
Object-Tagged RBAC Model
for the Hadoop Ecosystem

Maanak Gupta(B), Farhan Patwa, and Ravi Sandhu

Department of Computer Science, Institute for Cyber Security,
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

gmaanakg@yahoo.com, {farhan.patwa,ravi.sandhu}@utsa.edu

Abstract. Hadoop ecosystem provides a highly scalable, fault-tolerant
and cost-effective platform for storing and analyzing variety of data for-
mats. Apache Ranger and Apache Sentry are two predominant frame-
works used to provide authorization capabilities in Hadoop ecosystem.
In this paper we present a formal multi-layer access control model
(called HeAC) for Hadoop ecosystem, as an academic-style abstraction
of Ranger, Sentry and native Apache Hadoop access-control capabilities.
We further extend HeAC base model to provide a cohesive object-tagged
role-based access control (OT-RBAC) model, consistent with generally
accepted academic concepts of RBAC. Besides inheriting advantages of
RBAC, OT-RBAC offers a novel method for combining RBAC with
attributes (beyond NIST proposed strategies). Additionally, a proposed
implementation approach for OT-RBAC in Apache Ranger, is presented.
We further outline attribute-based extensions to OT-RBAC.

Keywords: Access control · Hadoop ecosystem · Big Data · Data lake ·
Role based · Attributes · Groups hierarchy · Object Tags

1 Introduction

Over the last few years, enterprises have started harvesting data from ‘anything’
to discover business and customer needs. It is estimated that 163 zettabytes of
data will be generated annually by year 2025 as quoted by IDC [5]. Such mas-
sive and varied collections of data, referred to as Big Data, are considered 21st

century gold for data miners. Enterprises gain useful insights from analysis to
offer targeted marketing, fraud detection, accident forecasting, traffic patterns
and even strong love matching. With volume, variety and velocity of data bur-
geoning, massive storage and compute clusters are required for analysis.

Apache Hadoop [1] has established itself as an important open-source frame-
work for cost-efficient, distributed storage and computing of data in timely
fashion. The platform offers resilient infrastructure for sophisticated analytical
and pattern recognition techniques for multi-structured data. Hadoop ecosys-
tem includes several open-source and commercial tools (Apache Hive, Apache

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 63–81, 2017.
DOI: 10.1007/978-3-319-61176-1 4

64 M. Gupta et al.

Storm, Apache HBase, Apache Ambari etc.) built to leverage the full capabil-
ities of Hadoop framework. These tools along with Apache Hadoop 2.x core
modules (Hadoop Common, Hadoop Distributed File System (HDFS), YARN
and MapReduce) empower users to harness the potential of data assets.

As Hadoop is widely used in government and private sector, its security has
been a major concern and widely studied. Multi-tenant Data Lake offered by
Hadoop, stores and processes sensitive information from several critical sources,
such as banking and intelligence agencies, which should only be accessed by legit-
imate users and applications. Threats—including denial of resources, malicious
user killing YARN applications, masquerading Hadoop services like NameNode,
DataNode etc.—can have serious ramifications on confidentiality and integrity of
data and ecosystem resources. The distributed nature and platform scale makes
it more difficult to protect the infrastructure assets.

Apache Ranger [3] and Apache Sentry [4] are two important software systems
used to provide fine-grained access across several Hadoop ecosystem components.
In this paper we present the multi-layer access control model for Hadoop ecosys-
tem (referred as HeAC), formalizing the authorization model in Apache Ranger
(release 0.6) and Sentry (release 1.7.0) in addition to access controls capabilities
in core Hadoop 2.x. We further propose an Object-Tagged Role Based Access
Control (OT-RBAC) model which leverages the merits of RBAC and provides a
novel approach of adding object attribute values (called object tags) in RBAC
model. We also outline extensions to OT-RBAC to incorporate NIST proposed
strategies [27] for adding attributes in RBAC. To our knowledge this is the first
work to consider formal authorization models specific to Hadoop ecosystem.

The remainder of this paper is as follows. Section 2 discusses current autho-
rization capabilities in Hadoop ecosystem. In Sect. 3, we present a formal Hadoop
ecosystem access control model called HeAC. We introduce the Object-Tagged
Role Based Access Control (OT-RBAC) model in Sect. 4, followed by proposed
implementation in Sect. 5. In Sect. 6, we present attributes-based authorization
extensions to OT-RBAC. Section 7 reviews previous related work, followed by
Sect. 8 which gives our conclusions.

2 Multi-layer Authorization in Hadoop Ecosystem

The most critical assets required to be secured in Hadoop ecosystem involve ser-
vices, data and service objects, applications and cluster infrastructure resources.
In this section we discuss the multi-layer authorization capabilities provided in
Hadoop ecosystem in line with Apache Hadoop 2.x, along with access control
features offered by Apache Ranger, Apache Sentry and Apache Knox.

