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Abstract—The cloud service model intrinsically caters to
multiple tenants, most obviously in public clouds but also in
private clouds for large organizations. Currently most cloud
service providers (CSPs) isolate user activities and data within
a single tenant boundary with no or minimum cross-tenant
interaction. It is anticipated that this situation will evolve soon to
foster cross-tenant collaboration supported by Authorization as a
Service (AaaS). At present there is no widely accepted model for
cross-tenant authorization. Recently, Calero et al [12] informally
presented a multi-tenancy authorization system (MTAS) which
extends the well-known role-based access control (RBAC) model
by building trust relations among collaborating tenants. In this
paper we formalize this MTAS model and propose extensions
for finer-grained cross-tenant trust. We also develop an admin-
istration model for MTAS (AMTAS). We demonstrate the utility
and practical feasibility of MTAS by means of an example policy
specification in XACML. We anticipate researchers will develop
additional multi-tenant authorization models before consolidation
and unification.

Keywords—Security Models for Cloud Computing; Access
Control in Collaboration Environments; Role Based Access
Control, Reputation, and Trust; Fundamentals and Frameworks
for Security in Collaboration Systems; Privacy Protection for
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I. INTRODUCTION

As cloud adoption increases, cloud service providers (CSPs)
are seeking ways to improve their service capabilities. A nat-
ural approach, as the recent trend suggests [31], is to establish
collaborative relations among cloud services, especially at the
Software as a Service (SaaS) layer [27]. Thereby, the resources
of a cloud service are available not only to its original users
but also users from other collaborators. Collaboration among
cloud services mitigates the data lock-in issue [6] and brings
new opportunities for more sophisticated services. However,
the mashup of user activities and data across collaborators
raises security and privacy issues.

Typically, SaaS CSPs have their services hosted by Platform
as a Service (PaaS) clouds in which the SaaS services are
treated as tenants and segregated by the multi-tenancy mech-
anism [27]. Collaborations among tenants require an adaptive
access control model. The model has to cope with the different
access control mechanisms and policies in different tenants.
Moreover, the agility, flexibility and granularity of such a

model should also be considered. Clearly, maintenance of
sensitive information for each collaborator is crucial.

We identify some characteristics of the cloud environment,
along with the corresponding requirements in collaborative
access control models, as follows.

• Centralized Facility. CSPs typically present an abstrac-
tion of their services as a pool of computing resources
to their clients. Since the resources are centralized in the
cloud, fully decentralized access control models used in
traditional distributed environments are not appropriate
or suitable.

• Agility. A tenant in a cloud may be created for temporary
use and deleted afterwards. So access control models in
clouds should also be agile and flexible enough to cope
with this kind of usage.

• Homogeneous Architecture. The services in a cloud
are supposed to be equal in quality, as most CSPs
build and maintain cloud systems with homogeneous
infrastructures while the user configurations are different.
Therefore, the access control model in different tenants
tend to be similar, especially in SaaS.

• Out-Sourcing Trust. Cloud users intrinsically out-source
part of their IT infrastructures to CSPs in order to lower
the cost so that trust relations between the two parties
are already established. Collaborations among tenants
also need similar trust relations, which can be developed
through their common trust in the CSP.

Currently, CSPs use Single Sign-On (SSO) techniques to
achieve authentication and simple authorization in federated
cloud environments, but fine-grained authorizations are typi-
cally not supported. NASA has integrated role-based access
control (RBAC) into Nebula [26], a private cloud system.
While traditional RBAC enables fine-grained access control
mechanisms in clouds, it lacks the ability to manage collab-
orations. IBM [15] and Microsoft [14] proposed a resource
sharing approach in data-centric clouds using database schema,
but this approach is specialized to databases and cannot
be directly applied to other types of services. Collaboration
models in traditional access control models, such as RT [22]
and dRBAC [19], use credentials to securely communicate
among collaborators. The management of credentials remains



a problem which could be avoided in cloud environments
because of the existence of centralized facilities.

