
Reachability Analysis for
Role-based Administration of Attributes

Xin Jin
Institute for Cyber Security

Univ of Texas at San Antonio
San Antonio, Texas, USA
dfb616@my.utsa.edu

Ram Krishnan
Institute for Cyber Security

Univ of Texas at San Antonio
San Antonio, Texas, USA

ram.krishnan@utsa.edu

Ravi Sandhu
Institute for Cyber Security

Univ of Texas at San Antonio
San Antonio, Texas, USA

ravi.sandhu@utsa.edu

ABSTRACT

Attribute-based access control (ABAC) is well-known and increas-
ingly prevalent. Nonetheless, administration of attributes is not
well-studied so far. Recently, the Generalized User-Role Assign-
ment model (GURA) was proposed to provide ARBAC97-style
(administrative role-based access control) administration of user
attributes. An attribute is simply a name-value pair, examples of
which include clearance, group and affiliations. In GURA, user
attributes are collectively administered by different administrative
roles to enable distributed administration. Given an administra-
tive policy that specifies the conditions under which administrative
roles can modify user attributes, it is useful to understand whether
an attribute of a particular user can reach a specific value because
user attributes are used for security-sensitive activities such as au-
thentication, authorization and audit. In this paper, we study the
user-attribute reachability problems in a restricted GURA model
called rGURA. We formalize rGURA as a state transition sys-
tem and show that the reachability problems for its general cases
are PSPACE-complete. However, we do find polynomial-time so-
lutions to reachability problems for limited versions of rGURA
that are still useful in practice. The algorithms not only answer
reachability problem but also provide a plan of sequential attribute
updates by one or more administrators in order to reach particular
values for user attributes. rGURA is relatively simple and practi-
cal. It is likely that other proposals will subsume the functionality
of rGURA and thereby subsume its complexity results.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protection—Access
controls
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Security
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1. INTRODUCTION
User attributes are functions which, given a particular user, re-

turn certain properties of the user. Examples are role, clearance,
department, etc. User attributes are often used in sensitive activ-
ities such as authorization, authentication and audit [1, 18, 22, 23,
24, 33]. For example, in attribute-based access control (ABAC)
[13, 18, 22], access decisions are made based on various user at-
tributes compared to identity in discretionary access control (DAC)
[30], clearance in mandatory access control (MAC) [28] and role
in role based access control (RBAC) [29]. Generalized User-Role
Assignment (GURA) model [17] was recently proposed for the
purpose of attribute administration. The core idea is that permis-
sions to modify user attributes are associated with administrative
roles. Administrators are made members of these roles, thus obtain-
ing associated permissions. GURA extends the user-role assign-
ment (URA) component of the well-known ARBAC97 adminis-
trative model [26] by generalizing user attributes beyond role. In
this paper we study a restricted version of GURA called rGURA.

A critical question regarding access control policies is whether
they ensure certain security properties. In context of rGURA, as
user attributes are further utilized for security-sensitive activities, it
is important to ensure that every user can only be assigned appro-
priately valid attribute values. Although administrators might be
trusted and expected to exercise due diligence in attribute assign-
ments, it is nevertheless desirable to determine exactly what values
of attributes can be assigned by a collection of administrators act-
ing cooperatively. Such analysis can also provide guidance on the
sequence of attributes modifications to achieve specific attribute as-
signments for specific users. It is not straightforward to understand
administrative policies by simple inspection. Large number of at-
tributes and policies and unexpected actions of administrators com-
plicate the analysis. Take the scenario in figure 1 as an example.
Figure 1(a) shows that users can only access sensitive resources
when the three attributes reach certain values simultaneously. Sup-
pose an administrative user in a manager role can assign a user to
“topsecret” clearance if the user is with “officer” role, with “secret”
clearance and not “part time” in work-type. It might seem that a
user can never be “part time” and with “topsecret” clearance at the
same time. The policy is summarized in figure 1(b). However, the
policy may inadvertently allow that. A user may be “full time” and
then assigned to “topsecret” clearance according to rule 1. After
that, he can be assigned to “part time” work-type according to rule
2. Reachability analysis can reveal such anomalies which may not
be explicitly considered or immediately obvious in policy design.

We explore attribute reachability analysis in this paper. Policy
analysis, which allows policy designers to check whether their poli-
cies meet their security goals, has been recognized as important in
access control [12, 20, 21, 25, 27, 31]. The closest work to this pa-
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Figure 1: Example user attribute reachability problem

per is role reachability analysis in ARBAC97 [11, 20, 31, 34, 36].
Since GURA is an extension to ARBAC which contains more
than one attribute, it is not sufficient to directly use the results from
ARBAC97 analysis. In ARBAC97 there is a single set-valued at-
tribute called role. In rGURA on the other hand there are multiple
attributes, some set-valued and some atomic-valued with possible
constraints across multiple attributes.

Our main contributions are as follows. (1) The reachability prob-
lem asks whether a user can be assigned to specific attributes values
by the actions of a set of administrators. We formally define user
attribute reachability by abstracting the rGURA model as a state
transition system. We consider different variations of queries for
set-valued attributes than that in ARBAC study. In ARBAC97
analysis, a goal (a set of roles) is reached if the user is assigned the
roles in goal or a superset of these. This is because the additional
roles cannot reduce authorization in RBAC systems. With general
attributes it is not clear how their values can impact authorization.
Additional values in a set-valued attribute may possibly reduce au-
thorization, depending on how the authorization policies are spec-
ified. Therefore, we also consider the case where set-valued at-
tributes should be assigned exactly the same values as in goal but
not a superset. (2) By reductions from the role reachability problem
in ARBAC97 and the planning problem in artificial intelligence,
we show that general attribute reachability problems are PSPACE-
complete, along with identified special cases. We also consider
special NP-complete or NP-hard cases. (3) We identify polynomial
time solvable cases which are useful in practice. As the input to the
algorithms may be large and the analysis may need to be performed
frequently, polynomial performance is always desirable. We further
evaluate performance through simulations.

This paper focusses on user attributes. In general, attributes are
also associated with other entities such as subjects, objects and en-
vironment in ABAC systems [13]. Our reachability analysis re-
sults apply to attributes of any such entity so long as they are man-
aged using the rGURA style, that is each attribute is managed by
administrative users who can modify it provided the entities’ at-
tributes satisfy specified preconditions. However, rGURA-style
models may not be appropriate for attribute administration in all
possible scenarios. For instance, one may allow subjects of regular
users to modify object attributes, especially objects that they cre-
ate. While the rGURA style is likely best suited to user attributes
it does have broader applicability beyond the scope studied in this
paper. For example, in a cloud computing scenario, the attributes
of the same user may be administered distributively by different at-
tribute providers and users may use these attributes to request the
same online service [8]. These attributes may also be constrained
by each other as modeled in GURA.

The remainder of this paper proceeds as follows. Section 2 in-
troduces rGURA scheme. Section 3 formally defines reachability
problems and overviews our analysis results. Section 4 provides
algorithms and proofs of correctness and complexity. Section 5
outlines additional interesting results. Section 6 presents experi-
mental results. We discuss related work in section 7 and conclude
in section 8.

2. PRELIMINARIES
The user-attribute assignment model GURA (Generalized User-

Role Assignment) was recently proposed [17]. It characterizes
ARBAC97 style administration for user attributes. The core idea
is that permissions to modify user attributes are associated with ad-
ministrative roles. Administrators are made members of these roles
and obtain the associated permissions. In this section, we provide
an overview of rGURA and define relevant terminology.

2.1 User Attributes
User attributes characterize properties of users and are modeled

as functions. We recognize two types of user attribute functions
depending on the nature of the function’s values: atomic-valued
(e.g., an attribute function Security Clearance that can take a single
value such as secret or confidential for a given user) and set-valued
(e.g., an attribute function Role that can take multiple values such
as employee and manager). For convenience we often say attribute
rather than attribute function. More formally:

• U is the finite set of existing users in the system.

• ATTR is the finite set of user attribute functions, where
attType : ATTR → {set, atomic}.

• For each att ∈ ATTR, SCOPEatt is a finite set of atomic
values which determines the range of att as follows.

Range(att) =

{

SCOPEatt if attType(att) = atomic

P(SCOPEatt) if attType(att) = set

where P denotes the power set of a set.

