</u> access to trustee.
- *****Type-β: trustee can <u>give</u> access to trustor.
- *****Type-γ: trustee can <u>take</u> access from trustor.
- *****Type-δ: trustor can <u>take</u> access from trustee.
 - No meaningful use case, since the trustor holds all the control of the cross-tenant assignments of the trustee's permissions.

Formalized CTTM Model

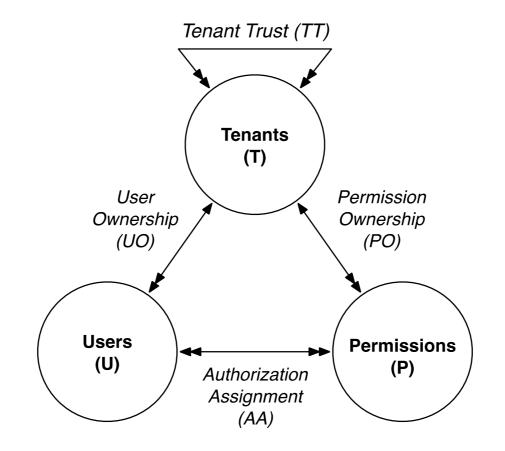


Figure 2. Cross-Tenant Trust Management model

 \triangleright AA \subseteq U \times P, a many-to-many user-to-permission assignment relation, also written as " \leftarrow ", requiring that $u \leftarrow p$ only if $permOwner(p) \equiv userOwner(u) \lor$ permOwner(p) \trianglelefteq_{α} userOwner(u) \lor userOwner(u) \trianglelefteq_{β} permOwner(p) V permOwner(p) \trianglelefteq_{v} userOwner(u), where only one of the \trianglelefteq requirements can apply depending on the nature of TT.

Role-Based CTTM

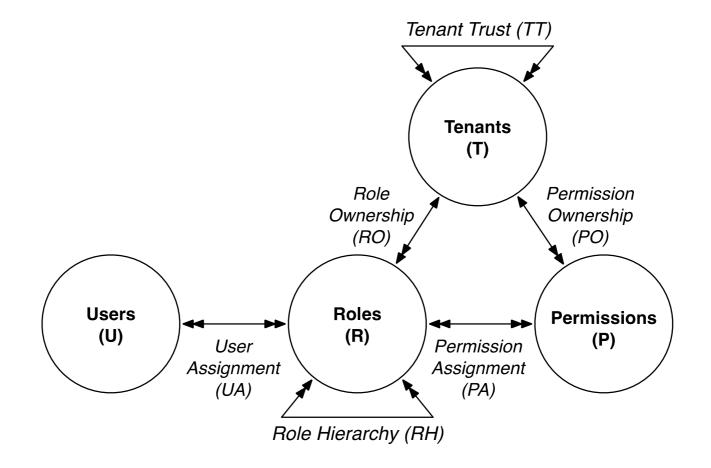


Figure 3. Role-Based Cross-Tenant Trust Management model

➤UA ⊆ U × R, is a many-to-many user-to-role assignment relation;

 $PA \subseteq P \times R$, is a many-to-many permission-to-role assignment relation requiring that $(p, r) \in PA$ only if $permOwner(p) \equiv roleOwner(r) \lor$ permOwner(p) \trianglelefteq_{α} roleOwner(r) \lor roleOwner(r) \trianglelefteq_{β} permOwner(p) V permOwner(p) \trianglelefteq_{v} roleOwner(r), where only one of the \trianglelefteq requirements can apply depending on the nature of TT;

RB-CTTM Authz. Assignments (contd.)

 \geq RH \subseteq R \times R, is a partial order on R called role hierarchy or role dominance relation, also written as " \geq ", requiring that r2 \geq r1 only if roleOwner(r1) ≡ roleOwner(r2) ∨ roleOwner (r1) \trianglelefteq_{α} roleOwner(r2) V roleOwner (r2) \trianglelefteq_{β} roleOwner (r1) V roleOwner (r1) \trianglelefteq_{v} roleOwner(r2), where only one of the \trianglelefteq requirements can apply depending on the nature of TT;