To achieve collaborations among cloud services, Calero et
al [12] proposed a multi-tenancy authorization system (MTAS)
by extending RBAC with a coarse-grained trust relation. The
authorization policies and trust assertions are stored in a
centralized knowledge base. The authorization decisions are
also made in a centralized policy decision point (PDP). Calero
et al described an authorization model and a trust model in an
informal way, while noting that the trust relation is coarse-
grained and open for extensions.

In this paper, we abstract the collaborative access control
mechanisms of MTAS in a formal model. Additionally, we
propose an administration model for MTAS and build finer-
grained enhancements upon the trust model. The adminis-
tration model formally specifies the administrative functions
managing authorization policies and trust assertions with de-
centralized authority. One enhancement of the trust model
introduces truster-centric public role (TCPR) constraints over
the trust relation, i.e. a truster only exposes its predefined
public roles to its trustees. This approach limits unnecessary
disclosure of the trusters’ sensitive information in the collab-
oration processes. Beyond TCPR, we also give an even finer-
grained trust model, relation-centric public role (RCPR) by
defining public roles with respect to a specific trust relation.

The rest of the paper is organized as the following. Sec-
tion II presents a use case of multi-tenant collaborations in
the cloud and discusses current approaches in context of this
example. The formal model of MTAS is presented in Sec-
tion III along with its administration model and enhancements
in the trust model. In Section IV, we describe the policy
specification of the MTAS model in XACML as one possible
implementation. Section V concludes the paper.

II. BACKGROUND AND MOTIVATION

In order to provide a variety of services, collaborations are
increasingly common in IT systems, especially in distributed
systems. Yet, collaborations among services are not fully
supported in today’s cloud environment. In part, due to this
lack, data lock-in issues are rated as second of the top ten
issues for cloud computing adoption [6]. User data is usually
contained within one service and not easily used in others. This
results in inconvenience and waste of resources. For example,
a user may want to open one of their own files stored in
Dropbox directly on the cloud, but Dropbox does not support
this function. To achieve this result, a common approach is that
the user downloads the file to their local machine and uploads
it to another cloud service. In this way, the barrier between
the two cloud services is mitigated by the intermediate local
machine with extra communications, operations and storage
space. Directly building collaborations across these current
barriers may be a more effective solution.

A. Case Study

Out-sourcing is the essence of cloud computing. The trust
relation between cloud users and CSPs is very similar to

the familiar trust relation between organizations and their
contracted out-sourcing companies. We use a typical out-
sourcing case, as described in the following, to explain the
models.
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Figure 1. An out-sourcing case of multi-tenant accesses.

Figure 1 presents the out-sourcing case. Enterprise (E),
Out-Sourcing Company (OS) and Auditing Firm (AF ) are
three independent organizations using cloud storage service,
coding service and reporting service respectively. The yellow
lines represent the cloud service boundaries. Similar to the
pavement markings, the double solid line means “do not pass”
and the double line with one side solid and the other side
broken means “one way pass only” from the broken side.
Let “.” denote the affiliation relation between a tenant and
an organization, e.g., Dev.E represents a development tenant
on the cloud storage service of E. As some of E’s application
development is out-sourced to OS, the developer Charlie
from OS is authorized to access the source code stored in
Dev.E. In the meanwhile, E has a contracted AF to execute
external auditing of E’s financial and application development
projects on a regular basis, so that the auditor Alice from
AF is allowed to have read-only accesses to both Acc.E and
Dev.E. The human resource information of E is stored in
HR.E which is not accessible externally.

B. Current Approaches

Access control problems in collaborative environments have
been extensively addressed in the research community. Many
extensions of RBAC [17], [29] have been proposed to enable
multi-domain access control [16], [23], [24], [33]. In these
approaches, the presence of a centralized authority is required.
It acts as an administrator to manage collaborative policies
among domains. However, in clouds, typical issuers come
from different organizations with independent administrative
authorities. Therefore, centralized authority may not be suit-
able for the cloud.

Another line of work seeks to integrate delegation in RBAC,
in order to obtain decentralized authority in collaborations [4],
[7], [8], [19], [32]. Users may delegate their entire or partial
roles to others, entirely at their discretion within constraints
established by the security architects. This fragments the
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authorization on basis of individual user decisions which may
lead to lack of agility as authorization goals change.