DEFINITION 1 (USER ATTRIBUTE). A user attribute is a func-

tion that maps each user to a value in the attribute’s range, i.e.,

∀att ∈ ATTR. att : U → Range(att)

Example 1. In Table 1 Clr (Clearance) and Dept (Department)
are atomic-valued attributes, while Prj (Project) and Skill are set-
valued. An example attribute assignment for user Alice is: Clr(Alice)
= unclassified, Dept(Alice) = software, Proj(Alice) = {mobile, so-
cial, search} and Skill(Alice) = {web, security}.

2.2 Administrative Requests
In rGURA, administrative requests are made by members of ad-

ministrative roles to modify attributes of users in U. A request takes
effect only if it is authorized by an administrative rule introduced
later in this section. An authorized request is called an action. In
this paper we are concerned with the collective power of the admin-
istrative roles. We therefore do not distinguish specific members,
and simply ascribe a request to an administrative role rather than to
one of its members. Management of membership in administrative
roles is outside the scope of rGURA. For simplicity we assume the
finite set of administrative roles AR is flat, although as discussed
later in the paper our analysis also applies to hierarchical AR.

Atomic-valued attributes are modified via an assign action which
replaces the current value with a new value. For set-valued at-
tributes, an add action is used to add a single atomic value to an
existing attribute set, while a delete action is used to remove a spe-
cific atomic value from an existing set. More formally, for each ar
∈ AR, u ∈ U, att ∈ ATTR and val ∈ SCOPEatt,

• assign(ar, u, att, val) is a request made by (a member
of) administrative role ar to assign value val to the atomic-
valued attribute att of user u. Suppose AR = {gameleader,
manager} and Alice’s attribute assignments are as in example
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Table 1: Example User Attributes

Attribute Type Scope Range
Clr atomic SCOPEClr = {unclassified, confidential, secret, topsecret} Range(Clr) = SCOPEClr

Dept atomic SCOPEDept ={software, hardware, finance, market} Range(Dept) = SCOPEDept

Proj set SCOPEProj ={search, game, mobile, social, cloud} Range(Proj) = P(SCOPEProj)
Skill set SCOPESkill ={web, system, server, win, linux, security} Range(Skill) = P(SCOPESkill)

Table 2: Example Rules in rGURA0 and rGURA1 Schemes

Example Rules in rGURA0 Scheme

N. Relation Admin Role Precondition Value

1 can_addProj gameleader mobile ∈ Proj(u) ∧ social ∈ Proj(u) ∧ ¬(cloud ∈ Proj(u)) game

2 can_deleteProj gameleader game ∈ Proj(u) ∧ social ∈ Proj(u) game

3 can_assignDept manager Dept(u) = software market

4 can_assignDept manager Dept(u) = hardware market

Example Rules in rGURA1 Scheme

5 can_addProj gameleader mobile ∈ Proj(u) ∧ social ∈ Proj(u) ∧ ¬(cloud ∈ Proj(u)) ∧ Dept(u) = software ∧
Clr(u) = unclassified ∧ web ∈ Skill(u) ∧ security ∈ Skill(u)

game

6 can_deleteProj gameleader game ∈ Proj(u) ∧ ¬(Clr(u) = topsecret) game

7 can_assignDept manager Dept(u) = software ∧ ¬(Clr(u) = unclassified) ∧ server ∈ Skill(u) ∧ win∈ Skill(u) market

8 can_assignDept manager Dept(u) = hardware ∧ ¬(Clr(u) = unclassified) ∧ server ∈ Skill(u) ∧ win∈ Skill(u) market

1. The request assign(manager, Alice, Dept, hardware) is
made by (a member of) administrative role manager to assign
Alice to hardware department. If this request is authorized,
Alice’s Dept attribute will change from software to hardware.

• add(ar, u, att, val) is a request made by ar to add value
val to the set-valued attribute att of user u. E.g., add(manager,
Alice, Proj, game) is a request made by manager to add Alice
to the game project. If authorized, Proj(Alice) becomes {mo-
bile, social, search, game}. The operation add has no effect
if the value to be added is already present in the attribute.

• delete(ar, u, att, val) is a request made by ar to delete
val from attribute att of user u. E.g., delete(manager, Alice,
Proj, game) is a request by manager to delete Alice from
game project. If authorized, Proj(Alice) would revert back
to {mobile, social, search}. As a set operation delete has no
effect if the value being deleted is not present in the attribute.

DEFINITION 2 (ADMINISTRATIVE REQUESTS). Administrative
requests are made by members of administrative roles to modify
user attributes. REQ = ASSIGN ∪ ADD ∪ DELETE denotes
the set of all possible administrative requests where,

• ASSIGN = {assign(ar, u, att, val) | ar ∈ AR ∧ u ∈
U ∧ att ∈ ATTR ∧ attType(att) = atomic ∧ val ∈
SCOPEatt}

• ADD = {add(ar, u, att, val) | ar ∈ AR ∧ u ∈
U ∧ att ∈ ATTR ∧ attType(att) = set ∧ val ∈
SCOPEatt}

• DELETE = {delete(ar, u, att, val) | ar ∈ AR ∧ u ∈
U ∧ att ∈ ATTR ∧ attType(att) = set ∧ val ∈
SCOPEatt}

2.3 Administrative Rules
An administrative request takes effect only if it is authorized by

an administrative rule. Administrative rules specify the necessary
preconditions for authorizing administrative requests. A precondi-
tion is a logical formula expressed over user attributes that evalu-
ates to true or false (e.g., Clr(Alice) ≥ confidential ∧ game ∈
Proj(Alice)). The power of the administrative model lies in the
expressive power of the preconditions, which can be specified by

different grammars for defining preconditions. We define the gram-
mars for two specific rGURA models later. An administrative rule

specifies the authorization for administrative requests. Administra-
tive rules are specified as follows.

DEFINITION 3 (ADMINISTRATIVE RULES). Administrative

rules are tuples in the following relations where C is a set of pre-

conditions (specified by a formal grammar for each instance of a

GURA model). For each atomic-valued attribute aua ∈ ATTR,

can_assignaua ⊆ AR× C× SCOPEaua

The rule 〈ar, c, val〉 ∈ can_assignaua authorizes the requests

assign(ar, u, aua, val) if user u satisfies precondition c. For each

set-valued attribute sua ∈ ATTR,

can_addsua ⊆ AR× C× SCOPEsua

can_deletesua ⊆ AR× C× SCOPEsua

The rule 〈ar, c, val〉 ∈ can_addsua authorizes the requests add

(ar, u, sua, val) if user u satisfies the precondition c, and the

rule 〈ar, c, val〉 ∈ can_deletesua similarly authorizes requests

delete(ar, u, sua, val) if user u satisfies precondition c.

Examples of administrative rules are shown in table 2. We ex-
plain selected rules here. Rule 1 authorizes members of gameleader
role to add “game” to “project” attribute of any user who is cur-
rently in “mobile” and “social” projects but not in “cloud”. Rule
4 states that manager role can assign a value of “market” to the
“Dept” attribute of a user if the user currently belongs to the “hard-
ware” department. We use can_assign to denote the collection of
can_assignaua relations for all atomic-valued attributes. That is,

can_assign = 〈can_assignatt1 , . . . can_assignattm 〉,

where att1, att2, . . . , attm are atomic-valued attributes. Similarly,
we use can_add and can_delete as follows:

can_add = 〈can_addatt′
1
, . . . can_addatt′

n
〉

can_delete = 〈can_deleteatt′
1
, . . . can_deleteatt′

n
〉

where att′1, att′2, . . . , att′n are set-valued attributes.
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2.4 Restricted GURA (rGURA)
Our analysis focuses on a simple grammar for specifying the pre-

conditions C, which is a subset of the precondition grammars de-
fined for GURA [17]. Hence we call it the rGURA (restricted
GURA) model. We expect practical administrative models to have
richer precondition grammars, but these are likely to include the
capabilities provided in rGURA. Our results therefore establish
lower bounds on the analysis complexity for these richer models.

2.4.1 rGURA Scheme

An rGURA scheme is a state transition system where a state is
an attribute assignment for each user and each attribute. State tran-
sitions are caused by authorized administrative requests to mod-
ify user attributes. We give the general definition for an rGURA
scheme below, followed by two specific instantiations rGURA0

and rGURA1 with specific formal grammars for preconditions.

DEFINITION 4 (rGURA SCHEME). An rGURA scheme is

a state transition system 〈U, ATTR, AR, Range[], attType[],
SCOPE, Ψ, Γ, δ〉 where,

• U, ATTR, AR, Range[] and attType[] are defined above.

• SCOPE = 〈SCOPEatt1 . . .SCOPEattn〉 where atti ∈
ATTR, is the collection of the scopes of all attributes.