Service Access: The first layer of defense is provided by service level autho-
rization which checks if a user or application is allowed to access the Hadoop
ecosystem services and Hadoop core daemons. This check is done before data
and service objects permissions are evaluated, thereby preventing unauthorized
access early in the access request lifecycle. ACLs (Access Control Lists) are
specified with users and groups to restrict access to services. For example, ACL

Object-Tagged RBAC for the Hadoop Ecosystem 65

security.job.client.protocol.acl is checked to allow a user to commu-
nicate with YARN ResourceManager for job submission or application status
inquiry. This layer also restricts cross-service communication to prevent mali-
cious processes interaction with Hadoop daemon services (NameNode, Resource-
Manager etc.). Another ACL security.datanode.protocol.acl is checked for
interaction between DataNodes and NameNode for heartbeat or task updates.
A user making API requests to individual ecosystem services like Apache Hive,
HDFS, Apache Storm etc., is restricted by implementing single gateway (e.g.
Apache Knox [2]) access point—which enforces policies to allow or deny users
to access ecosystem services before operating on underlying objects.

Data and Service Objects Access: Hadoop Distributed File System (HDFS)
enforces POSIX style model and ACLs for setting permissions on files and direc-
tories holding data. Multiple other ecosystem services require different objects
to be secured. For example, Apache Hive requires table and columns, whereas
Apache Kafka secures topic objects from unauthorized operations by users. Some
services like Apache Hive or Apache HBase also have native access control capa-
bilities to secure different data objects. Security frameworks like Apache Ranger
or Sentry provide plugins for individual ecosystem services, where centralized
policies are set for different data and service objects. In Apache Ranger, autho-
rization policies can also be formulated on Tags, which are attribute values
associated with objects. For example, a tag PII can be associated with table
SSN and a policy is created for tag PII. Such tag-based policy will then control
access to table SSN. Tags allow controlling access to resources along several ser-
vices without need to create separate policies for individual services. It should be
noted that data access allowed at one service may be restricted by permissions
at underlying HDFS, thereby requiring user to have multiple object permissions
at different services.

Application and Cluster Resources Access: Multi-tenant Hadoop cluster
requires sharing of finite resources among several users, controlled by Apache
YARN capacity (or fair) scheduler queues in Hadoop 2.x. Queue level authoriza-
tion enables designated users to submit or administer applications in different
queues. This restricts user from submitting applications in cluster and prevents
rogue users from deleting or modifying other user applications. Further, clus-
ter resources are not consumed by certain applications requiring more resources
as queues have limited resources allocated. It should be noted that applica-
tion owner and queue administrator can always kill or modify jobs in queue.
These queues support hierarchical structure where permissions to parent queues
descend to all child queues. Hadoop implements these authorization configura-
tions using ACL’s. Configuration file can also be associated with applications to
specify users who can modify or kill an application. Access to cluster nodes can
be restricted by assigning node labels. Each queue can be associated with node
labels to restrict nodes where applications submitted to queues can run.

Figure 1 reflects multi-layer authorization architecture provided in Hadoop
ecosystem. An authenticated user passes through several access control mecha-
nisms to operate on objects and services in Hadoop cluster. Gateway (such as

66 M. Gupta et al.

Fig. 1. Example Hadoop Ecosystem Authorization Architecture

Apache Knox) offers single access point to all REST APIs and provides first layer
of access control to check if services inside the cluster are allowed access by out-
side users. Once user is approved through the gateway policy plugin, ecosystem
services apply policies cached from central policy manager to validate requests
of user. User trying to access objects (files, tables etc.) in ecosystem services
like HDFS or Apache Hive (shown as ES in Fig. 1) is checked by policy plugins
attached to the services to enforce access decisions. A user wanting to submit
an application or to get submitted application status should be allowed through
gateway policies to communicate with YARN ResourceManager. Apache YARN
queue permissions are then checked and enforced by plugin to know if a user
is allowed to submit or administer application in queues. Cross-services access
(between Hadoop daemons) for information passing or task status update is
mainly enforced using core Hadoop service ACLs.

As shown in Fig. 1, security frameworks like Apache Ranger provides central-
ized Policy adminstration (1-PAP) and information point (2-PIP). Enforcement
and decision points (3-PEP, 4-PDP) are plugins attached to each service which
cache policies periodically from central server and enforce access decisions.

3 Hadoop Ecosystem Access Control Model

In this section we present the formal multi-layer access control model (HeAC) for
Hadoop ecosystem based on Apache Hadoop 2.x. The model also covers access
capabilities provided by two predominant Apache projects, Ranger (release 0.6)
and Sentry (release 1.7.0). Apache Ranger supports permissions through users
and groups, while Sentry assigns permissions to roles which are assigned to
groups and via groups to member users. We will now discuss the formal defini-
tions of HeAC model as specified in Table 1 and shown in Fig. 2.

The basic components of HeAC include: Users (U), Groups (G), Roles (R),
Subjects (S), Hadoop Services (HS), Operations (OPHS) on Hadoop Services,

Object-Tagged RBAC for the Hadoop Ecosystem 67

Fig. 2. A Conceptual Model of HeAC

Ecosystem Services (ES), Data and Service Objects (OB) belonging to Ecosys-
tem Services, Operations (OP) on objects, and Object Tags (Tag).

Users, Groups, Roles and Subjects: A user is a human who interacts with
computer to access services and objects inside the Hadoop ecosystem. A group
is a collection of users in the system with similar organizational requirements. A
role is a collection of permissions which can be assigned to different entities in the
system. Permissions are assigned to users, groups or roles. In the current model
roles can only be assigned to groups, thereby giving permissions to member users
of groups indirectly. A subject is an application running on behalf of the user to
perform operations in the Hadoop ecosystem. In HeAC model subjects always
run with full permissions of the creator user.