To support collaboration, federated identity and autho-
rization services were proposed in distributed environments.
Federated identity [10] enables authenticating strangers by
sharing identity information among federated parties who
trust each other equally. Moreover, the establishment and
maintenance of federations has proved to be costly and far
from agile. Authorization services [5], [9], [13], [25], [28]
were developed to control resource sharing between different
Virtual Organizations (V Os) in grids utilizing asymmetric-
key based credentials. However, the cloud is designed with
centralized facility and less heterogeneity than the grid for
better flexibility and scalability [18]. Therefore, such costly
and inefficient credential-driven approaches are not necessary
to build collaborations in clouds.

By introducing trust management into access control mech-
anisms [3], [20]–[22], decentralized authority is achieved.
However, these approaches needs to build extra facilities or
changing the existing administrative models, in order to cope
with the semantic mismatch issue.

C. Authorizaiton as a Service (AaaS)

In the cloud environment, multi-tenant architecture brings
new challenges to collaborative authorization. The homoge-
neous architecture and centralized facility characteristics of
the cloud differentiate it from traditional distributed envi-
ronments. In order to address access control problems in
the cloud, we build upon the concept of Authorization as
a Service (AaaS). Similar to other service models, AaaS is
an independent framework providing authorization service to
its clients in a multi-tenant manner while the service itself
is managing access control for the tenants. The authorization
policies of the tenants are stored separately in a centralized
facility where a policy decision point (PDP) is able to collect
necessary policies and attributes it needs to make appropriate
authorization decisions. In this framework, a general access
control model is required.

III. FORMALIZED MODELS

In this section we formalize the multi-tenancy authorization
system informally described in [12]. We call the resulting
model as the MTAS model for ease of reference and con-
tinuity. We also introduce an administration model for MTAS
(called the AMTAS model). Further, we propose two feasible
enhancements to the trust model of MTAS.

A. Overview

The MTAS model is abstracted from the MTAS system,
as shown in Figure 2. There are four entity components:
issuers (I), users (U ), permissions (P ) and roles (R). In
addition to classic RBAC2, the role hierarchy model [17],
the issuer component is introduced to express authorization
in multi-tenant environments, while other components need to
be modified accordingly. In particular the traditional RBAC
entities of permissions and roles have issuer attributes so
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Figure 2. An abstracted model of the MTAS system.

that they can be identified uniquely in a multi-tenant cloud
environment. This is depicted by the RO and PO relations in
Figure 2. RO and PO are many-to-one relations from R and
P respectively to I .

ISSUERS. An issuer represents an organization or an
individual who uses the cloud services. It is a client of the
CSPs’. An issuer may use multiple cloud services and vice
versa. A service creates an interface (tenant) for each issuer
so that the data and action of the issuer are isolated from
each other. For example, in the out-sourcing case, E is an
issuer who owns three tenants: Dev.E, Acc.E and HR.E.
The tenants are operated separately.

USERS. A user is an identifier for an individual (or a
process). It is authenticated as a federated ID [10] which
is universally unique for all the issuers in the community.
Every user has an owning issuer who provides the identity
and authentication of the user. The identity is also usable by
other issuers.

PERMISSIONS. A permission is a specification of a priv-
ilege to an object on a tenant, which is specified as a service
interface. A permission is denoted in a 3-tuple (privilege,
tenant, object). For example, (read, Dev.E, /root/) represents
a permission of reading the “/root/” path on Dev.E. Because
the tenant attribute of a permission belongs to only one issuer,
every permission is associated with a single issuer while one
issuer may have multiple permissions.

ROLES. A role is a job function (role name) with an issuer.
A role is denoted as role(issuer, roleName), e.g. role(E, dev)
represents a developer role in issuer E. A role belongs to a
single issuer while an issuer may own multiple roles.

SESSIONS.a A session is an instance of activity established
by a user. A subset of roles that the user is assigned to can
be activated in a session. In a multi-tenant cloud environment,

aThe session component was not discussed in [12], but we feel it indispens-
able in a complete formal model which builds on RBAC, so it is included and
some session related components are added in the formalization, as described
in Definition 2.
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note that the user and the active roles in a session might not
all be from the same issuer.