• Ψ = 〈can_assign, can_add, can_delete〉, is the collection of

administrative rules for all attributes.

• Γ is the finite set of states. A state γ ∈ Γ records assigned

attribute values for each user. The user attribute assign-

ment in state γ, denoted UAAγ , contains tuples of the form

〈u, att, val〉 for every u ∈ U and every att ∈ ATTR such

that att(u) = val. Formally,

UAAγ ={〈u, att, val1〉 | u ∈ U ∧ att ∈ ATTR ∧

val1 ∈ Range(att) ∧ (∀val2 ∈ Range(att).

val2 6= val1 → 〈u, att, val2〉 /∈ UAAγ)}

• δ : Γ× REQ → Γ is the transition function, where REQ is

the set of all possible administrative requests defined above.

Function δ is formally defined in table 3.

2.4.2 The rGURA0 Scheme

An rGURA0 scheme is an instance of a rGURA scheme where
the grammar for specifying preconditions is specified as follows. In
each can_assignaua relation for each atomic-valued attribute, the
preconditions in all rules are generated by the following grammar,

ϕ ::=¬ ϕ | ϕ ∧ ϕ | aua(u) = avalue

avalue ::= aval1 | aval2 . . . | avaln

where SCOPEaua = {aval1, aval2, . . . , avaln}. In all rules
in can_addsua and can_deletesua relations, the preconditions are
formulas generated by the following grammar,

ϕ ::= ¬ ϕ | ϕ ∧ ϕ | svalue ∈ sua(u)

svalue ::= sval1 | sval2 | . . . | svalm

where SCOPEsua = {sval1, sval2, . . . , svalm}.
Example 2. The first part of table 2 shows example adminis-

trative rules in rGURA0 based on the attributes listed in example
1. We assume that Bob is a member of administrative role “game-
leader” and Alice is a user whose attributes are as given in example
1. Rule 1 authorizes Bob to add “game” to the Proj attribute of Al-
ice. Bob is also authorized to delete “game” from Proj attribute of

Alice based on rule 2. However, if Proj(Alice) = {mobile, social,
cloud}, the add request will not take effect. Rules 3 and 4 are spec-
ified for the attribute Dept and they allow members of “manager”
role to assign users who are currently in “software” or “hardware”
department to “market” department. Note that multiple rules can
be specified for the same attribute name and value combinations.

2.4.3 The rGURA1 Scheme

An rGURA1 scheme is an instance of a rGURA scheme where
the preconditions in all rules can be specified using the grammar,

ϕ ::= ¬ϕ | ϕ ∧ ϕ | aua(u) = avalue | svalue ∈ sua(u)

where avalue and svalue are non-terminals and could be any value
from the scope of any atomic-valued and set-valued attribute re-
spectively. Similarly, non-terminal symbols aua and sua can be
any atomic-valued and set-valued attribute respectively of the user
u. Note that each attribute should be compared with a value from
its respective scope, otherwise, the formulas return false.

Example 3. The second part in table 2 shows example admin-
istration rules in rGURA1 based on attributes in table 1. Unlike
rGURA0, the preconditions of administrative rules in rGURA1

can be specified using any attributes of the user. We assume that
Alice has the same attribute assignment as in example 1. Bob is
a member of “gameleader” role. Rule 5 authorizes Bob to add
value “game” to Alice’s Proj attribute. If Clr(Alice) = topsecret, the
above request will not be authorized. Similarly, according to rule 7,
Bob is not authorized to assign Alice to “market” department since
Clr(Alice) = unclassfied. Other rules are self-explanatory.

3. PROBLEM DEFINITION AND RESULTS

OVERVIEW
In this section, we define reachability problems and provide an

overview of the complexity analysis results.

3.1 Attribute Reachability Problem
The attribute reachability problem (or simply the reachability

problem) is informally defined as follows. Given an initial state
with an assignment of each attribute for a particular user, can mem-
bers of a set of administrative roles issue one or more administra-
tive requests that transition the system to a target state with specific
attribute assignments for that user? Before formally defining the
reachability problems in the context of the rGURA0 and rGURA1

schemes defined earlier, we note two simplifications. Firstly, reach-
ability analysis questions are about one user. Since modifications
to attributes of one user have no impact on potential changes to the
attributes of other users, we only consider the attribute assignment
of a single user of interest in a state. That is, we assume U = {u}
in all of our analysis. Secondly, reachability problems ask about
the power of members of a set of administrative roles SUBAR ⊆
AR. In this case, the administrative rules specified for roles not in
SUBAR need not be considered for the analysis. We assume that
the scheme is provided with Ψ which only contains administrative
rules for roles in SUBAR, that is, AR = SUBAR.

The above simplification eases our presentation without loss of
generality. We now define the notion of a query which is concerned
about whether a particular state “satisfies” specific attribute assign-
ments for a given user.

DEFINITION 5 (REACHABILITY QUERY). A Reachability
Query specifies value-assignments for selected attributes of a user

in the target state. Let Q denote the set of queries. Each query q ∈
Q is a subset of UAAγ .
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Table 3: State Transition Function δ : Γ× REQ → Γ

(1) Let the source state be γ1. In all requests in the first column, ar ∈ AR, u ∈ U, att ∈ ATTR, val′ ∈ SCOPEatt.
(2) Satisfy: U × C× Γ→ {true, false}, returns true if user u ∈ U satisfies precondition c ∈ C in state γ ∈ Γ, else false.

Request Target State

assign(ar, u, att, val′)
if ∃ 〈ar, c, val〉 ∈ can_assignatt ∧ Satisfy(u, c, γ1)

then transition to target state γ2 where: UAAγ2 = UAAγ1 \ 〈u, att, val〉 ∪ 〈u, att, val′〉
else remain in γ1

add(ar, u, att, val′)

if ∃ 〈ar, c, val〉 ∈ can_addatt ∧ Satisfy(u, c, γ1)
then transition to target state γ2 such that UAAγ2 = UAAγ1 \ 〈u, att , setval〉 ∪ 〈u, att , setval′〉
where att(u) = setval in state γ1 and setval′ = setval ∪ {val′},

else remain in γ1

delete(ar, u, att, val′)

if ∃ 〈ar, c, val〉 ∈ can_deleteatt ∧ Satisfy(u, c, γ1)
then transition to target state γ2 where: UAAγ2 = UAAγ1 \ 〈u, att , setval〉 ∪ 〈u, att , setval′〉
where att(u) = setval in state γ1 and setval′ = setval \ {val′},

else remain in γ1

We say a query is satisfied at a “strict” level if every attribute
assignment specified in the query is exactly the same as that in the
concerned state. A query can be satisfied at a “relaxed” level if in
the concerned state every atomic-valued attribute assignment speci-
fied in the query is exactly the same but if every set-valued attribute
assignment in the concerned state is a superset of the correspond-
ing set-valued attribute assignment specified in the query. Note that
in both strict and relaxed levels the atomic-valued attributes in the
concerned state should exactly match the query. The distinction
arises in the values of set-valued attributes since the values in the
concerned state can either exactly equal or simply contain (super-
set) the value specified in the query. Since atomic-valued attributes
do not affect query satisfaction levels, we illustrate the difference
on set-valued attributes. For instance, let ATTR = {Proj} and U
= {Alice}. An example query is a user attribute assignment: q =
〈 Alice, Proj, {cloud, game}〉. In RP= or strict query type, q can
be satisfied only by states γ where UAAγ = {〈 Alice, Proj, {cloud,
game}〉}. While in RP⊇ or relaxed query type, q can be satis-
fied by any state γ′ where UAAγ′ = {〈Alice, Proj, setval〉} and
{cloud, game} ⊆ setval. We formally specify the queries and the
satisfaction levels below.

DEFINITION 6 (REACHABILITY QUERY TYPES). Given a

scheme 〈U, ATTR, AR, Range[], attType[], SCOPE, Ψ, Γ, δ〉,
we define two Reachability Query Types:

• RP= queries have the entailment function ⊢RP=
: Γ × Q→

{true, false} which returns true (i.e., γ ⊢RP=
q) if ∀ 〈u,

att, val〉 ∈ q. 〈u, att, val〉 ∈ UAAγ .

• RP⊇ queries have the entailment function ⊢RP⊇
: Γ × Q→

{true, false} which returns true (i.e., γ ⊢RP⊇
q) if ∀ 〈u,

att, val〉 ∈ q: (1) 〈u, att, val〉 ∈ UAAγ if attType(att)
= atomic and (2) ∃〈u, att, val′〉 ∈ UAAγ where val′ ⊇
val if attType(att) = set.

