
On Feasibility of Attribute-Aware Relationship-
Based Access Control Policy Mining

Shuvra Chakraborty and Ravi Sandhu

Institute for Cyber Security (ICS) and NSF Center for
Security and Privacy Enhanced Cloud Computing (C-SPECC)

Department of Computer Science
University of Texas at San Antonio, San Antonio, Texas, USA

{shuvra.chakraborty,ravi.sandhu}@utsa.edu

Abstract. This paper studies whether exact conversion to an AReBAC
(Attribute-aware Relationship-Based Access Control) system is possi-
ble from an Enumerated Authorization System (EAS), given supporting
attribute and relationship data. The Attribute-aware ReBAC Ruleset
Existence Problem (ARREP) is defined formally and solved algorithmi-
cally, along with complexity analysis. Approaches to resolve infeasibility
using exact solutions are discussed.

Keywords: Access Control Policy Mining · Attribute-aware Relationship-
Based Access Control · Attribute-Based Access Control · Relationship-
Based Access Control.

1 Introduction

Relationship-Based Access Control (ReBAC) [7] emerged from the access control
requirements of Online Social Networks. ReBAC expresses authorization policy
in terms of various relationship parameters such as type and depth, whereas
Attribute-Based Access Control (ABAC) [8] has been motivated by its gener-
alized structure and versatility in access control policy specification through
attributes of users, resources and environment. Although ReBAC expresses au-
thorization through direct and indirect relationships, there are cases where using
relationships only is insufficient. Consider a social network policy where only
adults (18 or higher age) can send a friend request to anyone who lives in the
same location as themselves. Here, both age and location of each user in the
network must be known. Formally, these two required characteristics/attribute
can be incorporated with users to make policy generation more expressive and
flexible. Integrating attributes with ReBAC components certainly add more ex-
pressiveness [6], formally named as Attribute-aware ReBAC (AReBAC).

Generally, access control policy mining facilitates automation of migrating
from one access control system to another with certain set of assumptions such
as allowing direct use of entity ID in rule generation, strict or approximate equiv-
alency between the source and generated policy, and availability of appropriate

2 S. Chakraborty and R. Sandhu

supporting data. Deployment of manual effort to convert from one access control
system to another could be tedious, labor-intensive and error-prone.

This paper analyzes the feasibility of AReBAC policy mining from a given
Enumerated Authorization System (EAS) under certain assumption, for exam-
ple, no user ID will be allowed in the generated AReBAC rule. Note that, rule
generation is always possible with use of entity IDs. The major contributions
made in this paper are as follows.

– The first formal notion of Attribute-aware ReBAC RuleSet Existence Prob-
lem (ARREP) is developed. A novel algorithm for AReBAC policy mining
feasibility detection is presented along with complexity analysis.

– Infeasibility problem in ARREP is formulated. Furthermore, exact solutions
are proposed.

– Rule structure generality and unrepresented path label problem are noted.

2 Related Works

Although both ABAC and ReBAC have their own advantages to express au-
thorization policies (see [1] for a rigorous comparison of their expressive power),
integrating ABAC with ReBAC can provide finer-grained controls and improve
the expressiveness of standalone ABAC or ReBAC. For example, [6] presents an
attribute-aware ReBAC access control model.

Although the policy specification language in this paper is very different
from [2, 9], these two works are relevant related work. In [2], an approach to
mine ABAC and ReBAC policies has been proposed where access control lists
and incomplete information about entities are given. A few significant points
about [2] are i) the proposed algorithm prefers the context of ReBAC mining
because ReBAC is more general than ABAC, ii) entity ids are allowed to be
used (which makes the generated policy less general), and iii) there is a policy
quality metric available. Compared to [2], entity ids are strictly prohibited in
the attribute-aware context of this paper. On the other hand, [9] presents an
attribute-supporting ReBAC model for Neo4j (a popular graph database) that
provides finer-grained access control by operating over resources.

While this paper introduces feasibility in the field of AReBAC policy mining
for the first time, there are a few similar prior feasibility studies as follows.

– The work in [4] introduces ABAC RuleSet Existence Problem for the first
time. Besides, the notion of infeasibility correction has been discussed.

