
Authorization Policy Specification and Enforcement for
Group-Centric Secure Information Sharing

Ram Krishnan1,2 and Ravi Sandhu1
1Institute for Cyber Security

2Department of Electrical and Computer Engineering
University of Texas at San Antonio

San Antonio, TX

ram.krishnan@utsa.edu
ravi.sandhu@utsa.edu

Abstract. In this paper, we propose a methodology for incremental security pol-
icy specification at varying levels of abstraction while maintaining strict equiv-
alence with respect to authorization state. We specifically consider the recently
proposed group-centric secure information sharing (g-SIS) domain. The current
specification for g-SIS authorization policy is stateless in the sense that it solely
focuses on specifying the precise conditions under which authorization can hold
in the system while only considering the history of actions that have occurred.
The stateless application policy has been specified using linear temporal logic.
In this paper, we develop an enforceable specification that is stateful in the sense
that it is defined using specific data structures that are maintained in each state
so as to make authorization decisions. We show that the stateful specification is
authorization equivalent to that of stateless. That is, in any state, authorization
will hold in stateful if and only if it also holds in the stateless specification.

Keywords: Authorization, Enforcement, Equivalence, Security Policy

1 Introduction

A fundamental problem in access control is the consistency of specification and en-
forcement of authorization policies. A large body of literature focuses on either the
specification of authorization policies or its enforcement independent of each other.
Our focus in this paper is to bridge these two areas. Our application domain is the re-
cently proposed model for group-centric secure information sharing or g-SIS [4, 6]. In
g-SIS, users and objects are brought together in a group to promote sharing and col-
laboration. Users may join and leave and objects may be added and removed from the
group. The join, leave, add and remove operations may have different authorization se-
mantics as will be discussed later. A formal set of core properties that are required of all
g-SIS specifications have been defined given the basic group operations of join, leave,
add and remove. Further, a specification, called the π-system, has been formulated and
proven to satisfy the core g-SIS properties.

The π-system specification is defined in a stateless manner using first-order linear
temporal logic (FOTL). (FOTL differs from the familiar propositional linear temporal



logic [7] by incorporating predicates with parameters, constants, variables, and quan-
tifiers.) Specifically, the π-system is not directly enforceable in the way it is specified
because it does not define the data structures that need to be maintained in order to
make authorization decisions. Instead, the FOTL characterization of the π-system sim-
ply specifies the sequence of actions that need to have occurred in the past in order for
authorization to hold at any given state. Thus, for example, a stateless specification may
specify that a user may access an object in a group in a particular state if and only if
the user had joined the group in the past, the object has been added to the group in the
past and both the user and object are current members in the group (that is, the user has
not left and the object has not been removed). Note that such a characterization using
FOTL does not specify how to enforce that policy. A stateful specification, on the other
hand, specifies the data structures that need to be maintained in the system so that they
can be inspected in each state and authorization decisions be made.

In this paper, we develop a stateful specification for the π-system and prove that this
specification is authorization equivalent to the stateless π-system specification. That
is, a user will be authorized to access an object in a group in the stateful π-system
specification if and only if it is also the case in the stateless π-system specification.

The separation of stateless from the stateful specification has a number of impor-
tant virtues. A security policy researcher developing the stateless specification is not
distracted by the data structures that need to be designed and maintained. Instead, she
can focus purely on the precise characterization of the conditions under which autho-
rization should hold in her system. Formal specification using FOTL also allows one to
conduct rigorous formal analysis using automated techniques such as model checking
as demonstrated in [4]. Once the stateless specification is developed, one can then focus
on the data structure design and mechanisms needed to enforce the stateless policy. As
will be shown, while the stateless specification may be complex for a non-expert in the
field, the stateful specification is understandable and can be implemented by relatively
competent programmers. The techniques we use include algorithmic specification of
stateful π-system and induction for our proofs. We believe that this can be applied in
various other application domains in which new policy specifications are developed.