Crucially, an additional issuer trust relation (IT ⊆ I × I ,
also written as “.”) establishes issuer to issuer trust as will
be described and formalized in detail later in this section. For
∀ir, ie, if ∈ I , IT relation is reflexive

ir . ir (1)

but not transitive

ir . ie ∧ ie . if ; ir . if (2)

and it is neither symmetric

ir . ie ; ie . ir (3)

nor anti-symmetric

ir . ie ∧ ie . ir ; ir = ie. (4)

For ∀(ir . ie), we call ir the truster and ie the trustee.
In MTAS model, trust is always established by the truster
allowing the trustee to view and use its own authorization
statements. Therefore, the trustee can grant one of the truster’s
roles, say r2, a trustee’s permission, say p1. This role to
permission assignment enables all users in r2 to inherit p1.
Further the trustee can make one of the trustee’s roles, say r1
to be junior to one of the truster’s roles, say r2. The effect of
this role to role assignment is to make all users in r2 members
of r1 so that the permissions of r1 in the trustee are also
inherited by the users of r2 in the truster. The definition of
MTAS trust model is given below.

Definition 1: Let A and B denote two issuers. By establish-
ing a issuer trust relation (IT ) with B (A . B), A exposes
its entire role hierarchy and the role members to B so that B
is able to make the two following assignments:

1) assigning B’s permissions to A’s roles; and
2) assigning B’s roles as junior roles to A’s roles.
For example, in the out-sourcing case as described in

Section II-A, Bob, representing the resource owner E, should
allow certain developers in OS to access the source code
files stored in Dev.E for them conduct the out-sourcing job.
Assume the proper permission in E for the out-sourcing job,
(edit, Dev.E, /src/) is associated to the role role(E, dev). In
order to achieve this cross-issuer access, with the presence of
OS . E relation, Bob can assign role(E, dev) to be a junior
role of a proper developer role in OS, say role(OS, dev). In
this way, the users associated to role(OS, dev) are able to edit
the files under the /src/ directory in Dev.E.

The trust model solves the two key problems in collabo-
rative role-based access control: decentralized authority and
semantic mismatch. Since the collaborators are independent
self-managing services, the service issuers (decentralized au-
thorities) desire to remain control of their resources including
data and authorization settings. But in most collaborations,
some level of resource sharing is inevitable and that is why we
need a trust model to keep the resource sharing process secure.
By establishing a trust relation described in Definition 1, the

truster exposes its authorization settings to the trustee while
the trustee assigns permissions of its data to the truster. In this
way, both sides contribute to cross-issuer assignments and the
accesses are under mutual control.

The semantic mismatch issue refers to the fact that the
definitions of roles vary in different domains so that no
proper assignment could be made by a single authority without
additional communication with each other. In the trust model
of MTAS, this issue is mitigated, because the authorization
settings, i.e. the role hierarchy and the role members, of the
truster are exposed to the trustee upon the creation of the
issuer trust relation. Consider the out-sourcing case. With
the presence of OS . E, E’s administrator may search the
members of OS’s roles and decide which role is appropriate
to assign the permission to.

B. MTAS Model

The formal definition of MTAS model is as follows.
Definition 2: The MTAS authorization model has the fol-

lowing components:
• U , R, P , I and S (users, roles, permissions, issuers and

sessions respectively);
• UO ⊆ U × I , a many-to-one relation mapping each user

to its owning issuer;
• RO ⊆ R×I , a many-to-one relation mapping each role to

its owning issuer; correspondingly, roleOwner(r : R)→
I , a derived function mapping a role to its issuer where
roleOwner(r) ∈ {i ∈ I|(r, i) ∈ RO};

• PO ⊆ P × I , a many-to-one relation mapping
each permission to its owning issuer; correspondingly,
permOwner(p : P )→ I , a derived function mapping a
permission to its issuer where permOwner(r) ∈ {i ∈
I|(p, i) ∈ PO};

• IT ⊆ I × I , a reflexive relation on I called issuer trust
relation, also written as .;

• canUse(r : R) → 2I , a derived function mapping a
role to a set of issuers who can use the particular role.
Formally, canUse(r) = {i ∈ I|roleOwner(r) . i};

• UA ⊆ U × R, a many-to-many user-to-role assignment
relation;