– The work in [5] adapts and extends ABAC RuleSet Existence Problem for
RBAC input. Additionally, it proposes infeasibility solution, with and with-
out presence of supporting attribute data.

– In [3], feasibility of ReBAC policy mining has been investigated for the first
time, assuming user to user relations are given by a static relationship graph.

Attribute-Aware ReBAC Policy Mining 3

3 Attribute-aware ReBAC RuleSet Existence Problem

This section defines the ARREP along with a feasibility detection algorithm,
complexity analysis and related issues.

3.1 Preliminaries

A user/subject is an entity who performs operation on a resource/object. The set
of users is represented by U. A user requests to perform an operation on another
user. An operation is an action performed by a user on another user. The set
of operations in the system is represented by OP. Without loss of generality it
is assumed that OP is a singleton given by {op}, since each operation has its
specific policy or rules. An access request is a tuple 〈u, v〉 where user u is asking
permission to perform operation op on user v where u, v ∈ U, op ∈ OP, u 6=
v. An access request is either granted or denied, based on the access control
policy. In any access control system, a logical construct is required to decide
the outcome of an access request. The logical construct is formally defined as,
checkAccess:U×U → {True, False}, where the result True grants access while
False denies it.

We define a simple authorization system, EAS as follows:

Definition 1. Enumerated Authorization System (EAS)
An EAS is a tuple 〈U, AUTH, checkAccessEAS〉 where, U is the finite sets of
users and AUTH ⊆ U × U , is a specified authorization relation where

checkAccessEAS(u, v) ≡ (u, v) ∈ AUTH

For example, given U = {Alice,Bob} and OP={readData}, Bob can read Al-
ice’s data iff (Bob, Alice) belongs to AUTH.

In order to define an Attibute-aware ReBAC system, the key component is
Attribute-aware Relationship Graph (ARG), which is defined as follows.

Definition 2. Attribute-aware Relationship Graph (ARG)
The Attribute-aware Relationship Graph

ARG = (V, VA, VA-RangeSet, UATTValue, EA, EA-RangeSet, E)
is a directed labeled graph where,

a. V is the set of vertices in ARG, representing the set of users in the system.
b. VA is the finite set of atomic user attribute function names {va1, va2, ..., vam}.
c. For each vai ∈ V A, Range(vai) specifies a finite set of atomic values for user

attribute vai. VA-RangeSet = {(vai, value)|vai ∈ V A∧value ∈ Range(vai)}.
d. UATTValue denotes the user attribute value assignments. UATTValue =
{UATTV aluevai

|vai ∈ V A} where UATTV aluevai
:V → Range(vai). For

convenience, we understand vai(a) to denote UATTV aluevai
(a), that is the

attribute value assignment of an actual user a for attribute vai.
e. EA is the finite set of edge attribute function names, {ea1, ea2, ..., ean}.

4 S. Chakraborty and R. Sandhu

Alice

Cathy

BobF

Ron

(Female, Student)

F

F

F

(Female, Student)(Male, Student)

(Male, Officer)

Fig. 1. Example ARG

f. For each eai ∈ EA, Range(eai) specifies a finite set of atomic values for edge
attribute eai. EA-RangeSet = {(eai, value)|eai ∈ EA∧ value ∈ Range(eai)}.

g. E ⊆ V × V × Range(ea1) × Range(ea2) × ... × Range(ean) is a finite set
of directed edges where, an edge (u, v, σ1, σ2, ..., σn) ∈ E, u 6= v, represents
the relations σ1, σ2, ..., σn from user u ∈ V to v ∈ V in ARG where σ1 ∈
Range(ea1), σ2 ∈ Range(ea2), ..., σn ∈ Range(ean).
Note: For a directed edge e from vertex a to vertex b in ARG, eai(e) specifies
the associated edge attribute value assignment for eai ∈ EA.