This line of work is inspired in part by the relationship between the non-interference
[2] and the Bell-LaPadula model [1]. The Bell-LaPadula model provides a lattice struc-
ture of security labels and the famous simple-security and star-properties to enforce
one-directional information flow in the lattice. This is a stateful specification in that it
describes data structures and rules that are enforceable. The non-interference specifica-
tion is stateless and makes reference only to input-output behavior of a secure system.
Our goals in this paper are to formalize authorization policy rather than information
flow policy. Nonetheless the stateless and stateful distinction has strong similarities and
the non-interference work has been inspirational. To the best of our knowledge, this is
the first effort towards bridging authorization policy specification and enforcement.

The rest of the paper proceeds as follows. In section 2, we give a brief background
on g-SIS and an overview of the stateless π-system specification. In section 3, we
present a stateful specification for the π-system. In section 4, we show the equiva-
lence of the stateful and stateless π-system specifications. We discuss future work and
conclude in section 5.



2 Background

In this section, we provide a brief overview of g-SIS. A detailed discussion can be found
in [4] and [6].

2.1 Overview of g-SIS

Future/Past Operator Read as Explanation
© Next (© p) means that the formula p holds in the next state.

Future 2 Henceforth (2 p) means that the formula p will continuously hold in all
future states starting from the current state.

W Unless It says that p holds either until the next occurrence of q or if
q never occurs, it holds throughout.

Past � Once (� p) means that formula p held at least once in the past.
S Since (p S q) means that q happened in the past and p held con-

tinuously from the position following the last occurrence of
q to the present.

Table 1. Intuitive summary of temporal operators used in this paper

In g-SIS, users may join, leave and re-join the group. Similarly, objects may be
added, removed and re-added to the group. Authorization may hold in any state de-
pending on the relative membership status of the user and object in question. The group
operations join, leave, add and remove can be of different types with various authoriza-
tion semantics. We use the following shorthand to denote such different semantics of
group operations:

Join(u, g) = (join1(u, g) ∨ join2(u, g) ∨ ... ∨ joinm(u, g))

Leave(u, g) = (leave1(u, g) ∨ leave2(u, g) ∨ ... ∨ leaven(u, g))

Add(o, g) = (add1(o, g) ∨ add2(o, g) ∨ ... ∨ addp(o, g))

Remove(o, g) = (remove1(o, g) ∨ remove2(o, g) ∨ ... ∨ removeq(o, g))

Thus, for instance, join1(u, g) could represent a specific type of join operation that
is different in authorization semantics from that of join2(u, g). However, Join(u, g)
captures the notion that a join operation of some type has occurred for u in g.

Definition 1 (State in Stateless Specification). A state in the stateless specification is
an interpretation that maps each predicate in the language to a relation over appropri-
ate carriers.

The predicates in the g-SIS language include action predicates such as Join, Leave,
Add and Remove and an authorization predicate Authz. These predicates are speci-
fied over appropriate sorts (types). The semantic values over which a variable ranges
depend on the variable’s sort and are drawn from a set that is called the carrier of that
sort. We use standard upper-case roman characters such as U (user sort) to denote sorts
and calligraphic letters such as U (user carrier) to denote the corresponding carriers. A
detailed discussion of the g-SIS language can be found in [4].



Definition 2 (Stateless Trace). A trace in the stateless specification is an infinite se-
quence of states.

The formulas that we specify below talk about stateless traces.

Well-Formed Traces We now introduce four formulas that define what we call well-
formed g-SIS traces. (An intuitive overview of temporal operators used in this paper
is provided in table 1.) The formulas we consider treat the authorization a user has to
access an object independently of actions involving other users and objects. Thus, from
here on it is often convenient to omit the parameters in all of the predicates. We also
omit the quantifiers as they can be easily inferred from the context (join and leave are
user operations, add and remove are object operations).

A. An object cannot be Added and Removed and a user cannot Join and Leave at the
same time.1

τ0 = 2(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave))

B. For any given user or object, two types of operations cannot occur at the same time.

τ1 =∀i, j 2((i 6= j)→ ¬(joini ∧ joinj)) ∧ ∀i, j 2((i 6= j)→ ¬(leavei ∧ leavej)) ∧
∀i, j 2((i 6= j)→ ¬(addi ∧ addj)) ∧ ∀i, j 2((i 6= j)→ ¬(removei ∧ removej))

Thus, for example, a user cannot join with 2 different semantics in the same state.
Multiple occurrences of the same event in a given state (i.e. when i equals j above) are
treated as a single occurrence of that event in FOTL.