Hadoop Services: These services are background daemon processes, like HDFS
NameNode, DataNode, YARN ResourceManager, ApplicationMaster etc., which
provide core functionalities in Hadoop 2.x framework. User access these ser-
vices to submit applications, data block recovery or application status updates.
Besides interaction with end user, these daemon services also communicate with
each other for resource monitoring or task updates. It should be noted that these
services do not have objects associated with them.

Operations on Hadoop Services: These are actions allowed on Hadoop
services. In most cases, the general action allowed is to access a service.

68 M. Gupta et al.

For example, ACL security.client.protocol.acl is used to determine
which user is allowed to access HDFS NameNode service. These ACLs are
part of Hadoop native access control capabilities (referred as service level
authorization).

Ecosystem Services: Data and objects inside the Hadoop ecosystem are
accessed through different platforms which we consider as Ecosystem Services.
Example of such services include Apache HDFS, Apache Hive, Apache HBase,
Apache Storm, Apache Kafka etc. These services can either have data objects
(tables, columns) or other type of resources (queues, topics) which they support.
Access to the ecosystem services is first required before operation on supported
objects. We consider Data Services as one instance of Ecosystem Services.

Data and Service Objects: Ecosystem services manage different types of
resources (objects) inside the cluster. For example, Apache HDFS supports files
and directories, while Apache HBase has data objects like column-family, cells
etc. YARN manages queue objects and Apache Solr has collections. These are
resources which are protected from unauthorized operations from users.

Operations on objects: Multiple data and service objects support different
operations to perform actions on them. Apache Hive has select, create, drop,
alter for tables and columns while Apache HBase data objects (column family,
column) support read, write, create etc. YARN queues have operations to submit
applications or administer the queue.

Object Tags: Objects inside ecosystem can be assigned attributes based on
sensitivity, content or expiration date. Such classification is done using attribute
values called Tags. An object can have multiple tags associated with it and vice
versa. For example, PII tag can be attached to sensitive data table SSN.

As shown in Table 1, a user can be assigned to multiple groups defined
by directUG function. Groups are also assigned to multiple roles as reflected
by function directGR. Relation object-tag denotes a many-to-many relation
between objects and associated attribute values called tags. Hadoop ecosystem
has two different sets of permissions to perform actions on services and objects.
OBJECT-PRMS is the set of data and service object permissions which is power
set of the cross product of ecosystem services (ES), objects (OB) or object tags
(Tag), and operations (OP). Here permissions can be set either on object or
object tags, and policies can allow or deny operations on the object based on
its associated tags or the object itself. OBJECT-PRMS also include ecosystem
service as part of permission thereby taking into account the requirement of ser-
vice access before object operations. Another set of permissions called Hadoop
service permissions (HS-PRMS) is the power set of the cross product of HS and
OPHS. These are required for application submission or other non-data or object
operations. Depending on the type of operations to be performed, a user may
require either one or both type of permissions.

A many-to-many relation PAHS specifies the assignment of HS-PRMS to
users or groups. In this way a user can be assigned HS-PRMS directly or through
group membership. OBJECT-PRMS can be assigned to users, groups or roles

Object-Tagged RBAC for the Hadoop Ecosystem 69

Table 1. Hadoop Ecosystem Access Control (HeAC) Model Definitions

Basic Sets and Functions
– U, G, R, S (finite set of users, groups, roles and subjects respectively)
– HS, OPHS (finite set of Hadoop services and operations respectively)
– ES, OB (finite set of ecosystem services and objects respectively)
– OP, Tag (finite set of object operations and object tags respectively)
– directUG : U → 2G, mapping each user to a set of groups, equivalently UGA ⊆ U × G
– directGR : G → 2R, mapping each group to a set of roles, equivalently GRA ⊆ G × R
– object-tag ⊆ OB×Tag, relation between object and object tags

– OBJECT-PRMS = 2ES×(OB ∪ Tag)×OP, set of data and service object permissions
– HS-PRMS = 2HS×OPHS , set of Hadoop services permissions

Permission Assignments
– PAHS ⊆ (U ∪ G)×HS-PRMS, mapping entities to Hadoop service permissions. Alternatively,

hsprms : (x) → 2HS-PRMS, defined as hsprms(x) = {p | (x,p) ∈ PAHS, x ∈ (U ∪ G)}
– PAES ⊆ (U ∪ G ∪ R)×OBJECT-PRMS, mapping entities to object permissions. Alternatively,

esprms : (x) → 2OBJECT-PRMS, defined as esprms(x) = {p | (x,p) ∈ PAES, x ∈ (U ∪ G ∪ R)}

Hadoop Cross Services Access
– PAHS-HS ⊆ HS × HS-PRMS, mapping Hadoop service to Hadoop service access.

Alternatively, hs-hsprms : (hs:HS) → 2HS-PRMS, defined as
hs-hsprms(hs) = {p | (hs,p) ∈ PAHS-HS }

Effective Roles of Users (Derived Functions)
• effectiveR : U → 2R, defined as effectiveR(u) =

⋃

∀g ∈ directUG(u)

directGR(g)

Effective Permissions of User
• effectiveHSprms : U → 2HS-PRMS, defined as

effectiveHSprms(u) = hsprms(u) ∪ ⋃

∀g ∈ {directUG(u)}
hsprms(g)

• effectiveESprms : U → 2OBJECT-PRMS, defined as
effectiveESprms(u) = esprms(u) ∪ ⋃

∀x ∈ {directUG(u) ∪ effectiveR(u)}
esprms(x)

User Subject
• userSub : S→ U, mapping each subject to its creator user, where the subject

gets all the permissions of the creator user.