DEFINITION 7 (PLAN). A plan is a sequence of authorized

administrative requests that causes a transition from one state to

another. Given a scheme 〈U, ATTR, AR, Range[], attType[],
SCOPE, Ψ, Γ, δ〉 and states γ, γ′ ∈ Γ, a sequence of authorized

requests 〈 req1, req2, . . ., reqn〉 where reqi ∈ REQ (1 ≤ i ≤ n)
is called a plan to transition from an initial state γ to the target

state γ′ if: γ
req1→ γ1

req2→ γ2 . . .
reqn→ γ′. The arrow denotes a

successful transition from one state to another in response to an

administrative request reqi that is authorized by rules in Ψ. For

convenience, we also write γ
planΨ

 γ′.

The reachability problem is concerned about whether it is pos-
sible to transition an initial state to some target state where the
attribute-value assignments satisfy a particular query.

DEFINITION 8 (REACHABILITY PROBLEMS). Given a

scheme 〈U, ATTR, AR, Range[], attType[], SCOPE, Ψ, Γ, δ〉:

• An RP= Reachability Problem instance I is of the form 〈γ,

q〉 where γ ∈ Γ and q ∈ Q and asks does there exist a plan

P for problem instance I such that γ
PΨ

 γ′ and γ′ ⊢RP=
q.

• An RP⊇ Reachability Problem instance I is of the form 〈γ,

q〉 where γ ∈ Γ and q ∈ Q and asks does there exist a plan

P for problem instance I such that γ
PΨ

 γ′ and γ′ ⊢RP⊇
q.

3.2 Overview of Analysis Results
It is evident from the definitions, given the same scheme and

problem instance, if the RP= problem has a positive answer then
so does the RP⊇ problem, but not vice versa. The size of input
for each problem instance I is the sum of size of each set in I .
Our analysis proves the complexity of attribute reachability prob-
lems for rGURA schemes in general is PSPACE-complete. How-
ever, we have identified instances of the rGURA scheme with
some restrictions on the precondition specification in administra-
tive rules that have more practical time complexity. Moreover,
these instances have many practical applications as will be dis-
cussed later. The following restrictions are considered:

• No negation (N ): Ψ satisfiesN if no rules in Ψ use negation
in preconditions.

• No deletion (D): Ψ satisfiesD if for all set-valued attributes
sua in ATTR, can_deletesua is empty. This restriction ap-
plies only to problem instances containing set-valued attributes.
It implies that once a value is added, it can never be deleted.

• Single rule (SR): Ψ satisfies SR if: (1) for each atomic-
valued attribute aua ∈ ATTR, there is at most one precon-
dition associated with a particular value assignment in the
can_assignaua and (2) for each set-valued attribute sua ∈
ATTR, there is at most one precondition associated with a
particular value assignment in each of the can_addsua and
can_deletesua. That is (1) ∀att ∈ ATTR ∧ attType(att) =
atomic. ∀val∈ SCOPEatt, |{c | 〈ar, c, val〉 ∈ can_assignatt}|
≤ 1 and (2) ∀ att ∈ ATTR ∧ attType(att) = set. ∀ val ∈
SCOPEatt, |{c | 〈ar, c, val〉 ∈ can_addatt}| ≤ 1 and |{c |
〈ar, c, val〉 ∈ can_deleteatt}| ≤ 1.
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Figure 2: Complexity Results for Different Classes of Reachability
Problems

The SR restriction means that the preconditions in can_assign,
can_add or can_delete rules specified for each attribute-value pair
are unique. However, the corresponding rules could still be as-
signed to different administrative roles. For instance, suppose an-
other rule is in the can_addProj in item 1 in table 2 as follows.

(manager,mobile ∈ Proj(u) ∧ social ∈ Proj(u)∧

¬(cloud ∈ Proj(u)), game)

The SR restriction is still satisfied since given an attribute and value
pair (the attribute being “Proj” and the value being “game”), the
preconditions remain the same even though there are multiple rules
that allow adding the same value to that attribute. Here, the two
rules allow members of different administrative roles to add “game”
to the attribute “Proj”. If the above rule is modified as follows

(manager,mobile ∈ Proj(u) ∧ ¬(cloud ∈ Proj(u)), game)

the SR restriction is no longer satisfied. Similar considerations ap-
ply to rules in can_deleteatt and can_assignatt .

Another restriction is the type of attributes contained in the sys-
tem. It’s possible that a system deals only with atomic-valued or
set-valued attributes. These restrictions are also considered. Many
attribute semantics and applications work well with the above re-
strictions to be of practical use. The positive results are that in such
situations reachability analysis can be performed efficiently. For
instance, consider a scenario to express necessary prerequisites to
register for a course in a university. Let a “course” attribute keep
track of the set of courses a student has earned credits for. The
preconditions to register for a course in this scenario are mostly
positive which commonly check whether the student has success-
fully completed all the prerequisite courses. This would satisfy the
N restriction. Consider a “Skill” attribute that keeps track of user
skills (e.g., web, system, etc. as mentioned in table 1) which may
never need to be deleted after add and hence satisfies the D re-
striction. The SR restriction can be satisfied in situations where
there are no alternative preconditions that allow a particular value
to be assigned/added/deleted to/from an attribute. That is, there is
exactly one and only way an attribute can obtain a particular value.

We use [rGURAx-[atomic, set], Restriction] to denote a
specialized rGURA scheme on which we perform reachability anal-
ysis. The subscript x takes a value of 0 or 1 representing an rGURA0

or rGURA1 scheme and [atomic, set] means that the scheme con-
tains only the specified type of attributes (if not specified, it repre-
sents the general case where both types of attributes are included).
Restriction represents possible combinations of SR, D and
N meaning that the rules in the scheme satisfies those restrictions.

Thus [rGURA1-atomic,N ] denotes an rGURA1 scheme 〈U, ATTR,
AR, Range[], attType[], SCOPE, Ψ, Γ, δ〉 where ATTR con-
tains only atomic-valued attributes and Ψ satisfies N .

Figure 2 summarizes our analysis using the above notation. The
left column shows the results for rGURA0 variations and the right
column for rGURA1 variations. Each scheme is specified in a box
which includes theorem and corollary number (abbreviated Th and
C respectively) in section 4 that provides the proof for that specific
scheme and query type. An arrow from a box to another indicates
that the restrictions specified on the arrow when applied to the for-
mer box lead to the latter. Note that for schemes that contain only
atomic-valued attributes, only RP= queries are considered. For
schemes that only contain set-valued attributes or both types of at-
tributes, both RP= and RP⊇ are considered. Reachability analysis
in general is intractable except RP= in [rGURA0-atomic]. While
the PSPACE-hardness results are not highly surprising, several of
them are interesting and insightful.

(1) In the rGURA0 column, [rGURA0-atomic] is the only scheme
that has a polynomial-time algorithm without further restrictions.
Since this scheme only has atomic-valued attributes, only the RP=

query is considered. However, RP⊇ and RP= in [rGURA0-set]
abruptly escalate to PSPACE-complete. This big jump is caused
by negative preconditions and delete operations. Since [rGURA0-
set] is similar to ARBAC97, many of the results from prior work
on reachability analysis in ARBAC97 can be adapted here [31].
Thus if N is enforced, RP⊇ is polynomial-time solvable. If D is
enforced, RP⊇ for [rGURA1-set, D] is in NP (see section 5).

(2) In rGURA1, the complexity for reachability problems dif-
fers sharply from rGURA0 for systems containing only atomic-
valued attributes (from polynomial-time to intractable) while not
so much for systems containing only set-valued attributes (both are
PSPACE-complete). The huge increase in complexity for schemes
containing only atomic-valued attributes is caused by mutual con-
straints of attributes on each other in the preconditions for rGURA1.
In order to satisfy a query, attribute values may need to be re-
assigned a large number of times. In addition, each attribute needs
to be satisfied simultaneously which also increases the complexity.

(3) Also interestingly, similar restrictions work fairly differently
on atomic-valued and set-valued attributes in rGURA1. A notable
example is N . RP= in [rGURA1-atomic, N ] is surprisingly in-
tractable while RP= and RP⊇ for [rGURA1-set, N ] are in P.

(4) The [rGURA1-set] scheme is intractable for both RP= and
RP⊇. However, two types of restrictions yield polynomial-time
analysis results: [rGURA1-set, N ] and [rGURA1-set, SR, D].