• PA ⊆ P × R, a many-to-many permission-to-role
assignment relation requiring (p, r) ∈ PA only if
permOwner(p) ∈ canUse(r);

• RH ⊆ R×R is a partial order on R called role hierarchy
or role dominance relation, also written as ≥, requiring
r ≥ r1, only if roleOwner(r1) ∈ canUse(r);

• user(s : S)→ U , a function mapping each session to a
single user which is constant within the life-time of the
session; and

• roles(s : S) → 2R, a function mapping each session to
a subset of roles, roles(s) ⊆ {r|∃r2 ≥ r[(user(s), r2) ∈
UA ∧ userOwner(user(s)) ∈ canUse(r)]}, which
can change within s, and s has the permissions⋃

r∈roles(s){p|(p, r) ∈ PA]}.
Note that since we are formalizing an extension of pure RBAC
model [17], the user permission assignment described in [12]
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is ignored in the formalization.
Role activation mechanisms determine the executable per-

missions inherited by a session. Because a role may inherit
permissions from its junior roles in the role hierarchy, when a
role is activated in a session, its inherited roles may be either
automatically activated (implicit activation) or require explicit
activation. Theoretically the former scenario is transformable
to the latter by recursively executing explicit activation for the
junior roles. The choice between the two approaches is left
as an implementation issue in the NIST RBAC model [17].
In the RBAC96 model implicit activation is specified [29]. In
MTAS we choose to specify explicit activation in the roles(s)
component. In a session, only the permissions of the explicitly
activated roles are executable to the user.

Since a users identity is available for all the issuers, UA
assignments have no requirements about where the users come
from. Thus, the UA assignments are always issued by the
role owner. Administration of the MTAS model is discussed
in Section III-C.

The trust model is embedded in the canUse function which
takes effect in PA and RH assignments in the MTAS model.
As the name suggests, the canUse(r) function returns the
issuers who can use r to make authorization assignments. The
returned issuers are the trustees who are trusted by r’s owner,
say i. In order to issue PA, permission owner has to be i itself
or one of the trustees of i. Therefore, r is only assigned to
permissions of i or its trustees. Similar conditions require that
only the roles of i or its trustees can be assigned as junior roles
of r in RH . PA and RH assignments enable collaborations
among issuers.

Based on the formalization of MTAS model, we also
develop a formal administrative model and finer-grained trust
models, as presented in the following sections.

C. Administrative MTAS (AMTAS) Model

The administration model, AMTAS is tightly coupled with
the MTAS model, since the main problem of access control
models in distributed environments is how to manage the
decentralized administrative authority. In other words, the
administrative model regulates who are eligible to issue what
kind of assignments. Hence, a desirable administrative model
should maintain balanced management workload and proper
control for both sides.

Definition 3: The Administrative MTAS (AMTAS) model
requires that
• the resource requester A is responsible for managing the

trust relation of A . B; and
• the resource owner B is responsible for managing the

assignments (i.e. PA and RH) to A’s requesting roles,
according to MTAS in Definition 2.

As described in Definition 3, in AMTAS the resource
requester maintains full control of the trust relation which is
fundamental for cross-tenant accesses through MTAS. The re-
source owner keeps the ultimate authority of its resources and
issues assignments based on properly created and maintained
trust relations. Both the trust relations and the assignments

TABLE I
ADMINISTRATION FUNCTIONS OF AMTAS FOR ISSUER i

Function Condition Update
assignUser
(i, r, u)

i = roleOwner(r)∧
u ∈ U

UA′ =
UA ∪ {u→ r}

revokeUser
(i, r, u)

i = roleOwner(r)∧
u ∈ U∧
u→ r ∈ UA

UA′ =
UA \ {u→ r}

assignPerm
(i, r, p)

i = permOwner(p)∧
i ∈ canUse(r)