C. If a user u joins a group, u cannot join again unless u first leaves the group. Similar
rules apply for other operations.

τ2 =2(Join→© (¬JoinW Leave)) ∧2(Leave→© (¬LeaveW Join)) ∧
2(Add→© (¬AddW Remove)) ∧ 2(Remove→© (¬RemoveW Add))

D. A Leave event cannot occur before Join. Similarly for objects.

τ3 = 2(Leave→ �Join) ∧2(Remove→ �Add)

Thus, in any given trace, an object needs to be added before a remove operation may
occur in any state.

2.2 The Stateless π-system g-SIS Specification

The π-system specification supports two types of semantics for join, leave, add and
remove operations namely: strict and liberal.

A strict join (SJ) allows the joining user to access only those objects added on or
after the state in which the user joins. A liberal join (LJ), in addition, allows the joining
user to access objects added to the group prior to the join state.

1 Note that here and below we introduce names of the form τj for each of the formulas for later
reference. The equality introduces shorthands for the respective formulas.



(a) Formula λ1. (b) Formula λ2.

Fig. 1. Stateless specification illustration.

On strict leave (SL), the user loses access to all objects in the group. On liberal leave
(LL), the user retains access to all objects that were authorized in the leaving state.

Similarly, for objects, on strict add (SA), the added object may be accessed only by
users who have joined at or prior to the state in which the object is added to the group.
Liberal add (LA) does not have such a constraint.

On strict remove (SR), the object cannot be accessed by any user. On liberal remove
(LR), the object may be accessed by users who were authorized to access the object in
the remove state.

The π-system specification supports the strict and liberal semantics for group op-
erations. Given that different users may join and leave with different semantics and
different objects may be added and removed with different semantics, the π-system
specifies the precise conditions under which authorization for a user to access an object
in a group may hold in the system.

Definition 3 (Stateless π-system). The stateless π-system specification, πstateless, ac-
cepts traces satisfied by the following formula:

∀u.∀o.∀g.2(Authz(u, o, g, read)↔ λ1 ∨ λ2) ∧
∧

0≤j≤3

τj

where,

λ1 =((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL) S (SJ ∨ LJ))))

λ2 =((¬SL ∧ ¬SR) S (LJ ∧ ((¬SR ∧ ¬LR) S LA)))

and the τj’s are the well-formedness constraints.

Given a specific user and an object, note that formula λ1 handles the scenario where
an add operation occurs after a join operation (figure 1(a)) and formula λ2 handles the
scenario where an add operation occurs before a join operation (figure 1(b)). (Here,
due to the semantics of the strict add and strict join, we do not need to check for their
occurrence in formula λ2 illustrated in figure 1(b)). In [6], we have shown that the spec-
ification above is consistent with the semantics of strict and liberal operations discussed
earlier. In addition, we have specified a set of core security properties that are required
of any g-SIS specification and shown that the stateless π-system specification discussed
above satisfies those core properties.

A g-SIS stateless specification with read and write operations (that supports multi-
ple versions of the object) has been specified in [4]. Although we consider a stateless
specification for read authorization in this paper, our discussion is not specific to the
type of permission.



main(){
// Phase 1 and 2 time periods below are allocated such that phase 1 occurs before
// phase 2 and tasks in perTick step below conclude before the tick interval elapses.
perTick: During each tick interval i {

Phase 1:{ // Steps 1.1, 1.2 and 1.3 may execute concurrently.
1.1. For each user, accept the first request received and
store that information in variable userReq(u,g).
// the request received could be one of:
// SJReq(u,g), LJReq(u,g), SLReq(u,g) and LLReq(u,g).
1.2. For each object, accept the first request received and
store that information in variable objectReq(o,g).
// the request received could be one of:
// SAReq(o,g), LAReq(o,g), SRReq(o,g) and LRReq(o,g).*/
1.3. Accept all the authorization requests:

if (isAuthz(u,o,g)) authzReq=authzReq ∪ isAuthz(u,o,g)
// isAuthz(u,o,g) represents authorization request for user u to access object o.