4. FORMAL PROOFS
In this section, we walk through proofs for the results in fig-

ure 2. For schemes with PSPACE-complete complexity, we show
reduction to a known problem in that class. For schemes in the
polynomial-time solvable class, we provide polynomial-time algo-
rithms with correctness proofs. There are two parts to a PSPACE-
complete proof: a proof to show that the scheme is solvable in
PSPACE and a proof to show that the scheme is PSPACE-hard.
The first part is the same for all schemes in figure 2.

LEMMA 1. Every scheme in figure 2 is in PSPACE.

PROOF. Given any problem instance, a Non-deterministic Tur-
ing Machine can simulate the following algorithm. In each state,
the Turing machine stores the current user-attribute assignments,
attributes scopes, query and administrative policies. These are needed
to guess the next possible states. In each step, it guesses the next
possible states it can enter (there maybe more than one possible
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next states) by running the administrative policies against the cur-
rent user-attribute assignments. For each next state, the Turing
machine checks it against the query. If the query is satisfied, the
process stops. Otherwise, it repeats the same process. The space
needed for each state is polynomial to the input size which includes
the initial user-attribute assignments, attributes scopes1, query and
administrative policies. Thus, all problems are in NPSPACE and
thus also in PSPACE as implied by Savitch’s theorem [32].

4.1 rGURA0 Schemes
Consider the [rGURA0-atomic] scheme which only contains

atomic-valued attributes. In an rGURA0 scheme recall that modi-
fications to one attribute have no impact on future modifications to
other attributes (see section 2.4.2). Hence it is sufficient to confine
our analysis to the set of rules specified for a single attribute, re-
peating this process for each attribute in turn. In other words, we
can analyze the reachability of each attribute in the query indepen-
dently and the combine the results. Note that this strategy does not
work for rGURA1 schemes.

THEOREM 1. RP= for [rGURA0-atomic] is solvable in P.

PROOF. The reachability query for each single attribute is trans-
formed to a path search problem between two nodes in a directed
graph. In this graph, the nodes are the values from the scope of this
attribute. A directed edge from node n1 to node n2 represents an
action of assigning n2 to this attribute if the current value of that
attribute is n1. Detailed proof is provided in the appendix.

THEOREM 2. RP⊇ for [rGURA0-set] is PSPACE-complete.

PROOF. Given lemma 1, it suffices to show PSPACE-hardness.
As earlier, it is feasible to analyze the complexity of each attribute
independent of each other. Our proof is to show the reduction from
the role reachability problem. Combining the above observation,
the fact that role can be treated as simply another set-valued user
attribute and [rGURA0-set] has the same expressive as miniAR-
BAC97 [31], the reduction is straight forward as presented in the
appendix.

The miniARBAC97 work is useful for reduction with respect to
RP⊇ queries. However, it does not deal with RP= for which we
utilize the SAS planning problem [5] from artificial intelligence.

THEOREM 3. RP= for [rGURA0-set] is PSPACE-complete.

PROOF. Detailed proof is provided in the appendix.

COROLLARY 1. RP⊇ and RP= for [rGURA0] are PSPACE-

complete.

PROOF. Since RP⊇ and RP= in [rGURA0] can also be an-
swered by querying each attribute separately and this scheme sup-
ports both atomic and set-valued attributes, this result follows from
Lemma 1 and Theorems 1, 2 and 3.

This completes the left hand side of figure 2.

4.2 rGURA1 Schemes
For rGURA1-atomic schemes we have the following results for

RP=. (Recall that RP⊇ does not apply to rGURA1-atomic schemes.)

1Although some of the attributes ranges may be encoded with
smaller space than the number of values it may take (e.g., a integer
with a range of [1,n] can be encoded by O(1) rather than O(n)), the
space needed in the input is still polynomial because the adminis-
trative policies cannot be encoded in the same method.

THEOREM 4. RP= for [rGURA1-atomic,N ] is PSPACE-complete.

PROOF. By lemma 1, it suffices to show PSPACE-hardness. The
SAS planning problem under the U restriction is PSPACE-complete [5].
We give a reduction from [SAS planning, U] to [rGURA1-atomic,
N ]. In the former, only positive conditions are allowed in the op-
erators (pre and post) which is accommodated by the N restric-
tion. Consider an instance of the SAS planning problem 〈V , O,
s0, s∗〉. (1) Map each state variable to one user attribute whose
scope corresponds to the domain of the variable. Thus, s0 and s∗
map to two different attribute assignments. (2) Since each oper-
ator updates only one variable, it can be mapped to one rule in
can_assignatt where att is the corresponding user attribute of the
variable updated in the operator. The value to be assigned is the
same as that in post in the operator. The preconditions pre and prv

only specifies positive precondition (no negative comparisons be-
tween state variables and values from their domains) and they can
be specified using conjunctions. Negation is not required. The re-
duction process takes O(|V|+ |O|). This establishes that RP= for
[rGURA0-atomic, N ] is PSPACE-hard.

COROLLARY 2. RP= for [rGURA1-atomic] is PSPACE-complete.

PROOF. Follows from Theorem 4 and the fact that [rGURA1-
atomic, N ] is a sub-problem of [rGURA1-atomic].

For rGURA1-set we begin with the following observations.

COROLLARY 3. RP⊇ and RP= for [rGURA1-set] are PSPACE-

complete.

PROOF. This follows from Theorems 2 and 3 and the fact that
RP⊇ and RP= for [rGURA0-set] are sub-problems of RP⊇ and
RP= for [rGURA1-set] respectively.

COROLLARY 4. RP⊇ and RP= for [rGURA1] are PSPACE-

complete.

PROOF. This follows from Corollaries 2 and 3.

We now consider the RP⊇ problem for [rGURA1-set,N ] which
can be solved in polynomial-time by Algorithm 1. The algorithm
works as follows. For RP⊇, we only need to consider issuing add

requests to the set-valued attributes. This is because only positive
preconditions are allowed, the rules cannot specify addition of new
values to the set-valued attribute based on absence of certain values
in the existing set. So existing values need not be removed in order
to successfully add a new value. Thus, we only need to investigate
can_add rules and completely ignore can_delete rules. Further-
more, additional values can be added to the attribute even if the
desired set value is reached because it deals with the RP⊇ prob-
lem. Starting from the given state, we traverse all rules in can_add
and try the add requests allowed by any rule if the corresponding
attribute value is not yet in the current set. Algorithm 1 terminates
either when (1) the current set can no longer be augmented by the
rules in can_add, or (2) all attributes are assigned with all values
from their scope. The outer while loop is required because a value
added to one or more of the attributes in an earlier round can po-
tentially enable new additions in subsequent rounds. This is due to
rGURA1 preconditions where attributes can constrain each other.

THEOREM 5. RP⊇ for [rGURA1-set, N ] is in P.

PROOF. Algorithm 1 provides a polynomial-time solution.
Correctness. (1) Assume that Algorithm 1 returns a plan. If the
plan is empty, the query q is trivially satisfied in γ. Otherwise,
it is ensured that if executed sequentially, there exists at least one
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Algorithm 1 Plan Generation for RP⊇ in [rGURA1-set, N ]

1: Input: problem instance I = 〈γ, q〉 Output: plan or false
2: plan = 〈〉;
3: Begin with state s=γ;
4: if s ⊢RP⊇

q then return plan
5: while true do
6: Let Save = UAAs;
7: for each att ∈ ATTR and 〈ar, c, val〉 ∈ can_addatt do
8: if s satisfies precondition c ∧ ( 6 ∃ 〈u, att, sv〉
9: ∈ UAAs such that val ∈ sv) then

10: Suppose that 〈u, att, setval〉 ∈ UAAγ ;
11: Go to state t such that
12: UAAt == UAAs \{〈u, att, setval〉}
13: ∪ {〈u, att, setval ∪ {val}};
14: s = t;
15: plan = plan.append(add(ar, u, att, val));
16: end if
17: end for
18: if UAAs == Save then break; else Save = UAAs;
19: end if
20: end while
21: if s ⊢RP⊇

q then return plan else return false end if

rule in can_add that authorizes each action in the plan. Thus, the
plan takes γ to another state that satisfies q. (2) When Algorithm
1 returns false, there does not exist a plan. We use contradiction.
Assume plan = 〈a1, a2, . . ., an〉 is a valid plan of length n and is
not detected by algorithm 1. Without loss of generality, we assume
ak (1 ≤ k ≤ n) is not detected and the state before ak is cur′. Thus,
according to line 8 in algorithm 1, either (a) there does not exist a
rule whose preconditions are satisfied in cur′ to authorize ak, or (b)
cur′ already contains the attribute value to be added in request ak.
In either case such an ak cannot exist. (3) Algorithm 1 always ter-
minates because the number of attributes and the attribute values to
be added to γ are bounded. Complexity. The complexity is deter-
mined by the number of times all the rules in can_add are traversed.
In the worst case, one value is added to one attribute during each
round of rule traversing. Thus, the complexity of Algorithm 1 is
O((

∑

att∈ATTR
|SCOPEatt|) × |can_add|) and it is polynomial.

|can_add| represents the size of all rules for all attributes.