Feasibility in the Cloud

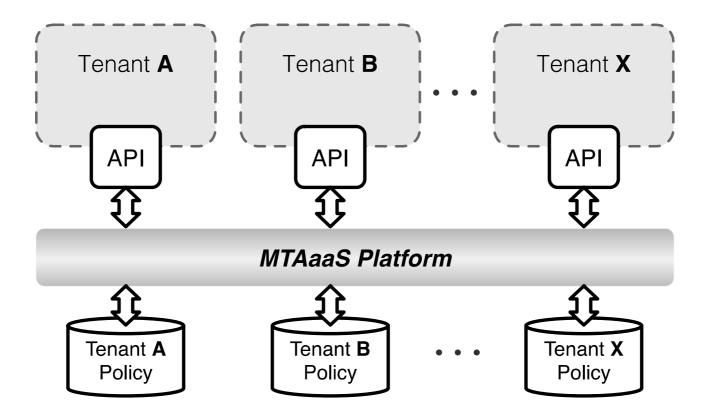


Figure 4. Multi-Tenant Authorization as a Service (MTAaaS) Architecture

Introduction

Background and Motivation

Cross-Tenant Trust Model (CTTM)

- Tenant Trust Relations
- Formalized Model
- Role-Based CTTM (RB-CTTM)

► Related Work

Conclusion and Discussion

➢ RBAC

- CBAC, GB-RBAC, ROBAC (e.g.: player transfer in NBA)
- Require central authority managing collaborations

Delegation Models

- dRBAC and PBDM (e.g.: allowing subleasing)
- Lacks agility (which the cloud requires)
- ➤Grids
 - CAS, VOMS, PERMIS
 - Absence of centralized facility and homogeneous architecture (which the cloud has)

➢ Role-based Trust

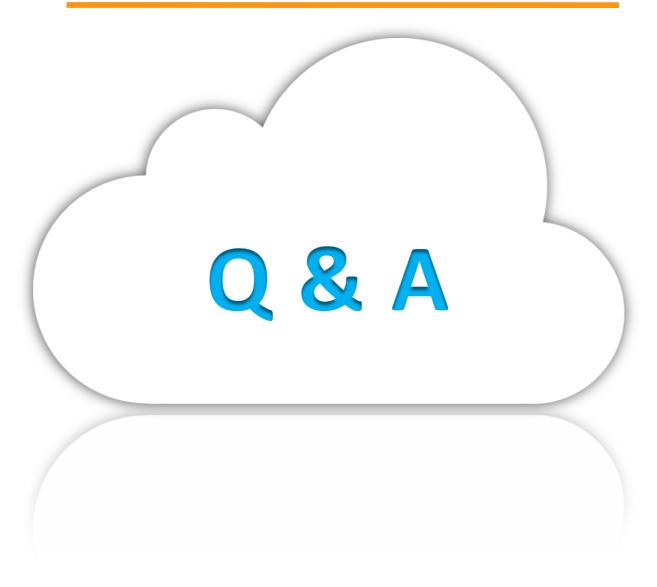
- *****RT (Type-α trust relation)
- MTAS (Type-β trust relation)
- MT-RBAC (Type-γ trust relation)
- Suits the cloud (out-sourcing trust)

Introduction

- Background and Motivation
- Cross-Tenant Trust Model (CTTM)
 - Tenant Trust Relations
 - Formalized Model
 - Role-Based CTTM (RB-CTTM)
- ► Related Work

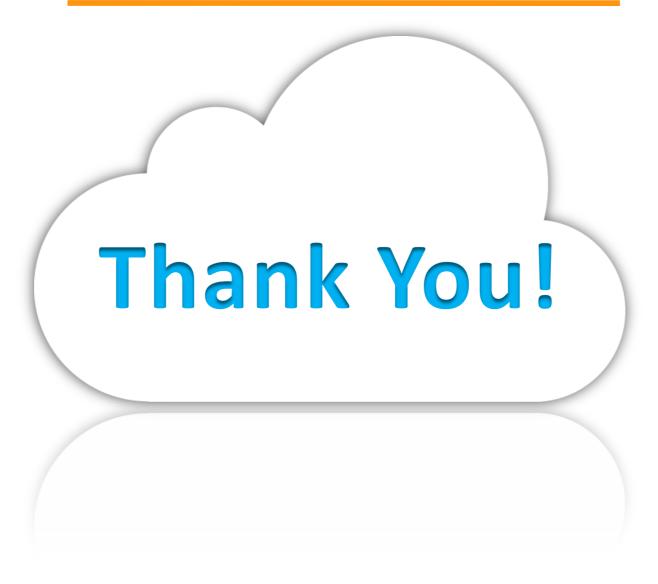
Conclusion and Future Work

- Needs of cross-tenant access control
- On-demand self-service model
- Tenant trust relation and types
- CTTM and RB-CTTM models
 - Formalization
 - Feasibility in the cloud
- Mapping to related work **RT, MTAS and MT-RBAC**



Other models compatible with MTAaaS platform Implementation MTAaaS in OpenStack

Institute for Cyber Security


© ICS at UTSA

World-Leading Research with Real-World Impact!

Institute for Cyber Security