}
Phase 2:{ // Steps 2.1 and 2.2 must be sequential. However, the processing of

// captured requests in step 2.1 may be done concurrently.
2.1. For each captured request, invoke the corresponding function in
table 3 with the appropriate parameters.
// for example, if userReq(u,g) is SJReq(u,g), invoke userEvent(u,g,join,i,strict).
2.2. Process each authorization request:

for each (isAuthz(u,o,g) ∈ authzReq)
authzResult(u,o,g)=authzSF(u,o,g);

}
Reset all variables appropriately.

}
}

Table 2. Stateful Specification (Request Handling)

3 Stateful π-system

In this section, we develop a stateful π-system specification that is authorization equiv-
alent to the stateless specification—that is a user will be authorized to access an object
in the stateful system if and only if it is also the case in the stateless system. Evidently,
the stateless specification is highly abstract and specified using FOTL. The stateful
specification that we develop is an incremental step in the direction of a concrete imple-
mentation of a system that is reasonably authorization equivalent to the stateless speci-
fication. We say “reasonably” because it is our fundamental hypothesis that all practical
distributed systems will inevitably face real-world issues such as network delay and
caching, which will lead to authorization inconsistencies with the idealized stateless
specification. Thus such systems can at most be approximate to the stateless specifica-
tion. One such approximation is the notion of stale-safety [3] that bounds acceptable
delay between the time at which an action (such as reading an object) was known to be
authorized and the time at which that action is actually performed. Our future refine-
ments of the stateful π-system will consider various notions of such approximations.



int userEvent(User u, Group g, uEvent e, interval t, uSemantics s){
1. Check that the current uEvent e is not the same as the
uEvent value in the previous tuple in table(u,g). If so, return 0.
// This ensures, for example, that a join event is not followed
// immediately by another join.
2. Also check, in case the table is empty, then e is not an SL or LL. If so, return 0.
// This ensures that the first user event entry in table(u,g) is not leave.
3. Enter <t,e,s> into table(u,g) and return 1.

}
int objectEvent(Object o, Group g, oEvent e, interval t, oSemantics s){

1. Check that the current oEvent e is not the same as the
oEvent value in the previous tuple in table(o,g). If so, return 0.
// This ensures, for example, that an add event is not followed
// immediately by another add.
2. Also check, in case the table is empty, then e is not an SR or LR. If so, return 0.
// This ensures that the first object event entry in table (o,g) is not remove.
3. Enter <t,e,s> into table(o,g) and return 1.

}
Table 3. Stateful Specification (enforcing well-formedness constraints.)

As the first transition from an abstract specification towards an implementable spec-
ification, the stateful specification that we design is centralized in the sense that autho-
rization decisions are made based on data structures maintained in a specific repository
for each user and object. There could be different repositories for different users and
objects that may be distributed on the whole. Specifically, we are not concerned about
replication of data structures of a user or an object and maintenance of its consistency.
We also not concerned about distributing parts of the data structure of a user or an ob-
ject. Authorization decisions for a specific user to access a specific object are made
based on their specific data structures maintained at specific repositories.

Note that the stateless specification simply does not admit traces of actions that do
not obey the well-formedness constraints. More importantly, it does not (intentionally)
specify how one should handle ill-formed traces. At the stateful specification level of
abstraction, one must begin to address such issues. Many strategies may be employed—
we will consider one for our stateful specification (discussed later).

3.1 Stateful π-system Design

In the stateful π-system, the data structures that we maintain and consult with for mak-
ing authorization decisions are simple relations for users and objects in the group—
which we refer to informally as tables. For instance, the data structure for a user u in
a group g, table(u,g), contains a history of that user’s joins and leaves in the group.
(The group parameter g is specified for being precise. The reader may safely ignore
this in the rest of this paper as we focus only on one group at any time.) The format of
each tuple in table(u,g) is: <time-stamp, event, semantics>. Here event is either join or
leave, semantics is either strict or liberal and time-stamp specifies the time at which this
event occurred as per a global clock. Thus a snapshot of table(u,g) at any point in time



int authzSF(User u, Object o, Group g){

step 1: Fetch tables table(u,g) and table(o,g). If either table is empty, return 0.
Merge sort table(u,g) and table(o,g) in ascending order of timestamp.