Fig. 1 presents an ARG where the set of users V = {Alice, Bob, Cathy, Ron},
the set of user attribute function names, VA = {Gender, Profession}, the set
of edge attribute function names, EA = {Relation− type}, and the set of edges
E = { (Alice, Ron, F), (Alice, Bob, F), (Ron, Cathy, F), (Cathy, Bob, F) }. The
user and edge attribute value assignments are shown in Fig. 1. The notion of a
path in an ARG is defined as follows:

Definition 3. Path in ARG
Given ARG as in Def. 2 and a vertex pair (u, v) ∈ V × V where u 6= v, a path
from u to v is a sequence of edges where the terminating (i.e., second) vertex
of each edge is same as the starting (i.e., first) vertex of the next edge given by
〈(u, vi, σw1, σw2, ..., σwn), (vi, vj , σx1, σx2, ..., σxn), ..., (vk, vl, σy1, σy2, ..., σyn), (vl,
v, σz1, σz2, ..., σzn)〉, where

a. u, vi, vj , ..., vk, vl, v ∈ V

Attribute-Aware ReBAC Policy Mining 5

b. σw1, σx1, ..., σy1, σz1 ∈ Range(ea1), σw2, σx2, ..., σy2, σz2 ∈ Range(ea2), ...,
σwn, σxn, ..., σyn, σzn ∈ Range(ean).

A path p from u to v is said to be simple iff u, vi, vj , ..., vk, vl, v ∈ V are dis-
tinct. The length of p, denoted by |p|, is the number of edges in the path. The
attribute aware path label of the path p from u to v, denoted by pathLabelatt(p), is
(va1(u), va2(u), ..., vam(u)).(σw1, σw2, ..., σwn).(va1(vi), va2(vi), ..., vam(vi)).(σx1,
σx2, ..., σxn).(va1(vj), va2(vj), ..., vam(vj)).....(va1(vk), va2(vk), ..., vam(vk)).(σy1,
σy2, ..., σyn).(va1(vl), va2(vl), ..., vam(vl)).(σz1, σz2, ..., σzn).(va1(v), va2(v), ...,
vam(v)).

Clearly, pathLabelatt(p) is a string, consisting of concatenated tuples of vertex
and edge attribute value assignments, traversed in the same order as the vertices
and edges appear in path p. Note that, the vertex and edge attribute values follow
specific orders, given by 〈va1, va2, ..., vam〉 and 〈ea1, ea2, ..., ean〉, respectively.
For sth edge in path p where 1 ≤ s ≤ |p|, starting vertex, edge, and terminating
vertex attribute value assignments are represented by (2 × s − 1)th, (2 × s)th,
and (2× s+ 1)th tuples in pathLabelatt(p), respectively.

Given ARG in Fig. 1, the only path p from Cathy to Bob is 〈(Cathy,Bob, F)〉
with pathLabelatt(p) = (Female, Student).(F).(Male,Officer). Henceforth, we
understand path to mean simple path.

Definition 4. Attribute aware ReBAC policy
An Attribute aware ReBAC policy, POLAAR is a tuple, given by 〈 OP, VA, EA,
RuleSet〉 where,

a. OP, VA, and EA are as defined in Def. 2.
b. RuleSet is a set of rules where, for each operation op ∈ OP , RuleSet contains

a rule Ruleop. Each Ruleop is specified using the grammar below.
Ruleop ::= Ruleop ∨Ruleop | pathRuleExpr | Attexp
pathRuleExpr ::= pathRuleExpr ∧ pathRuleExpr | (pathLabelExpr)
pathLabelExpr ::= pathLabelExpr.pathLabelExpr | edgeExp
Attexp ::= Attexp ∧Attexp| uexp = value | vexp = value
edgeExp ::= edgeExp ∧ edgeExp| edgeuexp = value | edgevexp = value |
edgeattexp = value
where, value is a atomic constant.
uexp ∈ {va(u)|va ∈ V A}, u is a formal parameter.
vexp ∈ {va(v)|va ∈ V A}, v is a formal parameter.
edgeuexp ∈ {va(e.u)|va ∈ V A}, e.u is a formal parameter.
edgevexp ∈ {va(e.v)|va ∈ V A}, e.v is a formal parameter.
edgeattexp ∈ {ea(e)|ea ∈ EA}, e is a formal parameter.