Ecosystem Service Object Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB
in ecosystem service es ∈ ES if the effective object permissions of userSub(s) include
permissions for object ob or for tag t ∈ Tag associated with object ob. Formally,
(es,ob,op) ∈ effectiveESprms (userSub(s)) ∨
(∃ t) [(ob,t) ∈ object-tag ∧ (es,t,op) ∈ effectiveESprms (userSub(s))]

(shown by PAES). A group can get the object permissions directly or through
roles, which will then enable it to the member users. It should be noted that a
user may need multiple data object permissions across several data services to
operate on a data object. For example, in case of Apache Hive table, besides
having permission on the table, a user may be required to have permissions on
the underlying data file in HDFS. PAHS-HS encapsulates the access requirement
between several Hadoop services inside the cluster for task updates or resource

70 M. Gupta et al.

monitoring (e.g. communication between DataNodes and NameNode). The effec-
tive roles of user are covered by effectiveR which is union of roles assigned to all
member groups. The effective permissions on Hadoop services attained by user
(reflected by effectiveHSprms) is the direct permissions on HS and permissions
inherited through group membership. The final set of ES object permissions for
a user is union of direct permission and permissions assigned through group
membership and effective roles as shown in effectiveESprms.

A subject is created by a user as expressed by userSub. It inherits all the
permissions assumed by the user to perform actions. In last section of Table 1, a
subject is allowed to perform operations on objects in ES service depending on
either direct permission on objects or permission on tags associated with objects.

It should be noted that Apache Ranger provides context enrichers, which
are used to add contextual information to user request based on location, IP
address or other attribute. We treat such information as environment attributes
and include these in attribute-based model in Sect. 6. It should also be mentioned
that data ingestion into Hadoop cluster is beyond the scope of this paper and
for the access control points discussed, we assume data already present inside
the cluster. Further, we ignore deny access request, for the sake of simplicity.

4 Object-Tagged RBAC for Hadoop Ecosystem

In this section we propose Object-Tagged Role-Based Access Control model for
the Hadoop Ecosystem, which we denote as OT-RBAC. With respect to HeAC
model, this model assigns both objects and Hadoop service permissions to users
only through roles, consistent with the basic principle of RBAC. The model
presents a novel approach for combining attributes and RBAC [33] besides
NIST proposed approaches (i.e., Dynamic Roles, Attribute-Centric and Role
Centric) [27]. Hence the convenient administrative benefits of RBAC, along with
a finer-grained attributes authorization, are incorporated in this model.

The conceptual model for OT-RBAC is shown in Fig. 3 followed by formal
definitions in Table 2. The remainder of this section discusses the new and modi-
fied components introduced in OT-RBAC model (marked∗∗ and †† respectively)
with respect to HeAC model. In OT-RBAC model users are directly assigned
to multiple roles specified by function directUR. Group hierarchy (GH) is intro-
duced into the system, defined by a partial order relation on G and written as
�g. The inheritance of roles is from low to high, i.e., g1 �g g2 means g1 inherits
roles from g2. In such cases, we say g1 is the senior group and g2 is the junior
group. The HS-PRMS and OBJECT-PRMS permissions are assigned to roles
only, specified by many-to-many relations PAHS and PAES respectively. This is
modified with respect to the original HeAC, where HS-PRMS were assigned to
users or groups and OBJECT-PRMS to user, groups or roles also. This reflects
the advantage of RBAC model where permissions are allotted or removed from
users by granting or revoking their roles. Both OBJECT-PRMS and HS-PRMS
can be assigned to same role in the Hadoop ecosystem. With group hierarchy
(GH), the effective roles of a group (expressed by effectiveGR) is the union of

Object-Tagged RBAC for the Hadoop Ecosystem 71

Fig. 3. Conceptual OT-RBAC Model for Hadoop Ecosystem

direct roles assigned to group and effective roles of all its junior groups. It should
be noted that this definition is recursive where the junior-most groups have same
direct and effective roles. The effective roles of the user (defined by effectiveR)
is then the union of direct user roles and effective roles of the groups to which
the user is directly assigned. For example, assuming group Grader is assigned
roles Student and Graduate and a senior group TA is assigned to role Doctoral.
Then the effective roles of group TA would be Student, Graduate and Doctoral.
A user u1 can be directly assigned to role Staff. If u1 also becomes a member of
group TA, u1 has the effective roles of Student, Graduate, Doctoral and Staff.
The important advantage of user group membership is convenient assignment
and removal of multiple roles from users with single administrative operation.