Next we consider the RP= problem for [rGURA1-set, N ].

THEOREM 6. RP= for [rGURA1-set, N ] is in P.

PROOF. The proof is by reduction to the STRIPS planning prob-
lem [7] shown in the appendix.

We now consider RP⊇ for [rGURA1-set, SR,D] for which Al-
gorithm 2 provides a polynomial-time solution. The D restriction
obviates the need to include the rules from can_delete relations.
The SR restriction provides a critical advantage in our analysis.
Since a unique precondition facilitates addition of a value to an at-
tribute, the number of paths in the search space is greatly reduced.
The algorithm works by traversing backwards from the target state
as follows. Assume that the problem instance is 〈γ, q〉. For at least
one attribute, q requires a value which is a superset of that in γ
(otherwise, q is already satisfied by γ). For those attribute values in
q not in γ, there must be a corresponding add action in the plan if
it exists. In addition, in order to add those values, attribute values
which appear as positive preconditions in the administrative rules
which authorize those add actions must also be added and so on.
Thus, the basic idea is to use backward search to compute all at-
tribute values that are required to be added in order to satisfy q.
This is done by tracing rules in can_add for attributes and values

Algorithm 2 Plan Generation for RP⊇ in [rGURA1-set, SR, D]

1: Input: problem instance I = 〈γ, q〉 Output: plan or false
2: toadd = ∅; npre = ∅; cur = ∅; plan = 〈〉;
3: if γ ⊢RP⊇

q then return 〈〉
4: ∀ 〈u, att, vset〉 ∈ UAAγ . ∀ val ∈ vset.
5: cur′ = cur ∪ {(att, val)};
6: ∀ 〈u, att, vset〉 ∈ q. ∀ val ∈ vset.
7: toadd′ = toadd ∪ {(att, val)};
8: Repeat:
9: ∀ (att, val) ∈ toadd

10: ppre = {(att1, val1) | ∃ 〈ar, c, val〉 ∈ can_addatt such
11: that val1 ∈ att1(u) is a conjunct in c};
12: toadd′ = toadd ∪ ppre \ cur;
13: Until toadd does not change
14: if ∃ (att, val) ∈ toadd such that ∄ 〈ar, c, val〉 ∈ can_addatt
15: then return false end if
16: ∀ (att, val) ∈ toadd
17: npre′ = npre ∪ {att1, val1) | ∃ 〈ar, c, val〉 ∈ can_addatt
18: such that ¬(val1 ∈ att1(u)) is a conjunct in c};
19: if npre ∩ cur != ∅ then return false end if
20: Construct a directed graph G = 〈V,E〉;
21: V = toadd; E = ∅;
22: for each pair of nodes ((att, val), (att1, val1)) ∈ V do
23: if (∃〈ar, c, val1〉 ∈ can_addatt1such that val ∈ att(u)
24: is a conjunct in c) ∨(∃〈ar, c, val〉 ∈ can_addatt such
25: that ¬(val1 ∈ att1(u)) is a conjunct in c)
26: then E′ = E ∪ {〈(att, val), (att1, val1)〉}; end if
27: end for
28: plan = Topological ordering on graph G;
29: if topological ordering is successful then return plan;
30: else return false; end if

that need to be added and recursively for those values required in
the previous state (line 5 - line 9). Till now, only positive pre-
conditions have been considered. If negative preconditions of any
add request for values to be added are not satisfied in γ, q cannot
be satisfied (since they can never be deleted). Otherwise, negative
preconditions can only be introduced during each step of adding
new values. Thus, those add actions need to be ordered based on
mutual dependencies. This is achieved by creating a directed graph
which reflects dependencies of attribute values (line 16 - line 21).
A plan is a topological ordering of the graph (line 22). If there are
cycles in the graph, q can never be satisfied.

THEOREM 7. RP⊇ for [rGURA1-set, SR, D] is in P.

PROOF. Algorithm 2 provides a polynomial-time solution.
Correctness. (1) If algorithm 2 returns a plan and it is empty,
query q is satisfied in γ. If the plan is not empty, we assume plan
= 〈a1, a2, . . . an〉. We prove that the plan is valid. We first prove
that the first action a1 is allowed to be executed. Firstly, its positive
precondition is satisfied in γ. The repeat loop (line 5) only stops
when toadd does not change. It means positive preconditions for
all vertices already in toadd are either satisfied by ppre or cur.
Since a1 is the first action, its positive precondition is satisfied in
cur. Secondly, its negative precondition is satisfied in γ (otherwise,
line 14 returns false). If request ak (1 ≤ k ≤ n) is authorized, then
ak+1 is also allowed because ak+1’s positive precondition may be
satisfied in cur or action ak (and its negative precondition is sat-
isfied by both cur and ak). Thus, sequentially executing the plan
leads to a set of reachable states. q is satisfiable because in the first
round of repeat, toadd contains attribute values in q while not in
γ. (2) If algorithm 2 returns false, there are several reasons: (a) no
can_add rule for some of the attribute values in toadd; (b) some of
the negative preconditions are not satisfied in γ; (c) there are loops
in the graph created by lines 17-21. We show that at the least all at-
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tribute values in toadd should be added to reach q. Assume toadd
= {(a1, v1), (a2, v2) . . . (an, vn)}. Without loss of generality, we let
vset = toadd \ {(ak, vk)} which if added, transitions γ to a state
in which q is satisfied. Thus (ak , vk) is in ppre and is not in cur
in some round of repeat through lines 5 to 9. If it is not added,
it means 〈ar, c, val〉 6∈ can_addak−1

and (ak−1, val) cannot be
added. Thus, other attribute values which depend on these attribute
values are unreachable. Hence, q will not be satisfied. This suffices
to prove that situations (a), (b) and (c) are all correct. (3) Algo-

rithm 2 always terminates. The only loop is from line 5 to line 9. It
always ends because the number of rules and conjuncts in precondi-
tions is finite. Complexity. The graph can be created in polynomial
time and the topological sort also takes polynomial time. The total
complexity is O((

∑

att∈ATTR
|SCOPEatt|)× |Ψ|).

A minor extension to algorithm 2 can solve RP= for [rGURA1-
set, SR, D]. Since in this problem, q requires that a state has
exactly the same values for each attribute, adding attribute values
which are not specified in q is not allowed (attribute values in q
should be superset of corresponding attribute values in γ, other-
wise, q is not satisfiable). Before topologically sorting the graph,
we do the following preprocessing: (1) vset is a set of attribute
values which is in q while not in γ and (2) detect in the created
graph whether there exists a vertex in vset which contains incom-
ing edges from vertices not in vset. If yes, return false. Other-
wise, remove all other vertices not in vset. A topological ordering
of the vertex in vset is a valid plan for the problem.

THEOREM 8. RP= for [rGURA1-set, SR, D] is in P.

PROOF. Correctness. The only change to algorithm 2 is in
the last step (line 22). Because of the nature of RP=, if there
does not exist such a vset as explained earlier, q is never sat-
isfiable. Complexity. As described above, there is only one ad-
ditional process compared to algorithm 2: to detect vset which
takes O(

∑

att∈ATTR
|SCOPEatt|). Thus, the total complexity is

O((
∑

att∈ATTR
|SCOPEatt|)× |Ψ|) which is polynomial.

5. ADDITIONAL RESULTS
Earlier we’ve shown rGURA schemes for which reachability

problems are either PSPACE-complete or P. Here we briefly go
over additional schemes for which the RP⊇ is NP-complete and
NP. Firstly we look at additional results for RP⊇ for [rGURA0-
set]. Sizeable results on role reachability in miniARBAC97 can
be borrowed directly and utilized for RP⊇ for [rGURA0-set]. The
reason is that [rGURA0-set] is designed with the same expressive
power as ARBAC97 (considering role as one user attribute). Even
though there are multiple attributes in [rGURA0-set], their man-
agement is independent of each other [20, 31, 34].

For RP⊇ in [rGURA1-set, N ], we look at a relaxed restriction
compared to N , PosCanAdd which is defined as: in all rules in
can_add, only positive preconditions are allowed. Thus [rGURA1-
set, PosCanAdd] is solvable in P (follows trivially from Theo-
rem 5). For RP⊇ in [rGURA1-set, SR, D], if we take out SR
restriction, the complexity increases to NP-complete.