In case of same timestamp, follow precedence rules apply:
(i) Add and Join same timestamp: Add follows Join
(ii) Join and Remove same timestamp: Join follows Remove
(iii) Add and Leave same timestamp: Add follows Leave
(iv) Remove and Leave same timestamp: any order

Let n be the total number of entries in the merged table.

step 2: for i=1 to n{
case event[i]=join{

step 2a: (i) Step down the table looking for an add event. If a leave event is encountered
prior to add event, continue step 2 for loop. If no add event found, return 0.
(ii) From the point the add event was found in the table, step down all the way
to index n ensuring no SL or SR is encountered.
If SL found, continue step 2. If SR found, continue step 2a from current index.
(iii) return 1;

}
case event[i]=add && eventType[i]=liberal{

step 2b: (i) Step down the table looking for an LJ event. If a remove event is encountered
prior to LJ event, continue step 2 for loop. If no LJ event found, return 0.
(ii) From the point the LJ event was found in the table, step down all the way
to index n ensuring no SL or SR is encountered.
If SR found, continue step 2. If SL found, continue step 2b from current index.
(iii) return 1;

}
}

step 3: return 0;
}

Table 4. Stateful Specification (Authorization Decision)

gives a chronological history of the user joining and leaving (possibly many times) and
whether they were of strict or liberal type. Similarly, a tuple in an object data structure,
table(o,g), has the same format as the user table except event is either add or remove.
Note that the number of tuples in any table is not bounded.2

The stateful specification for the π-system is presented in tables 2, 3 and 4. The
authzSF function in table 4 returns 1 if a user u is authorized to access an object o,
0 otherwise. It does so by inspecting the data structures: table(u,g) and table(o,g). As
mentioned earlier, the stateful π-system must also specify how the requests to join,
leave, add and remove and requests to ascertain if users are authorized to read objects

2 Keeping them unbounded has many virtues. For instance, as we will see, this facilitates user
data structures not being touched when an object data structure needs to be updated (and vice-
versa). Of course, there are other data structure designs where they may be bounded but with
different pros and cons.



Fig. 2. Stateful π-system Overview.

are processed. Tables 2 and 3 specify one of many possible ways to do this. We discuss
each of these 3 components of the stateful π-system in further detail below.

3.2 Stateful π-system Specification

An overview of how the functions in the tables 2, 3 and 4 interact is given in figure 2.
Consider the main function in table 2. It receives and processes action requests (requests
to join, leave, add and remove) and authorization requests during the time interval be-
tween any two clock ticks. The function works in two phases during each time interval.
During phase 1, it receives the action and authorization requests. It filters the action
requests so that only the first user request and the first object request are captured. (Dif-
ferent strategies for capturing action requests may be employed—e.g. it need not be the
first request received that is captured.) This ensures, for instance, that only a join or a
leave request of a specific type (strict or liberal) is captured for any given user but not
both. However, all authorization requests are captured during phase 1. When phase 1
completes, further new requests are not admitted. During phase 2, first all action re-
quests received in phase 1 are processed using the user and object event processing
functions in table 3 and then all the captured authorization requests are evaluated using
authzSF function in table 4. At the end of phase 2, the data structures are up-to-date and
authorization decisions are complete for all the requests received in phase 1.

Consider the function userEvent in table 3 which processes the user requests re-
ceived by the function in table 2. The check performed in step 1 ensures that user re-
quests to repeatedly join without an intermittent leave (and vice-versa) are ignored.
Similarly, step 2 ensures that the first entry in the table does not begin with a leave
operation. If all is well, a new tuple is entered into the table and the function returns 1.
The function returns 0 in all other cases. The objectEvent function similarly processes
object requests. Note that tables 2 and 3 together achieve well-formedness constraints
of stateless π-system specification.