A subject S (similar to sessions in RBAC [17]) created by the user can have
some or all of the effective roles of the creator user. The effective permissions
available to a subject (expressed by effectiveESprms and effectiveHSprms) will
then be the object and Hadoop service permissions assigned to all the effective
roles activated by the subject. A subject might need to have multiple permis-
sions to access different services or objects inside Hadoop ecosystem which may
result in requiring multiple roles. The prime advantage of OT-RBAC model over
HeAC model is the assignment of permissions only to roles instead of assigning
directly to users and groups. Further it introduces the concept of group hierarchy

72 M. Gupta et al.

Table 2. Formal OT-RBAC Model Definitions

Basic Sets and Functions
– U, G, R, S (finite set of users, groups, roles and subjects respectively)
– HS, OPHS (finite set of Hadoop services and operations respectively)
– ES, OB (finite set of ecosystem services and objects respectively)
– OP, Tag (finite set of object operations and object tags respectively)
– directUG : U → 2G, mapping each user to a set of groups, equivalently UGA ⊆ U × G

– **directUR : U → 2R, mapping each user to a set of roles, equivalently URA ⊆ U × R
– directGR : G → 2R, mapping each group to a set of roles, equivalently GRA ⊆ G × R

– **GH ⊆ G×G, a partial order relation 	g on G
– object-tag ⊆ OB×Tag, relation between object and object tags

– OBJECT-PRMS = 2ES×(OB ∪ Tag)×OP, set of data and service object permissions
– HS-PRMS = 2HS×OPHS , set of Hadoop services permissions

††Role Permission Assignments
– PAHS ⊆ R×HS-PRMS, mapping roles to Hadoop service permissions. Alternatively,

hsprms : (r:R) → 2HS-PRMS, defined as hsprms(r) = {p | (r,p) ∈ PAHS }
– PAES ⊆ R×OBJECT-PRMS, mapping roles to object permissions. Alternatively,

esprms : (r:R) → 2OBJECT-PRMS, defined as esprms(r) = {p | (r,p) ∈ PAES }

Hadoop Cross Services Access
– PAHS-HS ⊆ HS × HS-PRMS, mapping Hadoop service to Hadoop service access.

Alternatively, hs-hsprms : (hs:HS) → 2HS-PRMS, defined as
hs-hsprms(hs) = {p | (hs,p) ∈ PAHS-HS }

††Effective Roles of Users (Derived Functions)
• effectiveGR : G → 2R, defined as

effectiveGR(gi) = directGR(gi) ∪ (
⋃

∀g ∈ {gj|gi �g gj}
effectiveGR(g))

• effectiveR : U → 2R, defined as
effectiveR(u) = directUR(u) ∪ (

⋃

∀g ∈ directUG(u)

effectiveGR(g))

††Effective Roles and Permissions of Subjects
• userSub : S→ U, mapping each subject to its creator user
• effectiveR : S → 2R, mapping of subject s to a set of roles. It is required that :

effectiveR(s) ⊆ effectiveR(userSub(s))
• effectiveHSprms : S → 2HS-PRMS, defined as effectiveHSprms(s) =

⋃

∀r ∈ effectiveR(s)

hsprms(r)

• effectiveESprms : S → 2OBJECT-PRMS, defined as effectiveESprms(s) =
⋃

∀r ∈ effectiveR(s)

esprms(r)

Ecosystem Service Object Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB in
ecosystem service es ∈ ES if the effective object permissions of subject s include permissions
to object ob or to tag t ∈ Tag associated with object ob. Formally,
(es,ob,op) ∈ effectiveESprms (s) ∨
(∃ t) [(ob,t) ∈ object-tag ∧ (es,t,op) ∈ effectiveESprms (s)]

** and †† highlight new and modified components respectively with respect to HeAC

which results in roles inheritance and eases administrative responsibilities of the
security administrator. Also including group hierarchy makes OT-RBAC model
easier to fit into attributes based models where role is one of the other attributes.
In such case group hierarchy can be very useful in attributes inheritance offering

Object-Tagged RBAC for the Hadoop Ecosystem 73

Fig. 4. Proposed Implementation in Apache Ranger and Sample JSON Policy

convenient administration by assigning or removing multiple attributes to users
with single administrative operation [35].

The proposed OT-RBAC model presents a novel approach for adding
attributes to RBAC (besides NIST strategies [27]), by introducing object tags.
The model represents object permissions (OBJECT-PRMS) as union of permis-
sions on attribute values (reflected as tags) associated with objects and regular
permissions as discussed in RBAC [33]. In the following section, we propose an
implementation approach for OT-RBAC using open-source Apache Ranger.

5 Proposed Implementation

One approach to implement OT-RBAC model is by extending open-source
Apache Ranger which provides centralized security administration to multiple
Hadoop ecosystem services. It offers REST API to create security policies which
are enforced using plugins appended to each secured service. These plugins inter-
cept a user access request, and check against policies cached sporadically from
policy server to make access decisions. Apache Ranger 0.5 and above provide
extensible framework to add new authorization functionalities by offering con-
text enricher and condition evaluator hooks. Context enricher is a Java class
which appends user access request with additional information used for pol-
icy evaluation. Condition evaluator enables a security architect to add custom
conditions to policies. These hooks can be used to extend plugins to enforce
OT-RBAC.

Proposed Apache Ranger architecture for Hive service authorization is shown
in Fig. 4. Users and groups are stored in LDAP, which are synced to Ranger pol-
icy manager to create policies. A text file is added which stores current users to
roles assignment. This file is used by context enricher implemented, to add roles

74 M. Gupta et al.

Fig. 5. Adding Attributes to OT-RBAC model

of user to access request along with objects and actions. A condition evaluator
should also be implemented to include roles in policy used for evaluation. A
sample policy in JSON format is shown in Fig. 4. This policy includes roles in
condition which specifies the roles allowed to perform select operation on table
foodmart. Hive service definition should be updated with new context and con-
dition hooks information using REST API. Access decision and enforcement is
done in Ranger plugin embedded with Hive service whereas policy administra-
tion and information is through central policy server as shown in Fig. 4. Similar
implementation approach can be adopted in other ecosystem services also. This
proposed implementation requires roles addition at two places, one in text file
and other in policy conditions which requires extra effort by administrator.