Here “.” is the concatenation operator. The length of a pathLabelExpr is given
by the number of concatenation operators plus 1. A pathLabelExpr can be split
at the point of each . operator into edgeExp, and numbered sequentially, starting
from 1 to the length of the pathLabelExpr.

Based on the stated POLAAR, the following defines an access control system:

6 S. Chakraborty and R. Sandhu

Definition 5. Attribute aware ReBAC system
An Attribute aware ReBAC system is a tuple, 〈ARG,POLAAR, checkAccessAAR〉
where ARG and POLAAR are as in Def. 2 and 4, respectively. For an access re-
quest (a, b), checkAccessAAR(a:V, b:V) ≡ Ruleop(a:V, b:V) where Ruleop is
evaluated as follows:
Step 1:

a. for each Attexp in Ruleop, substitute the values va(a) for va(u) and va(b) for
va(v), where va ∈ V A.

b. For a pathLabelExpr in Ruleop, substitute True iff i) there exists a simple path
p from a to b in ARG such that |p| = length of pathLabelExpr, and ii) each
sth edgeExpr of the pathLabelExpr where 1 ≤ s ≤ length of pathLabelExpr,
evaluates to True. To evaluate sth edgeExpr, substitute va(e.u), ea(e), and
va(e.v) by the corresponding va ∈ V A, ea ∈ EA, and va ∈ V A attribute
value assignments from (2 × s − 1)th, (2 × s)th, and (2 × s + 1)th tuples in
pathLabelatt(p), respectively.

Step 2:
Evaluate the resulting boolean expression.

User a is permitted to do operation op on object b if and only if Ruleop(a, b)
evaluates to True.

For example, given ARG in Fig. 1, and Ruleop = (Gender(e.u)=Female ∧ Pro-
fession(e.u)=Student ∧ Relation-type(e) = F ∧ Gender(e.v)=Male ∧ Profes-
sion(e.v)=Student), Ruleop(Alice,Ron) evaluates to True.

Although both ReBAC and ABAC are powerful, flexible and comparable [1]
in expressing authorization policies, relying solely on one is often insufficient.
An example case will be used in order to compare ABAC policy presented in [4]
and ReBAC policy in [3] with the proposed AReBAC policy in Def. 4. Consider
the ARG in Fig. 1 and Table 1. Each row of table 1 represents a case and an
associated authorization state example.

1. Row 1 indicates that both AReBAC and ReBAC policies can express the
authorization state (Alice, Bob) whereas only ABAC rules cannot. ABAC
rule fails because Alice and Cathy have the same attribute value combina-
tion. The generated ReBAC and AReBAC rules are “F.F.F” and “(Relation-
type(e)=F.Relation-type(e)=F.Relation-type(e)=F)”, respectively.

2. Row 2 indicates that both ABAC and AReBAC policies can express the au-
thorization state (Ron, Bob) whereas only ReBAC rules cannot. ReBAC rule
fails because there is only one path labeled “F.F” from Ron to Bob which is
satisfied by unauthorized pair, such as, (Alice, Cathy). The generated ABAC
and AReBAC rule is the same, “Gender(u)=Male ∧ Profession(u)=Student
∧ Gender(v)=Male ∧ Profession(v)=Officer”.

3. The 3rd row, authorization state (Alice, Ron), cannot be expressed by both
ABAC and ReBAC. ABAC rule fails because Alice and Cathy have the same
attribute value combination. ReBAC rule fails because the only path label

Attribute-Aware ReBAC Policy Mining 7

Table 1. Example data

ReBAC ABAC AReBAC AUTH

Yes No Yes {(Alice, Bob)}
No Yes Yes {(Ron, Bob)}
No No Yes {(Alice, Ron)}
No No No {(Bob, Alice)}

“F” is satisfied by other unauthorized pairs, such as (Alice, Bob). The ARe-
BAC rule is “(Gender(e.u)=Female ∧ Profession(e.u)=Student ∧ Relation-
type(e) = F ∧ Gender(e.v)=Male ∧ Profession(e.v)=Student)”.