THEOREM 9. RP⊇ for [rGURA1-set, D] is NP-complete.

NP-hardness is proved through a reduction from role reachability
problem in miniARBAC97 policies without revocation which is
NP-complete. In addition, The length of any plan is bounded by
∑

att∈ATTR|SCOPEatt| as each attribute value can be added at
most once. Any plan can be verified in polynomial time. Interest-
ingly, even if we further loosen the D restriction to CD (No Con-
ditional Deletion), the complexity remains to be NP-complete. CD

is defined as follows: the can_delete relation is empty except for a
certain set of values for which the delete rules are unconditionally
true for some administrative roles in AR.

THEOREM 10. RP⊇ for [ rGURA1-set, CD ] is NP-complete.

The proof is borrowed from earlier results of other schemes as
shown in [rGURA1-set, D]. Details are shown in appendix.

Recall that we assumed the roles are flat in AR. However, the
analysis results also apply in hierarchies AR. The rules speci-
fied for each administrative role ar ∈ ARh are prorogated to roles
which are senior to ar as they are implicitly assigned with ar. The
restrictions defined in this paper will not be violated by the above
process because no new preconditions are introduced.

6. EXPERIMENTAL RESULTS
This section presents the experiments to evaluate the performance

of algorithms 1 and 2. We automate administrative rule generation
as follows. There are several parameters: attr represents the num-
ber of attributes, scope represents the size of each attribute scope,
ppre and npre represent the number of positive and negative con-
juncts in a precondition respectively, rpp represents the fixed num-
ber of can_add rules for each attribute-value pair. For each ran-
domly generated query, d represents the total number of desired
attribute and value pairs specified in the query where the desired
values are not already available in the initial state. For instance,
suppose that ATTR = {Prj, Skill} and U ={Alice}. In the initial
state, Prj(Alice) ={search} and Skill(Alice) ={web}. If the query
requires Prj(Alice) ={game, mobile}, Skill(Alice) ={web, system,
server}, then d would be 4 which is the number of attribute and
value pairs not reached in the initial state. We vary all these pa-
rameters to generate instances for both algorithms except that rpp
applies to only algorithm 1 and npre applies to only algorithm 2.
We generate at least one rule for each attribute and value pair (In
practice, it is possible that no rule is specified for some attribute
and value pairs). Each data reported is an average over 16 instances
generated using the same parameter values. In all 16 problem in-
stances, the query is satisfiable and a plan is returned. Times were
measured on a 2.53 GHz dual-core CPU with 2 GB RAM.

Results for Algorithm 1. The results are in figure 3a and 3b.
Figure 3a shows the impact of the sizes of attr and scope on exe-
cution time. We plot the number of attributes on the x-axis and time
consumed on y-axis. We plot a curve for different values of scope.
In all instances, we use ppre = 5, rpp = 3, d = 20. As expected, the
general trend is that the execution time increases with the increase
in attribute number and scope size and the change is faster as they
become larger. For instance, the execution time for attr = 30 and
scope = 30 is nearly 6 times that of when attr = 10 and scope =
30. The major reason is that the total number of rules are increased
(recall that we generate at least one rule for each attribute and value
pair). However, we believe that the number of the parameters are
reasonably small (for example, we do not expect a user to carry 100
attributes) in practical systems and hence the reachability problems
can be solved in a very reasonable amount of time.

Figure 3b evaluates the impact of ppre and rpp parameters. We
plot ppre on x-axis and time consumed on y-axis. We plot multiple
curves for different rpp values. In all problem instances, we use
attr = 20, scope = 50 and d = 10. Our result shows that there is
no trend of time increase with the size of ppre given the same size
of rpp. However, the total time increases with rpp given the same
ppre. The major reason is that the total number of rules affects
the algorithm complexity and it stays the same when rpp remains
the same. (The distance between initial state and the final state
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Figure 3: Performance Evaluation of Algorithm 1 and Algorithm 2 With Various Parameters

satisfying the query is also a factor. Since we set d to be constant,
its impact is not visible here.) Note that since the problem instances
are randomly generated, given the same ppre, the time for solving
the case of a bigger rppmay be lesser than when the rpp is smaller.

Results for Algorithm 2. The results are in figure 3c and 3d.
Figure 3c shows the impact of attr and scope on the execution
time. The x-axis shows the number of attributes and we plot mul-
tiple curves for different values of scope. In all problem instances,
we use npre = 1, d = 5 and ppre = 5. The time consumption
increases with attribute and scope size and it increase faster with
larger attr and scope. The major reason is that a larger number of
attribute and values pairs may need to be added to satisfy the query.

Figure 3d evaluates the impact of ppre and d. We plot the posi-
tive precondition size on x-axis and consider d varying from 10 to
30. In all problem instances, we use npre = 1, attr = 20 and scope
= 30. We can see from the figure that the time does not increase sig-
nificantly with ppre given the same d. However, the time increases
with d given the same ppre. The major reason is that when the
difference between the expected attribute values in the query and
the values in the initial state is larger, more attribute and value pairs
need to be added (recursive back tracking of can_add relations re-
sults in more attribute and value pairs to be added). Again, note
that in some instances (e.g. black and pink curves in the figure),
the time for a bigger d value is lesser than that when d is higher
due to the randomness in generation of our administrative rules.

7. RELATED WORK
The closest category of work is the role reachability analysis for

ARBAC97. Li et al [20] presented algorithms and complexity re-
sults for analysis of two restricted versions of ARBAC97–AATU
and AAR. However, this work did not consider negative precondi-
tions. Sasturkar et al [31] and Jha et al [16] presented algorithms
and complexity results for analysis of ARBAC policies subject to
a variety of restrictions on how the policy can be specified. Stoller
et al [34] proposed the first fixed-parameter-tractable algorithm for
analyzing ARBAC policies. However, the algorithm only applies
to rules with one positive precondition and unconditional role re-
vocation. Stoller et al [35, 36] analyzed security on parameterized
RBAC and ARBAC97. Although the parameters of role can be
considered as user attributes, all parameters are treated as atomic-
valued and are only changed together with the modification of role.
Similar works are [3, 4] which presented symbolic analysis for at-
tribute RBAC models. Our work is fundamentally different from
these in consideration of administration of multiple attributes in-
cluding atomic valued attributes, whereas the ARBAC97 analysis
only deals with a single set-valued attribute called role. The second
category is policy analysis in attribute based models. Gupta et al
[11] proposed rule-based administrative policy model that controls

addition and removal of both rules and facts, and a symbolic analy-
sis algorithm for answering reachability queries. The facts of users
may be termed as attributes. However, the model does not distin-
guish atomic and set valued attributes and the current version of the
algorithm is incomplete. Li et al [19] discussed security analysis in
role based trust management (RT). It is different from our work in
that the focus is on delegation and trust. In addition, only one at-
tribute, i.e. role, is considered. Jajodia et al [15] proposed a policy
language to express positive and negative authorizations and de-
rived authorizations, and they give polynomial-time algorithms to
check consistency and completeness of a policy. [6] showed how
to eliminate policy mis-configurations using data mining. [10] pre-
sented security constraint patterns for modelling security system
architecture and verifying whether required security constraints are
correctly enforced. However, this framework facilitates design and
deployment of security polices rather than run-time security analy-
sis. [14] developed a graphical constraint expression model to sim-
plify constraints specification and make safety verification practi-
cal, but does not ensure polynomial time safety checking.

While there are many works on constraints on policies [2, 9],
constraints can help mitigate reachability issues when a security
architect can plan ahead and disallow certain values of attributes
under certain scenarios. However, reachability analysis is still an
important issue since not all scenarios can be planned ahead.