6 Attributes Based Extensions to OT-RBAC

We outline some approaches for adding attributes in OT-RBAC model to achieve
finer-grained access control. OT-RBAC model incorporates tags for objects,
which is further generalized by introducing set of object attributes along with
attributes for other entities. As shown in Fig. 5, UA is a set of attributes for users
and groups, and OA is a set of attributes for data and service objects. HSA and
ESA are set of attributes for HS and ES. An attribute is a function which takes

Object-Tagged RBAC for the Hadoop Ecosystem 75

Fig. 6. Dynamic Roles and Object Permissions in OT-RBAC

as input an entity and returns values from a specified range [24]. Attribute-based
authorization policies are used to determine access permissions of users on ser-
vices and objects. With group hierarchy, senior groups inherit attributes from
junior groups [20], and a user assigned to senior groups gets all attributes of
group besides its direct attributes. A set of environment attributes is also added
to incorporate contextual information (like access time, threat level) in policies.

We outline how an attribute enhanced OT-RBAC model, along the lines of
Fig. 5, can incorporate NIST proposed strategies [27] for adding attributes in
RBAC, i.e., Dynamic Roles, Attribute Centric and Role Centric. We discuss
these in context of objects permissions assignment. These approaches can be
similarly applied to Hadoop services permissions assignment also.

6.1 Dynamic Roles

Dynamic Roles approach considers user and environment attributes to determine
roles of a user. This automated approach require rules defined using a policy
language [8] composed of attributes and resulting roles. The roles of the user
will change based on the user’s current attributes as well as current environment
attributes. As shown in Fig. 6, OT-RBAC model can be configured to achieve
dynamic roles assignment to users based on the direct or inherited attributes
through group memberships [20]. We can further extend the use of attributes
for dynamic permissions assignment to roles based on object tags, environment
attribute values and operations.

As in Fig. 6, user u1 with attribute jobTitle value director and environment
attribute optMode value normal can be assigned Admin role, which can change to
role Faculty when attribute optMode changes to emergency. Similarly, permission

76 M. Gupta et al.

Fig. 7. Attribute Centric Approach in OT-RBAC

containing operation write on object ob with tag value PII can be assigned to
role Admin which can change to role Faculty when tag changes to PCI.

6.2 Attribute Centric

In this approach, access decision is based on attributes of entities (role is also an
attribute) where authorization policies comprise attributes of subjects, objects or
environment [23,24,42]. To configure OT-RBAC with attribute centric strategy,
boolean authorization functions are defined using propositional logic formula for
each operation in OP which specify policy if subject s can perform operation op
on object ob in ecosystem service es under some environment attributes.

As shown in Fig. 7, authorization policy is defined stating that subject s
with effective attribute jobTitle value director is allowed to perform write on
object ob with attribute tag value PII in ecosystem service es with name hdfs
when environment attribute optMode is normal. It should be noted that object
ob must belong to ecosystem service es and subject must be allowed to access
es (expressed by access(s,es)) before performing any operation on object in es.
Similar authorization policy for read operation can be defined by administrators.

6.3 Role Centric

In this approach the maximum permissions (avail prms) are assigned to user
through roles assignment (similar to RBAC [33]) but the final set of permis-
sions (final prms) is dependent on the attributes of entities. Permission Filter-
ing boolean functions are defined based on the attributes, which are checked for
each permission in avail prms set available to users via roles, to determine the
final prms set assigned to the users as discussed in [25].

Object-Tagged RBAC for the Hadoop Ecosystem 77

Fig. 8. Role Centric Approach in OT-RBAC

Assume user u1 assigned to role Admin then u1 gets permissions (avail prms)
of writing to hdfs service file customer and reading a file having PII tag. These
permissions are checked against filter functions selected using target functions
discussed in [25]. As shown in Fig. 8, filter function FAdmin1 is invoked to check
if first permission is in final prms set. The function checks if creator user of
s has jobTitle attribute with value director and optMode is normal to avail
this permission. If it returns true, the permission will be included in final set
(final prms). Similar filter function can be called for other permissions also.

7 Related Work

Several papers [6,7,14,19,32,36,43] discuss security threats and solutions in
Hadoop ecosystem. Recently, Gupta et al. [18] presented a multi-layer autho-
rization framework for Hadoop ecosystem, which covers several access control
enforcement points and demonstrates their application using Apache Ranger.
Access control using cryptography based on proxy re-encryption [31] provides
approach for delegated access to Hadoop cluster. A security model for G-Hadoop
framework using public key and SSL is presented in [46]. Security and privacy
concerns of MapReduce applications are discussed in [15]. Ulusoy et al. [39,40]
proposed approaches for fine grained access control for MapReduce systems.
Privacy issues in Big Data are addressed in [13,29,37,38].

Risk aware information disclosure in [9] can be used for Hadoop Data lake.
Secure information access model via data services [11] can be applied for Hadoop
data services. HDFS can use data access protection using data distribution and
swapping in [16]. Vimercati et al. [41] discuss confidentiality of outsourced data.

78 M. Gupta et al.

Colombo et al. [12] also proposed fine-grained context-aware access control fea-
tures for MongoDB NoSQL datastore.