4. The 4th row, Auth = {(Bob, Alice)} is not expressible by only ABAC (Since
(Bob, Cathy) will be allowed), only ReBAC (since no path exists from Bob
to Alice), and AReBAC ((Bob, Cathy) will be allowed and no path exists).

According to the used policy specification language, AReBAC is more expressive
than ABAC [4] and ReBAC [3]. Additionally, it can be clearly observed that,
if entity ids are allowed, AReBAC policy will never fail (such as [2]). However,
imposing this condition conflicts with core principles of ABAC and ReBAC.
Therefore, the AReBAC policy specification in this paper checks whether the
target access control system could be generated avoiding explicit use of unique
entity id. Based on this motivation, ARREP problem is defined as follows:

Definition 6. Attribute aware ReBAC RuleSet Existence Problem
(ARREP) Given an EAS and an ARG as in Def. 1 and 2, respectively, where
V=U, does there exist a RuleSet as in Def. 4 so that the resulting Attribute aware
ReBAC system satisfies:

(∀u, v ∈ U)[checkAccessAAR(u, v)⇔ checkAccessEAS(u, v)]

Such a RuleSet, if it exists, is said to be a suitable RuleSet, otherwise the problem
is said to be infeasible.

The following subsection develops a ARREP solution algorithm.

3.2 ARREP Solution Algorithm

Algorithm 1 resolves the ARREP problem. Given an ARREP instance, it returns
either feasible status and Ruleop, or infeasible status, incomplete Ruleop and
failed authorizations. Given any graph, the task finding all possible simple paths
from a source vertex to a target vertex is well known, hence, details of function
FindAllSimplePath() in Algorithm 1 are not provided (it can be adapted from
[3]). The overall complexity of computing all possible paths from a vertex to
another in ARG is O(|E|!) as it considers only simple paths.

Theorem 1. The overall complexity of ARREP feasibility detection Algorithm
1 is O(|V |4 × (|E|!)).

8 S. Chakraborty and R. Sandhu

Algorithm 1 ARREP Solution Algorithm

Input: An EAS and an ARG where V=U.
Output: Feasible/infeasible status and Ruleop. If infeasible, failedAuthPairs.
1: Ruleop := NULL
2: failedAuthPairs := ∅
3: tempAUTH := AUTH
4: for each (a, b) ∈ tempAUTH do
5: if ABAC-Expr(EAS, VA, UATTValue, a, b) == SUCCESS then

6: if Ruleop is NULL then Ruleop :=
∧

va∈V A

va(u) = va(a)∧
∧

va∈V A

va(v) = va(b)

else Ruleop := Ruleop ∨
∧

va∈V A

va(u) = va(a) ∧
∧

va∈V A

va(v) = va(b)

7: tempAUTH\ := {(a, b)}
8: while ∃(a, b) ∈ tempAUTH do
9: SP (a, b) := FindAllSimplePath(a,b, ARG)

10: if SP (a, b) = ∅ then
11: failedAuthPairs := failedAuthPairs∪{(a, b)} //Not Feasible for (a,b) tuple
12: tempAUTH\ := {(a, b)} and Continue
13: PATHLABELatt(a.b) := {pathLabelatt(p)|p ∈ SP (a, b)}
14: for each pl ∈ PATHLABELatt(a.b) do
15: SATab(pl) = {(c, d) ∈ V ×V | there exists a simple path s from c to d in ARG,

c 6=d, (c,d) 6∈AUTH, pl=pathLabelatt(s)}
16: Qab :=

⋂
pl∈PATHLABELatt(a.b)

SATab(pl)

17: if Qab 6= ∅ then
18: failedAuthPairs := failedAuthPairs∪{(a, b)} //Not Feasible for (a,b) tuple
19: tempAUTH\ := {(a, b)} and Continue

20: if Ruleop is NULL then Ruleop :=
∧

pl∈PATHLABELatt(a.b)

(generateRule(pl))

else Ruleop := Ruleop ∨
∧

pl∈PATHLABELatt(a.b)

(generateRule(pl))

21: tempAUTH\ := {(a, b)}
22: if failedAuthPairs is ∅ then
23: return “feasible” and Ruleop
24: else
25: return “infeasible” and failedAuthPairs and Ruleop