PA′ =
PA ∪ {p→ r}

revokePerm
(i, r, p)

i = permOwner(p)∧
i ∈ canUse(r)∧
p→ r ∈ PA

PA′ =
PA \ {p→ r}

assignRH
(i, r1, r)

i = roleOwner(r)∧
i ∈ canUse(r1)∧
¬(r1 � r)∧
¬(r ≥ r1)

a

≥′=≥ ∪{r2, r3 :
R|r2 ≥ r1 ∧ r ≥
r3 ∧
roleOwner(r3) ∈
canUse(r2) •
r2 → r3}

revokeRH
(i, r1, r)

i = roleOwner(r)∧
i ∈ canUse(r1)∧
r1 � r b

≥′= (� \{r1 →
r})∗ c

assignTrust
(i, i1)

i1 ∈ I .′=. ∪{i→ i1}

revokeTrust
(i, i1)

i1 ∈ I∧
i . i1 ∧ i 6= i1

.′=. \{i→
i1} d

a. This condition avoids cycle creation in the role hierarchy.
b. It requires r1 to be an immediate ascendant of r.
c. Implied relations are preserved after revocation.
d. By revoking the trust relation, the canUse() function of i’s roles

automatically updates accordingly, same as PA and RH .

are crucial in cross-tenant authorizations, because if either is
revoked or altered, the corresponding collaborative accesses
will be denied.

Table I formally specifies the exact administration functions
of AMTAS along with the corresponding conditions and
updates to MTAS authorizations.

D. Enhanced Trust Models

The trust model discussed in Definition 1 enables collabo-
rative access control among issuers. However, the unnecessary
exposure of the truster’s authorization settings raises privacy
issues. Therefore, we propose two natural enhancements to the
trust model.

1) Truster-Centric Public Role (TCPR): As the name sug-
gests, TCPR introduces the public role constraint for trusters.
The public roles are included in a predefined subset of a
truster’s roles exposed to all of the trustees. It is formally
defined as follows.

Definition 4: The truster-centric public role (TCPR) model
inherits all the components from MTAS in Definition 2, while
the following modifications are applied:
• PT (i : I) → 2R, a function mapping an issuer to a set

of its public roles which are the only roles that i expose
to its trustees; and

• canUse(r : R)→ 2T is modified to canUse(r) = {i}∪
{i1 ∈ i|i . i1 ∧ r ∈ PT (i)}, where i = roleOwner(r).

By introducing PT (i), the exposure surface of the i’s roles
in TCPR is much smaller than that in MTAS trust model.
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Accordingly, only if r ∈ PT (i), then r can be used by i’s
trustees. Otherwise, it can only be used internally by i .

Since the public roles in TCPR are defined in terms of the
truster i, if PT (i) is modified, then all the trust relations with
the common truster are influenced. Hence, in practice PT (i)
tends to contain more public roles than necessary to make
sure the availability of all the collaborations that i is using.
Therefore, we give a more fine-grained enhancement to the
trust model.

2) Relation-Centric Public Role (RCPR): In contrast with
TCPR, RCPR enforces the public role constraints for trust
relations instead of trusters. The public roles are included in a
predefined subset of the truster’s roles exposed to the trustee
in a specific trust relation. The formal definition follows.

Definition 5: The relation-centric public role (RCPR)
model inherits all the components from MTAS in Definition 2,
while the following modifications are applied:
• PR(t : IT ) → 2R, a function mapping a issuer trust

relation to a set of the truster’s public roles; and
• canUse(r : R) → 2T is modified to canUse(r) =
{i} ∪ {i1 ∈ I|i . i1 ∧ r ∈ PR(i . i1)}, where
i = roleOwner(r).

In RCPR, the public roles of the truster are defined per trust
relation so that the role exposure of the truster is accurately
expressed and enforced. With this fine-grained constraint,
MTAS systems may achieve minimum exposure of the truster’s
roles in collaborations.

E. Discussion

We now identify several issues introduced by extending
RBAC to the multi-tenant environment and discuss potential
constraints to mitigate these issues.

1) Cyclic Role Hierarchy: The cyclic role hierarchy is a
well known issue in inter-domain access control [30]. A “role
cycle” may be formed across tenants in MTAS systems without
proper constraints. This may lead to implicit role upgrades in
the role hierarchy or other inconsistencies. In order to prevent
the formation of role cycles, constraints should be enforced
over assignments or sessions. The former is achieved by
checking role cycles whenever a cross-tenant RH assignment
is issued. Even if there are role-cycles in assignments, the
latter prohibits all the roles in a cyclic hierarchy from being
activated in the same session. Note that AMTAS includes these
provisions.