Risk based access using classification [10] studies role assignment based on
risk factors. Contextual attributes in location aware ABAC in [21] can be applied
in Hadoop. Classification of data object based on content is presented in [44].
Policy engineering for ABAC [26] can be used to define values based on risk or
context. Another promising approach in attribute based data sharing has been
presented in [45]. Use of role mining in [28] can be extended to determine roles of
users based on attributes. A research roadmap on trust and Big Data is presented
in [34]. Trust based Data ingestion or processing can use models in [30].

Hu et al. [22] presented a general access control model for Big Data process-
ing frameworks. The paper introduces chain of trust among several entities to
authorize access request. The work provides a preliminary document which can
be conceptualized to specific systems like Hadoop. However, the authors do not
address details particular to the Hadoop ecosystem.

8 Conclusion and Future Work

In this paper we present first formalized access control model called HeAC for
Hadoop ecosystem. Besides the regular permissions including objects and oper-
ations, this model also includes object attribute values (represented as tags) in
object permissions. We further extended HeAC model to propose Object-Tagged
RBAC model (OT-RBAC) which preserves role based permission assignment
and presents a novel approach for adding object attributes to RBAC. We pro-
posed an implementation approach for introducing roles in open-source Apache
Ranger using context enricher and condition evaluators. We additionally draft
some extensions to OT-RBAC by adding attributes to provide fine grained access
policies. We outline OT-RBAC model to support NIST strategies for including
attributes using Dynamic Roles, Attribute Centric and Role Centric.

For future work, we plan to develop pure attribute based access control mod-
els for fine grained access to Hadoop ecosystem resources. Also, since the Hadoop
data lake is used by multiple tenants it would be interesting to introduce data
ingestion security into the system to secure data at HDFS data nodes level.

Acknowledgement. Sincere gratitude is extended to James Benson, Technology
Research Analyst at Institute for Cyber Security, UTSA, for his useful comments.
This research is partially supported by NSF Grants CNS-1111925, CNS-1423481, CNS-
1538418, DoD ARL Grant W911NF-15-1-0518 and by The Texas Sustainable Energy
Research Institute at University of Texas at San Antonio.

References

1. Apache Hadoop. http://hadoop.apache.org/
2. Apache Knox. https://knox.apache.org/

http://hadoop.apache.org/
https://knox.apache.org/

Object-Tagged RBAC for the Hadoop Ecosystem 79

3. Apache Ranger. http://ranger.apache.org/
4. Apache Sentry. https://sentry.apache.org/
5. Data Age 2025: The Evolution of Data to Life-Critical. https://www.idc.com/
6. Big Data: Securing Intel IT’s Apache Hadoop Platform (2016). http://

www.intel.com/content/dam/www/public/us/en/documents/white-papers/
big-data-securing-intel-it-apache-hadoop-platform-paper.pdf

7. Securing Hadoop: Security Recommendations for Hadoop Environments (2016).
https://securosis.com/assets/library/reports/Securing Hadoop Final V2.pdf

8. Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.
In: Proceedings of IEEE ACSAC, pp. 353–362 (2002)

9. Armando, A., Bezzi, M., Metoui, N., Sabetta, A.: Risk-based privacy-aware infor-
mation disclosure. IJSSE 6(2), 70–89 (2015)

10. Badar, N., Vaidya, J., Atluri, V., Shafiq, B.: Risk based access control using classi-
fication. In: Al-Shaer, E., Ou, X., Xie, G. (eds.) Automated Security Management,
pp. 79–95. Springer, Cham (2013)

11. Barhamgi, M., Benslimane, D., Oulmakhzoune, S., Cuppens-Boulahia, N., Cup-
pens, F., Mrissa, M., Taktak, H.: Secure and privacy-preserving execution model for
data services. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS,
vol. 7908, pp. 35–50. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38709-8 3

12. Colombo, P., Ferrari, E.: Complementing MongoDB with advanced access control
features: concepts and research challenges. In: Proceedings of SEBD 2015 (2015)

13. Colombo, P., Ferrari, E.: Privacy aware access control for Big Data: a research
roadmap. Big Data Res. 2(4), 145–154 (2015)

14. Das, D., O’Malley, O., Radia, S., Zhang, K.: Adding security to Apache Hadoop.
Hortonworks, IBM (2011)

15. Derbeko, P., Dolev, S., Gudes, E., Sharma, S.: Security and privacy aspects in
mapreduce on clouds: a survey. Comput. Sci. Rev. 20, 1–28 (2016)

16. Di Vimercati, S.D.C., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Protect-
ing access confidentiality with data distribution and swapping. In: Proceedings of
IEEE BdCloud, pp. 167–174 (2014)

17. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM TISSEC 4(3), 224–274 (2001)

18. Gupta, M., Patwa, F., Benson, J., Sandhu, R.: Multi-layer authorization frame-
work for a representative Hadoop ecosystem deployment. In: Proceedings of ACM
SACMAT (2017, to appear). 8 pages

19. Gupta, M., Patwa, F., Sandhu, R.: POSTER: access control model for the Hadoop
ecosystem. In: Proceedings of ACM SACMAT (2017, to appear). 3 pages

20. Gupta, M., Sandhu, R.: The GURAG administrative model for user and group
attribute assignment. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS
2016. LNCS, vol. 9955, pp. 318–332. Springer, Cham (2016). doi:10.1007/
978-3-319-46298-1 21