Attribute-Aware ReBAC Policy Mining 9

Algorithm 2 ABAC-Expr

Input: EAS, VA, UATTValue, vertex a, vertex b.
Output: SUCCESS or FAILURE
1: R1 = {u1|∀va ∈ V A.va(a) = va(u1)}
2: if ∃u1, u2 ∈ R1.(u1, u3) ∈ Auth ∧ (u2, u3) ∈ Auth where u3 ∈ V then
3: return FAILURE
4: R2 = {u4|(∀va ∈ V A.va(b) = va(u4)}
5: if ∃u4, u5 ∈ R2.(u4, u6) ∈ Auth ∧ (u5, u6) ∈ Auth where u6 ∈ V then
6: return FAILURE
7: return SUCCESS

Algorithm 3 generateRule

Input: String pathlabel
Output: String rule
1: rule := NULL
2: SubStr := splitStr(pathlabel,“.”) // The splitStr function splits pathlabel using .

into an ordered list of substrings, and return the saved substrings into an array.
3: numEdges := (number of elements in SubStr-1)÷ 2
4: //rm function returns the given string after removal of leading “(” and trailing “)”
5: for i = 1 to numEdges do
6: tempu := splitStr(rm(SubStr[2*i-1]), “,”)
7: tempv := splitStr(rm(SubStr[2*i+1]), “,”)
8: tempe := splitStr(rm(SubStr[2*i]), “,”)

9: if rule is NULL then rule :=
∧

1≤j≤m

vaj(e.u) = tempu[j]∧vaj(e.v) = tempv[j]∧∧
1≤k≤n

eak(e) = tempe[k] else rule := rule .
∧

1≤j≤m

vaj(e.u) = tempu[j] ∧

vaj(e.v) = tempv[j] ∧
∧

1≤k≤n

eak(e) = tempe[k] //. means the concatenation

10: return rule

Proof. In Algorithm 2, overall complexity of Lines 1, 4, 2-3 and 5-6 are O(|U |),
O(|U |), O(|AUTH|), and O(|AUTH|), respectively. Therefore, overall complex-
ity of Algorithm 2 is O(|AUTH|). The overall complexity of Algorithm 3 is
O(|V |) since the maximum number of edges allowed in a simple path of ARG
is |V |-1. Combining all these, the computational complexity of Algorithm 1 as
follows: Lines 4-7 of Algorithm 1 give O(|AUTH|2) complexity. According to
the complexity of FindAllSimplePath() noted before, Lines 9 and 13, both give

O(|E|!) complexity. The overall complexity of Lines 14-15 is O(|V |2×(|E|!)), and
the set intersection in Line 16 takes O(|E|!). Lines 17-21 can be ignored com-
pared to others, therefore, the loop from Lines 8-21 takes overall O(|V |4×(|E|!))
complexity as the loop may iterate |AUTH| ≤ |V |2 times. Hence, the worst case
complexity of Algorithm 1 is O(|V |4 × (|E|!)).

The correctness proof of Algorithm 1 is similar to the feasibility detection algo-
rithm in [3], and is therefore omitted. Although overall complexity of feasibility

10 S. Chakraborty and R. Sandhu

detection algorithm in [3] and Algorithm 1 are same, however, the latter may
have more or less computation time. If Algorithm 2 succeeds ∀(a, b) ∈ AUTH,
only O(|AUTH|2) will be the real computational complexity, which is linear
compared to the computed worst case complexity. The computational complex-
ity significantly reduces even if Algorithm 2 succeeds for some (a, b) ∈ AUTH
since avoiding all possible path generation from a source vertex to target vertex
in ARG (FindAllSimplePath() in Line 9) to any extent helps. Otherwise, tak-
ing both user and edge attribute value combination into consideration certainly
adds overhead to the computation time of Algorithm 1, compared to feasibility
detection algorithm in [3].

