

Access Control Policy Generation From User Stories Using Machine Learning

John Heaps¹, Ram Krishnan², Yufei Huang³, Jianwei Niu¹, and Ravi Sandhu¹

¹Institute for Cyber Security (ICS), NSF Center for Security and Privacy Enhanced Cloud Computing (C-SPECC), and Department of Computer Science ²ICS, C-SPECC, and Department of Electrical and Computer Engineering ³ICS and Department of Electrical and Computer Engineering The University of Texas at San Antonio

Agile Development

Traditional Software Development Methods

Agile Development

Agile Software Development Methods

Security Concerns of Agile Development

- Agile development propagates vulnerability issues
 - Constant changes in requirements
 - Frequent code refactoring
 - Lack of documentation
 - Speed of development
- How to help stakeholders during development to overcome the propagation of vulnerabilities?
 - Previous literature has suggested the manual creation of additional documentation
 - Our approach is to automatically generate additional documentation

User Stories

- Used to define the requirements of a system from the actor (or user) perspective
- Simple
 - As a system admin, I want to create a new user account.
- No Access Control
 - As an Older Person, I want to use only well-visible buttons.
- Multi-Functionality
 - As a camp administrator, I want to be able to see all my camp groups and the events scheduled for each camp group, so that I can notify counselors of what their group will be doing for the day.

Using User Stories for Documentation Generation

- User stories are the only artifacts required by agile development
- We focus on access control policy in our initial research
- What access control information do user stories contain, and how can that information be identified, extracted, and presented to stakeholders?
 - We will use deep learning to identify and extract access control information from user stories

C·SPECC Center for Security and Privacy Enhanced Cloud Computing

Dataset

- Dalpiaz¹ Dataset
 - 1600 user stories Ο
 - 14 different projects (50 130 user stories per project) Ο
 - Project diversity Ο
 - Elderly care
 - Data management platform
 - Administrative management

User Story to Access Control Tuple

- Input is a user story
 - As a camp administrator, I want to be able to create, modify rules that campers and camp workers have to follow.
- Final output is a set of tuples that represent the access control in the user story as (Actor, Data Object or Operation, Type of Access)
 - (Camp Administrator, Rules (Data Object), create edit view)
 - (Camper, Rules (Data Object), view)
 - (Camp Worker, Rules (Data Object), view)

Approach

Component 1 - Access Control Classification

Component 2 - Named Entity Recognition

As a	Other Other	Actor I-Actor B-Data Object I-Data Object Operation Operation Other
camp	B-Actor	
administrator	I-Actor	
,	0ther	
I	0ther	
want	0ther	BERT Large
to	0ther	
schedule	0ther	
events	B-DataObject	
	Other	User Story
		["I", "am", "a", "system", "admin",",", "and", "I", "want", "to",]

Component 3 - Access Type Classification

Visualization

Results - Access Control Classification and Named Entity Recognition

App Name	Metric	ACC Score	NER Score
Frictionless	Precision	$92.3\% \pm 1.8$	$88.2\% \pm 2.9$
	Recall	$89.7\% \pm 2.1$	$86.4\% \pm 4.4$
	F1 Score	$91.0\% \pm 2.0$	$87.3\% \pm 4.7$
Alfred	Precision	$79.1\% \pm 3.4$	$80.8\% \pm 4.7$
	Recall	$86.6\% \pm 2.7$	$80.1\% \pm 6.1$
	F1 Score	$82.7\% \pm 3.0$	$83.8\% \pm 5.3$
CamperPlus	Precision	$80.2\% \pm 2.5$	$84.4\% \pm 5.3$
	Recall	$88.3\% \pm 3.2$	$76.0\% \pm 4.1$
	F1 Score	$84.1\% \pm 2.8$	$80.0\% \pm 4.6$

Results - Access Type Classification

App Name	Metric	F1 Score
	View	87.4%
Frictionless	Edit	84.6%
	Create	85.1%
	Delete	81.7%
	None	87.2%
Alfred	View	80.6%
	Edit	79.8%
	Create	75.6%
	Delete	75.3%
	None	83.5%
CamperPlus	View	83.2%
	Edit	79.3%
	Create	79.5%
	Delete	78.6%
	None	82.9%

Results - Model Comparison

Model	Component	F1 Score
Transformers	Access Control Classification	$91.9\% \pm 2.0$
	Named Entity Recognition	$87.3\% \pm 3.4$
	Access Type Classification	$83.2\% \pm 4.4$
CNN	Access Control Classification	$84.3\% \pm 4.1$
	Named Entity Recognition	$86.7\% \pm 3.6$
	Access Type Classification	$79.1\% \pm 5.4$
$_{\rm SVM}$	Access Control Classification	$84.4\% \pm 1.3$
	Named Entity Recognition	$69.8\% \pm 3.9$
	Access Type Classification	$73.2\% \pm 4.3$

Results - Visualization

Conclusion and Future Work

- We have shown that access control information and policy can be identified and extracted from user stories
- Future Work
 - Showing changes in access control throughout the agile process
 - Human interactivity
 - Active Learning
 - Other types of documentation generation