21. Hsu, A.C., Ray, I.: Specification and enforcement of location-aware attribute-based
access control for online social networks. In: Proceedings of ACM ABAC 2016, pp.
25–34 (2016)

22. Hu, V.C., Grance, T., Ferraiolo, D.F., Kuhn, D.R.: An access control scheme for
Big Data processing. In: Proceedings of IEEE CollaborateCom, pp. 1–7 (2014)

23. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. IEEE Com-
put. 48(2), 85–88 (2015)

http://ranger.apache.org/
https://sentry.apache.org/
https://www.idc.com/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
http://dx.doi.org/10.1007/978-3-642-38709-8_3
http://dx.doi.org/10.1007/978-3-319-46298-1_21
http://dx.doi.org/10.1007/978-3-319-46298-1_21

80 M. Gupta et al.

24. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31540-4 4

25. Jin, X., Sandhu, R., Krishnan, R.: RABAC: role-centric attribute-based access
control. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531,
pp. 84–96. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33704-8 8

26. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Towards attribute-
based access control policy engineering using risk. In: Bauer, T., Großmann, J.,
Seehusen, F., Stølen, K., Wendland, M.-F. (eds.) RISK 2013. LNCS, vol. 8418, pp.
80–90. Springer, Cham (2014). doi:10.1007/978-3-319-07076-6 6

27. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. IEEE Comput. 43(6), 79–81 (2010)

28. Lu, H., Hong, Y., Yang, Y., Duan, L., Badar, N.: Towards user-oriented RBAC
model. J. Comput. Secur. 23(1), 107–129 (2015)

29. Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving
computing in Big Data era. IEEE Netw. 28(4), 46–50 (2014)

30. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust
models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus
2012. LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32287-7 8

31. Nunez, D., Agudo, I., Lopez, J.: Delegated access for Hadoop clusters in the cloud.
In: Proceedings of IEEE CloudCom, pp. 374–379 (2014)

32. OMalley, O., Zhang, K., Radia, S., Marti, R., Harrell, C.: Hadoop security design.
Technical report, Yahoo Inc. (2009)

33. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 29(2), 38–47 (1996)

34. Sänger, J., Richthammer, C., Hassan, S., Pernul, G.: Trust and Big Data: a
roadmap for research. In: Proceedings of IEEE DEXA, pp. 278–282. IEEE (2014)

35. Servos, D., Osborn, S.L.: HGABAC: towards a formal model of hierarchical
attribute-based access control. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood,
N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 187–204. Springer, Cham
(2015). doi:10.1007/978-3-319-17040-4 12

36. Sharma, P.P., Navdeti, C.P.: Securing big data Hadoop: a review of security issues,
threats and solution. IJCSIT 5, 2126–2131 (2014)

37. Soria-Comas, J., Domingo-Ferrer, J.: Big Data privacy: challenges to privacy prin-
ciples and models. Data Sci. Eng. 1(1), 21–28 (2016)

38. Tene, O., Polonetsky, J.: Big Data for all: privacy and user control in the age of
analytics. Nw. J. Tech. Intell. Prop. 11, xxvii (2012)

39. Ulusoy, H., Colombo, P., Ferrari, E., Kantarcioglu, M., Pattuk, E.: GuardMR:
fine-grained security policy enforcement for MapReduce systems. In: Proceedings
of ACM ASIACCS, pp. 285–296 (2015)

40. Ulusoy, H., Kantarcioglu, M., Pattuk, E., Hamlen, K.: Vigiles: fine-grained access
control for MapReduce systems. In: Proceedings of IEEE Big Data Congress, pp.
40–47 (2014)

41. Vimercati, S.D.C.D., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Shuffle
index: efficient and private access to outsourced data. ACM TOS 11(4), 19 (2015)

42. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of ACM FMSE, pp. 45–55 (2004)

43. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2012)

http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-33704-8_8
http://dx.doi.org/10.1007/978-3-319-07076-6_6
http://dx.doi.org/10.1007/978-3-642-32287-7_8
http://dx.doi.org/10.1007/978-3-642-32287-7_8
http://dx.doi.org/10.1007/978-3-319-17040-4_12

Object-Tagged RBAC for the Hadoop Ecosystem 81

44. Wrona, K., Oudkerk, S., Armando, A., Ranise, S., Traverso, R., Ferrari, L.,
McEvoy, R.: Assisted content-based labelling and classification of documents. In:
Proceedings of IEEE ICMCIS, pp. 1–7 (2016)

45. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: Proceedings of ACM ASIACCS, pp. 261–270 (2010)

46. Zhao, J., Wang, L., Tao, J., Chen, J., Sun, W., Ranjan, R., Ko�lodziej, J., Streit, A.,
Georgakopoulos, D.: A security framework in G-Hadoop for Big Data computing
across distributed cloud data centres. JCSS 80(5), 994–1007 (2014)

	Object-Tagged RBAC Model for the Hadoop Ecosystem
	1 Introduction
	2 Multi-layer Authorization in Hadoop Ecosystem
	3 Hadoop Ecosystem Access Control Model
	4 Object-Tagged RBAC for Hadoop Ecosystem
	5 Proposed Implementation
	6 Attributes Based Extensions to OT-RBAC
	6.1 Dynamic Roles
	6.2 Attribute Centric
	6.3 Role Centric

	7 Related Work
	8 Conclusion and Future Work
	References