Let us consider the ARG in Fig. 1 where Range(Relation-type) is changed
from {Friendship} to {Friendship, Parent}. Since the “Parent” relation is not
present anywhere as edge attribute in the ARG, the effect of introducing a
new user with “Parent” relation in ARG remains undetermined. This might
happen to any ARG with a particular rule structure as change in relationships
or adding a new user may effect the validity of the current rule set. We call this
“unrepresented path labels” problem in ARG. The rule structure in this paper
compares direct values, the Ruleop generated by Algorithm 1 does consider all
user and edge attributes, and ARG is static by nature. Thereby, unrepresented
path labels does not impact the Ruleop.

In order to show a comparison with our AReBAC policy language in user to
user relationship context, the model presented in [6] is compared as follows:

– By construction, the policy language in this paper does not support inverse
relationship and count attribute as in [6].

– The policy language in Def. 4 is unable to count the number of existing
paths between access initiator and target users. Another example is, the
policy language in Def. 4 is unable to compare attribute value assignments
of any two particular users along the path from initiator to target in ARG.

– The policy language in [6] supports the common regular expression feature,
wildcard (* means to 0 to any number), optional (? means 0 or 1) notation,
and negative path expression, while this paper completely ignores them.

Clearly the AReBAC rule structure presented in this paper is not the most gen-
eral one. More expressiveness can be added such as in [6] and current feasibility
problem statement could be correspondingly reformulated.

4 ARREP Infeasibility Solution

Given an infeasible ARREP instance as in Def. 6, an infeasibility solution basi-
cally generates a RuleSet which completes the AReBAC system. Formally, given
an infeasible ARREP instance as in Def. 6, an infeasibility solution is said to be
exact iff: (∀u, v ∈ U)[checkAccessAAR(u, v)⇔ checkAccessEAS(u, v)].

In this section, an exact solution to infeasibility in ARREP will be discussed
with computational complexity as well as shortcomings. It is accomplished by
adding edges to the given ARG as follows:

Attribute-Aware ReBAC Policy Mining 11

Definition 7. Add relationship edge
Given an ARREP infeasible instance, Algorithm 1 returns a set of failed autho-
rization pairs, failedAuthPairs. Subsequently, the following steps are used:

1. It is assumed that, ∀ea ∈ EA.op 6∈ Range(ea).
2. ∀ea ∈ EA,Range(ea)∪ := op, where op ∈ OP .
3. For each (a, b) ∈ failedAuthPairs, E := E ∪ {(a,b,op,op,...,op)}.

Note*: for each newly added edge, say e, ∀ea ∈ EA.ea(e) = op.

4. Ruleop := Ruleop ∨ (
∧

ea∈EA

ea(e) = op), Ruleop is returned by Algorithm 1.

For example, given the previous infeasible example where Auth = {(Bob,Alice)}
and ARG as in Fig. 1, an additional relationship edge from Bob to Alice, labeled
by the operation op∈ OP where op is added to Range(Relation-type), solves the
problem. The following theorem proves the correctness of the stated infeasibility
correction approach in Def. 7.

Theorem 2. Def. 7 provides an exact solution to infeasibility in ARREP.

Proof. As stated, for all (a, b) ∈ failedAuthPairs, adding an edge from vertex a
to b in ARG creates a path of length 1. By the checkAccess evaluation presented

in Def. 5, all (a, b) ∈ failedAuthPairs satisfy (
∧

ea∈EA

ea(e) = op), and therefore,

adding a term is sufficient for a operation op ∈ OP . Since it is assumed that,
∀ea ∈ EA.op 6∈ Range(ea), therefore, no other U×U \failedAuthPairs satisfies

(
∧

ea∈EA

ea(e) = op). Hence, the claim is correct.

As stated in Def. 7, the solution adds |AUTH| edges to the ARG at most.
Hence, the worst case complexity is linear to |AUTH|. However, this solution
approach has limitations. For example, less number of additional edges could be
used to resolve the infeasibility [3]. Furthermore, there might be cases where it
is undesirable to alter the given ARG and Range of attributes at all. We leave
considering such cases as future work.