2) Separation of Duties: During collaborations with MTAS,
we have two levels of separation of duties (SoD), issuer level
and role level. For issuer level SoD, one collaborating issuer
cannot execute two conflict responsibilities. For instance,
SOX [1] compliant companies are not suppose to hire the
same third-party as both consultant and auditor. This constraint
could be enforced over trust relations. The role level SoD is
straightforward. Two roles attached to conflict duties are not
suppose to be activated for one user in a session. In the out-
sourcing example, a QA role and a developer role in either
issuer, E or OS, should not be obtained by a single user in a
same session.
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Figure 3. Two authorization paths for i1’s user to inherit i2’s permission
through cross-issuer PA and cross-issuer RH, where i1 . i2.

3) Chinese Wall: The conflict of interests among issuers
also needs to be managed. For example, two competing issuers
should not be trusted by a single issuer so that the security
and privacy of the trustee issuer’s sensitive information are
protected against the competitors. This situation is already
abstracted and addressed by the Chinese Wall model [11]
which can be integrated in the centralized AaaS platform to
avoid conflict of interests. Essentially, the issuers are grouped
into “conflict of interest classes” and by mandatory ruling all
issuers are allowed to trust at most one issuer belonging to
each such conflict of interest class. In this way, no cross-issuer
access will be assigned or permitted by the other conflict of
interest issuers.

IV. POLICY SPECIFICATION

In order to demonstrate the feasibility of the MTAS model,
we give the policy specification here in the extensible access
control markup language (XACML). The normative specifica-
tion of RBAC policies with XACML2.0 language has been
proposed by OASIS XACML TC [2]. Its Role PolicySet
(RPS) and Permission PolicySet (PPS), representing UA
and PA respectively, are also inherited into the MTAS policy
specification. Additionally, a novel Trust PolicySet (TPS) is
proposed to express the trust relation. It mediates the two RPS
and PPS from multiple issuers.

Figure 3 shows an example of MTAS policy structure. There
are two authorization paths for cross-issuer accesses. One of
them is cross-issuer permission assignment which starts from
the RPS-i1. For instance, a user from one of i1’s roles sends
a request to access i2’s resources. RPS will check the role
membership of the user. If the user is a member of the claimed
role in i1, then the request will be forwarded to TPS−i1 who
checks if i1 . i2. If the trust relation exists, the request will
be transferred to DPS-i2 which will check if the requested
permission is granted to the role. If the answer is true, then the
PDP will respond with permit, otherwise the PDP will check
other paths of nodes in the policy tree for a match. If finally
no match is found, a deny response will be returned.
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The other authorization path, as known as cross-issuer role
hierarchy assignment, also starts from RPS-i1 in Figure 3. If
the user has the membership of a role in i1 which is senior
to a role in i2, then the request will first be forwarded to
TPS-i1 which will forward request to PPS-i1. Then PPS-i1
will interact with TPS-i1 recursively to traverse the junior
roles until a leaf role is reached or the request is redirected to
PPS-i2 by TPS-i1. Then PPS-i2 will run through similar
process with TPS-i1 until the requested permission is found
and a permit is returned; otherwise the PDP will search all
other trustee for the requested permission. If the permission is
not found eventually, a deny will be responded.

In summary, through either of the authorization paths, a
cross-issuer access control is obtained. The policy specification
could be directly used in MTAS implementations.

V. CONCLUSION AND FUTURE WORK

To support collaboration between cloud services, we for-
malize a MTAS model based on a informally specified multi-
tenancy authorization system [12] which extends the RBAC
model by building trust relations among collaborating services.
Further, we give the administration model (AMTAS) and
enhancements (TCPR and RMTASCPR) for the trust model
in MTAS. In order to demonstrate that MTAS is a viable
collaborative AaaS model, we give an example of policy
specification in XACML.

Currently, our research team is working towards various
collaborative access control models within AaaS framework.
Since we use trust relations to achieve collaborations among
cloud services, further research in feasible trust models and a
potential trust framework is anticipated to emerge from this
line of research.
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