The function authzSF in table 4 returns 1 if a user u is authorized to access an object
o in group g, 0 otherwise. This algorithm can be optimized but we keep it straight-
forward for simpler presentation. It begins by taking the corresponding user and object
tables as input. Note that if either table is empty (i.e., either the user or the object
has never been a member of the group), the user is not authorized to read the object.
By appending the tuples to the respective tables as the events occur, table(u,g) and
table(o,g) are pre-sorted with respect to the time-stamp. The function merge sorts these



two tables based on the time-stamp entries to obtain a table of events of u and o in the
chronological order of occurrence. In the event a user and object entry in the respective
tables have the same time-stamp, we specify precedence rules to resolve the tie for
sorting the tuples consistent with temporal operator semantics in the stateless π-system.
If Add and Join occur at the same time, Add follows Join. If Join and Remove occur
at the same time, Join follows Remove. If Add and Leave occur at the same time, Add
follows Leave. Finally, if Remove and Leave occur at the same time, they can be merge
sorted in any order. Let the total number of entries in the merged table be n.

The algorithm proceeds by iterating through each tuple in this new merge sorted
table. We assume that event[i] fetches the specific event (such as join or add) from the
ith entry in the merged table and eventType[i] fetches the respective semantics (such
as strict or liberal) of that event from the same tuple. Each of the two cases in the for
loop looks for an overlapping period of authorizing membership between the user and
object, much like formulas λ1 and λ2. The first case looks for a join event followed by
an add event (see figure 1(a)) and the second case looks for an add event followed by a
join event (see figure 1(b)). As per λ2, the second case looks for a liberal add followed
by a liberal join. The remaining part of the case statements conduct checks to ensure
that there is no subsequent de-authorizing event such as strict leave or remove following
this point of authorization. If there is none, the algorithm returns 1 indicating that the
user is authorized. Otherwise it returns 0 after step 3.

3.3 Implementation Considerations

Evidently, the stateful specification that has been presented in tables 2, 3 and 4 can
be comprehended and implemented by a competent programmer as compared to the
temporal logic based stateless specification. Since the stateless specification has been
analysed and certain security properties have been proven [4, 6] and has been shown to
be authorization equivalent to the stateful specification (section 4), the stateful specifi-
cation also is guaranteed to have those security properties.

As mentioned earlier, the authzSF function in table 4 is not designed for efficiency
but for ease of presentation. The worst case time complexity of this function is roughly
O(n2) where n is the sum of the number of events in the user and object tables. This is
because for each of the n iterations of the outer for loop in step 2, the loops in one of
the inner case statements could run through a maximum of n iterations.

This stateful specification has a few limitations. For instance, both the user and
object tables are unbounded. Nevertheless, this is not a major issue in many practical
applications in which membership status of users and objects do not change frequently.
Also, due to nature of phases 1 and 2 in table 2, all action requests need to be received
before they can be processed. Thus during phase 2 of interval, no requests will be ac-
cepted. The ordering of tasks in two phases ensures that the requests received during
the time interval will affect the authorization values that hold at the upcoming state.
These constraints may be unacceptable for certain application scenarios. Addressing
such limitations of the stateful specification is not the primary focus of this paper. Note
that the current stateful specification design allows user and object data structures to be
maintained in a distributed manner so that if a user membership status changes, it does
not require updating data structures of other users and objects in the system. One can



design alternate stateful specifications for the same stateless specification with different
trade-offs. For instance, one can maintain a single data structure that involves both users
and objects. But changes in any object’s group membership status will entail updating
entries for all users in the system. This would have limitations in distributing it.

4 Equivalence of Stateful and Stateless π-system Specifications

In this section, we show that the stateful specification is authorization equivalent to the
stateless specification. That is, in all possible traces, a user will be authorized to access
an object at any given state in the stateful π-system if and only if it is also the case in
the stateless π-system.

Given that we are dealing with traces in the stateless specification, we propose a
similar notion of traces in the stateful specification.

Definition 4 (State in Stateful Specification). A state in the stateful specification is a
specific interpretation of every user and object data structure maintained in the system
at the end of every clock tick.

Definition 5 (Stateful Trace). A trace in the stateful specification is an infinite se-
quence of states.