5 Conclusion

This paper provides an insightful discussion regarding attribute-aware ReBAC
policy mining. It introduces the ARREP problem and formalizes infeasibility
issues in ARREP. A few simple rule optimization technique may reduce the
generated rule size. For instance, rule minimization is limited to finding mini-
mal number of path labels in conjunctive terms only. As per Algorithm 1, for a
tuple (a,b) in AUTH, the conjunctive term is formed by AND’ing all possible
path labels from a to b iff i) Algorithm 2 fails, and ii) the conjunctive term
evaluates false for all unauthorized tuples. Instead of using all possible path
labels in the conjunctive term of such (a,b), the smallest possible subset (ex-
cept empty set) of those is used to form the conjunctive term, ensuring that

12 S. Chakraborty and R. Sandhu

the minimal size conjunctive evaluates false for all unauthorized tuples. For in-
stance, given ARG in Fig. 1 and AUTH = {(Alice,Bob)}, i) Algorithm 2 returns
FAILURE for (Alice, Bob), ii) there exist two paths, say p1 and p2, from Alice
to Bob in ARG where pathLabelatt(p1) and pathLabelatt(p2) are (Female, Stu-
dent).(F).(Male,Officer) and (Female, Student).(F).(Male,Student).(F).(Female,
Student).(F).(Male,Officer). Without any rule minimization, Ruleop generated
by Algo. 1 is given by the conjunction of generateRule(pathLabelatt(p1)) and
generateRule(pathLabelatt(p2)): (Gender(e.u) = Female ∧ Profession(e.u) = Stu-
dent ∧ Relation-type(e) = F ∧ Gender(e.v) = Male ∧ Profession(e.v) = Officer)
∧ (Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F
∧ Gender(e.v) = Male ∧ Profession(e.v) = Student . Gender(e.u) = Male ∧
Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Female ∧
Profession(e.v) = Student . Gender(e.u) = Female ∧ Profession(e.u) = Student
∧ Relation-type(e) = F ∧ Gender(e.v) = Male ∧ Profession(e.v) = Officer). The
possible subset of path labels in this case is: either one or both. It is evident
that, i) only pathLabelatt(p1) is not possible because it is satisfied by unau-
thorized pair (Cathy, Bob) ii) only pathLabelatt(p2) is possible since it is not
satisfied by unauthorized pairs. Thereby, Ruleop reduces to (Gender(e.u) = Fe-
male ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Male
∧ Profession(e.v) = Student . Gender(e.u) = Male ∧ Profession(e.u) = Student
∧ Relation-type(e) = F ∧ Gender(e.v) = Female ∧ Profession(e.v) = Student .
Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧
Gender(e.v) = Male ∧ Profession(e.v) = Officer).

Acknowledgement. This work is partially supported by NSF CREST Grant
HRD-1736209.

References

1. Ahmed, T., Sandhu, R., Park, J.: Classifying and comparing attribute-based and
relationship-based access control. In: 7th ACM CODASPY 2017. pp. 59–70

2. Bui, T., Stoller, S.D.: Learning attribute-based and relationship-based access control
policies with unknown values. In: Info. Systems Security. pp. 23–44. Springer (2020)

3. Chakraborty, S., Sandhu, R.: Formal analysis of rebac policy mining feasibility. In:
Proc. of the 11th ACM CODASPY. pp. 197–207 (2021)

4. Chakraborty, S., Sandhu, R., Krishnan, R.: On the feasibility of attribute-based
access control policy mining. In: IRI. IEEE (2019)

5. Chakraborty, S., Sandhu, R., Krishnan, R.: On the feasibility of rbac to abac policy
mining: A formal analysis. In: SKM. pp. 147–163. Springer (2019)

6. Cheng, Y., Park, J., Sandhu, R.: Attribute-aware relationship-based access control
for online social networks. In: DBSec. pp. 292–306. Springer (2014)

7. Fong, P.W., Siahaan, I.: Relationship-based access control policies and their policy
languages. In: Proc. of the 16th ACM SACMAT. p. 51–60. ACM (2011)

8. Hu, V., et al.: Guide to Attribute Based Access Control (ABAC) definition and
considerations. NIST Special Publication pp. 162–800 (2014)

9. Rizvi, S.Z.R., Fong, P.W.L.: Efficient authorization of graph-database queries in an
attribute-supporting rebac model. ACM Trans. Priv. Secur. 23(4) (Jul 2020)