8. CONCLUSION AND FUTURE WORK
This paper presents attribute reachability analysis in rGURA.

We formally define the problem and prove that it is in general in-
tractable. Further, we provide restrictions on the precondition spec-
ification in administrative rules to show polynomial time solutions.
We provide algorithms which determines reachability as well as
generates plans for the query. There are considerable future works.
The first direction is more polynomial time solutions. For instance,
tractable solutions for the scheme rGURA1-atomic and rGURA1

remain to be explored. Secondly, the rGURA scheme itself can be
extended in many directions. For instance, administrators could be
treated as regular users so administrative role is just another user
attribute. User attributes are utilized in determining administrative
privileges as well as in precondition specification. Precondition in
rules could allow specification of other users’ attributes thus con-
necting related users. Thirdly, more kinds of queries can be defined.
Except for the examples introduced in other related work (e.g., ex-
istence of length-bounded plan), queries can also be specified on
the relationships between the attributes of the same user.
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APPENDIX

Proof for Theorem 1. The following simple algorithm can be used
for solving the RP= query (recall that RP⊇ query does not apply to
this scheme). The plan to the original query on all attributes can be
obtained by combining the plan for satisfying each attribute. Based
on this observation, the reachability problem instance I = 〈γ, q〉 for
the scheme [rGURA0-atomic] can be reduced to finding whether,
for an attribute att ∈ ATTR, it is possible to reach a state γ′ from
γ that satisfies the condition that the value of att is the same as
the corresponding value specified in the query q. A directed graph
TG = 〈V, E〉 is constructed based on the rules in can_assignatt.
In this graph, V = Range(att). For each val1 and val2 in V , an
edge 〈val1, val2〉 is added to E if 〈ar, c, val2〉 ∈ can_assignatt and
att(u) = val1 is a conjunct in c. A query on att is equivalent
to a path search problem between the corresponding two nodes in
the graph which can be solved using well-known search algorithms
such as depth first search (DFS). It is straight forward to generate a
plan if the target value is reachable.

We assume that DFS is used. (1) Correctness. The algorithm
is well-known to be correct. (2) Complexity. We first discuss the
complexity for querying a single attribute att ∈ ATTR. The graph
can be created by traversing each rule once. Each rule adds at most
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|Range(att)| edges to the graph. The complexity of DFS on a
graph 〈V, E〉 is O(|V| + |E|). Thus, the complexity for solving RP=

for attribute att is O(|Range(att)|×|can_assignatt|). For problem
instances containing |ATTR| attributes, the overall complexity is
O(|ATTR| × |Range(att)| × |can_assignatt|), where att has the
largest |Range(att)| × |can_assignatt| amongst all attributes.

Proof for Theorem 2. Our proof shows the reduction that the
RP⊇ problem for [rGURA0-set] is at least as hard as the role
reachability problem in miniARBAC97 which is PSPACE-complete
[31]. Its problem instance can be understood as a 3-tuple 〈γ, goal, ψ〉
where γ is an initial state with role assignments for a particular
user, goal is the desired set of roles for that user in some future
state and ψ is a set of administrative rules that guides user-role
assignments by a set of administrative roles. The reachability ques-
tion asks whether a given set of administrative roles AR can act
with the permissions associated with their roles in ψ and transition
γ to a future state γ′ such that the desired role assignments spec-
ified in goal for a particular user is satisfied in γ′. In addition to
can_assign and can_revoke relations for roles, the miniARBAC97
also considers SMER (Static Mutually Exclusive Roles) constraints
which represents a set of conflicting roles that cannot be assigned
to the same user at any time.

The core idea of our construction is to treat roles in miniAR-
BAC97 as a user attribute called role. We assume that SMER = ∅
since it can be expressed in can_add rules using negative precon-
ditions [31]. The scope of the role attribute is the same as the set
of roles in miniARBAC97. It is straight-forward to specify each
of the can_assign and can_revoke rules in miniARBAC97 using
corresponding can_addatt and can_deleteatt rules in [rGURA0-
set] since the pre-condition grammar of rGURA0 is similar to
that of miniARBAC97. User-role assignment in the initial state in
miniARBAC97 can be mapped to attribute assignment in [rGURA0-
set] and the query can be specified. The reduction process takes
O(|γ|+ |goal|+ |ψ|). For a problem instance containing |ATTR|
number of attributes, the total complexity is the sum of complexity
of reduction for each attribute which is polynomial. This estab-
lishes that RP⊇ for [rGURA0-set] is PSPACE-hard.

Proof for Theorem 3. Per lemma 1, it suffices to show PSPACE-
hardness. We use the result from SAS planning problem [5]. An
instance of SAS planning problem is a tuple 〈V , O, s0, s∗〉, whereV
represents a finite set of state variables with pre-specified domains
for each variable, O represents a finite set of operators, s0 and s∗
represent initial and goal states and they are both total states (i.e.,
each variable is assigned with a value from its domain). An opera-
tor 〈pre, prv, post〉 updates state variables in post if the conditions
pre and prv are satisfied in the current state. The conditions pre,
prv and post are members of partial state space (state variables are
allowed to be unspecified). The problem is given an initial state s0,
does there exist a sequence of operators (a plan) which transition s0
to s∗? The plan-existence for the SAS planning problem under U
(each operator changes only a single state variable) and B (boolean
domain for state variables) restrictions is PSPACE-complete [5].

We show that RP= for [rGURA0-set] is at least as hard as the
[SAS planning, U, B] problem. As earlier, we consider the com-
plexity of reachability of one attribute att ∈ATTR independent of
others. The reduction is as follows, given any SAS planning prob-
lem satisfying U and B. (1) Each state variable is mapped to one
value in the scope of att. Thus, the scope of att is a set of values
whose size is the same as V . In each state, if a state variable is set to
true, the corresponding value is added to the attribute att. Thus,
s0 is specified using attribute assignment of att and s∗ is specified
as a query. (2) The operator which updates a state variable to true

is mapped to one rule in can_addatt and the operator which sets a

state variable to false is mapped to one rule in can_deleteatt (att
is mapped to the state variable in the operator). A precondition in
an operator can be specified as the precondition in each administra-
tive rule. The complexity of the reduction process is O(|V|+ |O|).
This establishes that RP= for [rGURA0-set] is PSPACE-hard.

Proof for Theorem 6. We use the result from STRIPS planning
problem [7]. An instance of STRIPS planning problem is a tuple
〈P , O, I, G〉, where P is a finite set of ground atomic formulas
called conditions (each take the value true or false), O is a finite
set of operators pre ⇒ post, where post updates the conditions to
either positive or negative if pre is satisfied. The pre and post are
satisfiable conjunctions of positive and negative conditions. Any
state can be specified by a subset of P , indicating that each ele-
ment in the subset is true and all others are false in the state. G
called goal is a satisfiable conjunction of positive and negative con-
ditions. S is a goal state if S all positive conditions in goal is in S
and none of the negative conditions in goal appears in S . STRIPS
planing explores a sequence of operators which transition the initial
state I to a state in which G is satisfied. PLANSAT is defined as
determining whether an instance of STRIPS planing is satisfiable.

[7] shows that [PLANSAT, ∗+preconds, 1 postcond] is poly-
nomial time solvable . Here, only positive preconditions are al-
lowed and each operator only modifies one condition, setting it
as either positive or negative. We show the reduction: plan exis-
tence in [PLANSAT, ∗+ preconds, 1 postcond] is at least as hard
as RP= in [rGURA1-Set, N ]. The reduction is as follows. Given
any [rGURA1-set, N ] scheme: (1) each attribute and value pair
(att, value) is mapped to a corresponding condition; (2) to specify
a state in [rGURA1-set], for each attribute and value pair, the cor-
responding condition is set to true. To specify a query in [rGURA1-
set], for each attribute and value pair in the query, the corresponding
condition is set to true. For all other attribute and value pairs not
in the query, their corresponding conditions are set to false. This
ensures the query is only satisfiable with exact the same value for
each attribute; (3) each rule in can_addatt is specified as a positive
operator which updates the corresponding condition for the speci-
fied attribute and value pair. The precondition is specified as pre,
the value to be added is specified in post; and finally (4) each rule in
can_deleteatt rule is specified as a negative operator. The reduc-
tion process takes O((

∑

att∈ATTR
|SCOPEatt|)+|Ψ|) where |Ψ|

is the number of all administrative rules (Ψ contains only can_add
and can_delete relations) which is polynomial.

Proof for Theorem 10. We assume that DV = {(att, val) | att
∈ ATTR ∧ val ∈ SCOPEatt} is a set of attribute values that can
be deleted without preconditions. If any attribute value appears in
any of the preconditions as negative conjuncts, it is safe to remove
it from the precondition of those rules if it is also in DV for the
purpose of our analysis. Members of administrative roles can delete
the values at any time for all users, it is no need to specify them
in preconditions. We pre-process all rules in can_add. There are
two situations when the pre-process is finished: (1) if there are no
negation in can_add rules, the problem is equivalent to RP⊇ in
[rGURA1-Set, PosCanAdd] and it has been shown earlier to be
solvable in P; (2) if negation exists in the preconditions of some
of the rules in can_add, the problem is then equivalent to RP⊇ in
[rGURA1-set, D]. The complexity is proved to be NP-complete
in theorem 9.
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