Definition 6 (Stateful π-system). The stateful π-system specification, πstateful, is given
in table 2 which consists of functions from tables 3 and 4.

Our goal now is to show that given a stateless and a corresponding stateful trace,
authorization is equivalent in every state. To establish this “correspondence”, we specify
mappings that would take a stateless trace and create a stateful trace and vice-versa.

Notation We use σ to denote a stateless trace and σ̂ to denote a stateful trace. σi refers
to state i in a trace σ with infinite states. We use σi,j to denote a state i in σ where we
only consider the first j states. Actions are represented using relations. Thus 〈u,g〉 ∈
[[SJstateless]]σi denotes that a user u is strictly joined to group g in state i in a state-
less trace σ. Similarly, 〈i, Join,Liberal〉 ∈ [[table(u,g)]]σ̂i denotes user u has liberally
joined group g in state i in a stateful trace σ̂.

Note that the time interval that a clock tick corresponds to is abstract. Any event
request (such as a request to join) that is processed during a transition from clock tick
(state) i to i+1 will receive a time-stamp of i+1. This convention makes stateful specifi-
cation consistent with the FOTL semantics in the stateless specification.

Definition 7 (Action Trace). Given a stateless or stateful trace in the π-system, an
action trace is a sequence of states excluding the authorization relation.

Definition 8 (Action Equivalence). A stateful trace σ̂ and a stateless trace σ are action
equivalent if the join, leave, add and remove actions match for every user and object in
every group in the corresponding states in σ̂ and σ.

Definition 9 (α-mapping). Given a stateless trace σ in πstateless, α-mapping creates an
action equivalent stateful trace σ̂ in πstateful.



Fig. 3. α and β mapping. Part (i) shows a sample stateless trace and part (ii) shows a correspond-
ing stateful trace. Note that the stateful trace generates the required action and authorization
requests during the time interval leading up to the state.

Rules used for α-mapping are straight-forward and given here by example. For ex-
ample (see figure 3), for each 〈u,g〉 ∈ [[SJstateless]]σi, create an entry 〈i, Join,Strict〉
in [[table(u,g)]]σ̂i. This is achieved by sending a SJReq(u,g) (see table 2) during phase
1 in the time interval between the state transition from σ̂i−1 to σ̂i. Similarly, for each
〈u,g〉 ∈ [[LJstateless]]σi, create an entry 〈i, Join,Liberal〉 in [[table(u,g)]]σ̂i. Similar
rules apply to other predicates.

Definition 10 (β-mapping). Given a stateful trace σ̂ in πstateful, β-mapping creates an
action equivalent stateless trace σ in πstateless.

Rules used for β-mapping are straight-forward and given here by example. For
example (see figure 3), for each tuple in [[table(u,g)]]σ̂i −[[table(u,g)]]σ̂i−1, create
that entry in corresponding relation in the stateless trace. That is if 〈i, Join,Strict〉 ∈
[[table(u,g)]]σ̂i −[[table(u,g)]]σ̂i−1, then create an entry 〈u,g〉 in [[SJstateless]]σi. Sim-
ilarly, for each 〈i, Join,Liberal〉 ∈ [[table(u,g)]]σ̂i, create an entry 〈u,g〉 in [[LJstateless]]σi.
Similar rules apply to other operations in the stateful specification.

Lemma 1. For every action trace σ that is generated by πstateless, a stateful action trace
σ̂ constructed using α-mapping is accepted by πstateful.

By the term “accepted by” above, we mean that by inputting an α-mapped trace to the
stateful π-system, the data structure it maintains must reflect the exact action trace of
the stateless π-system (see figure 3 for example).

Lemma 2. For every action trace σ̂ generated by πstateful, a stateless action trace con-
structed using β-mapping is accepted by πstateless.



By the term “accepted by” above, we mean that the β-mapped stateless action trace
will be well-formed as per the stateless π-system specification. The proofs of lemmas 1
and 2 follow directly from their definitions. Due to space limitations, the proofs are
provided in [5]. Next, we have the following 2 lemmas.

Lemma 3 (Soundness). For every trace σ̂ accepted by πstateful, there exists a β-mapped
trace σ that is accepted by πstateless such that:

∀i ∈ N.∀t ∈ 〈U ,O,G〉. t ∈ [[Authzπstateful ]]σ̂i → t ∈ [[Authzπstateless ]]σi

Lemma 4 (Completeness). For every trace σ accepted by πstateless, there exists an α-
mapped trace σ̂ that is accepted by πstateful such that:

∀i ∈ N.∀t ∈ 〈U ,O,G〉. t ∈ [[Authzπstateless ]]σi → t ∈ [[Authzπstateful ]]σ̂i

Due to space limitations, the proofs for lemmas 3 and 4 are provided in [5]. The proofs
are inductive.

Theorem 1. The stateful and stateless π-system specifications are authorization equiv-
alent. That is:

∀i ∈ N.∀t ∈ 〈U ,O,G〉. t ∈ [[Authzπstateful ]]σ̂i ↔ t ∈ [[Authzπstateless ]]σi

Proof. The theorem follows from lemmas 3 and 4.

The above theorem states that in every state in a stateful trace, the authorization relation
is equivalent to that of the corresponding state in a statefless trace. We have shown that
a highly abstract temporal logic based stateless specification can be grounded in a con-
crete stateful specification while maintaining equivalency with respect to authorization.

5 Conclusion and Future Work

We presented a methodology for consistent specification and enforcement of authoriza-
tion policies. The stateless specification is highly conducive to automated formal anal-
ysis using techniques such as model checking. However, it cannot be enforced using
the way it is specified. The stateful specification focuses on how to enforce the stateless
policy using distributed data structures and associated algorithms. This specification
can be implemented by programmers. We have established a formal bridge between
a highly abstract stateless specification and a relatively concrete stateful specification.
The next level of refinement is to generate distributed specification which account for
approximation (for example, due to network delay and caching) with respect to state-
less specification and a concrete implementation. Such incremental refinement of policy
specification while maintaining consistency at each transition is critical in secure sys-
tems design.

Our current stateful specification, although highly distributed, maintains unbounded
history of user and object actions. Our follow on work focuses on generating alternate
stateful specifications. One approach is to generate a stateful specification with bounded



data structures that maintain information about authorization status of each user for each
object. While this bounds the data structures, it requires modifying every object’s data
structures if the user’s membership status changes in the group. Another approach is to
generate a hybrid specification that combine the pros and cons of the two approaches
above and proving equivalence with respect to stateless specification. We believe our
methodology can be extended to other application domains with suitable adaptation of
proof techniques as needed.

Acknowledgments

The authors are partially supported by grants from AFOSR MURI and State of Texas
Emerging Technology Fund.

References

1. Bell, D., La Padula, L.: Secure computer systems: Unified exposition and multics interpreta-
tion. Technical Report ESD-TR-75-306 (1975)

2. Goguen, J., Meseguer, J.: Security policies and security models. IEEE Symposium on Security
and Privacy (1982)

3. Krishnan, R., Niu, J., Sandhu, R., Winsborough, W.: Stale-safe security properties for group-
based secure information sharing. In: Proceedings of the 6th ACM workshop on Formal meth-
ods in security engineering. pp. 53–62. ACM New York, NY, USA (2008)

4. Krishnan, R., Niu, J., Sandhu, R., Winsborough, W.: Group-centric secure information sharing
models for isolated groups. To appear in ACM Transactions on Information and Systems
Security (2011). Camera ready copy available at: http://engineering.utsa.edu/
~krishnan/journals/2010-tissecSACMAT.pdf

5. Krishnan, R., Sandhu, R.: Authorization Policy Specification and Enforcement for Group-
Centric Secure Information Sharing (Full Version). Tech. Rep. CS-TR-2011-016, University
of Texas at San Antonio, September 2011. Also available at: http://engineering.
utsa.edu/~krishnan/conferences/2011iciss-full.pdf

6. Krishnan, R., Sandhu, R., Niu, J., Winsborough, W.H.: Foundations for group-centric secure
information sharing models. In: Proc. of ACM symposium on access control models and tech-
nologies (2009)

7. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science. pp. 46–67 (1977)


