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ABSTRACT

A common trait of current access control approaches is the challeng-
ing need to engineer abstract and intuitive access control models.
This entails designing access control information in the form of
roles (RBAC), attributes (ABAC), or relationships (ReBAC) as the
case may be, and subsequently, designing access control rules. This
framework has its benefits but has significant limitations in the con-
text of modern systems that are dynamic, complex, and large-scale,
due to which it is difficult to maintain an accurate access control
state in the system for a human administrator. This paper proposes
Deep Learning Based Access Control (DLBAC) by leveraging signif-
icant advances in deep learning technology as a potential solution
to this problem. We envision that DLBAC could complement and, in
the long-term, has the potential to even replace, classical access con-
trol models with a neural network that reduces the burden of access
control model engineering and updates. Without loss of generality,
we conduct a thorough investigation of a candidate DLBAC model,
called DLBACα, using both real-world and synthetic datasets. We
demonstrate the feasibility of the proposed approach by addressing
issues related to accuracy, generalization, and explainability. We
also discuss challenges and future research directions.

CCS CONCEPTS

• Security andprivacy→Access control; •Computingmethod-

ologies →Machine learning.

KEYWORDS

Access control; Deep learning; Automation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9220-4/22/04. . . $15.00
https://doi.org/10.1145/3508398.3511497

ACM Reference Format:

Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, Mehrnoosh Shakarami,
and Ravi Sandhu. 2022. Toward Deep Learning Based Access Control. In
Proceedings of the Twelveth ACM Conference on Data and Application Security

and Privacy (CODASPY ’22), April 24–27, 2022, Baltimore, MD, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3508398.3511497

1 INTRODUCTION AND MOTIVATION

Access Control Lists (ACLs) [28], Role-Based Access Control (RBAC)
[60], and Attribute Based Access Control (ABAC) [32] are some of
the mainstream approaches to determine users’ access to resources.
Commercial solutions [21] that cater to organizations employ one or
more of these classical access control functionalities. While tremen-
dous progress has been made in the realm of classical access control
approaches [41], one fundamental issue has remained the same for
over forty years. Skilled security administrators needed to engineer
and manage accesses as only humans could develop detailed policy
insights about individuals’ needs within the broader organization.
Clearly, this leads to all types of errors and inefficiencies [4]: there
remain plenty of users with accesses that should not have those ac-
cesses (over-provisioned to ease administrative burden) and plenty
of users that lack accesses that should indeed have those accesses
(under-provisioned for the sake of tightened security) [22, 65]. Ad-
ministrators tactfully perform a balancing act to maximize security
and minimize costs. This complexity is further exacerbated with
the proliferation of cloud-based applications that perform machine-
to-machine access through APIs, IoT, BYOD, etc.

In this paper, we propose an automated and dynamic access
control mechanism leveraging advances in deep learning technol-
ogy [62] that could complement or potentially replace the human
administrator. This approach, denoted as Deep Learning Based Ac-
cess Control (DLBAC), addresses three major limitations of classical
access control approaches such as RBAC and ABAC. Without loss
of generality, we use the term attribute to refer to any form of tra-
ditional access control information such as roles and relationships.

1. Attribute Engineering. An organization typically holds a
vast number of metadata about its users and resources. However,
those metadata are often not meaningful access control attributes.
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As a first step, using organizational context often inferred from
those metadata, administrators engineer access control specific
attributes that could be used to express access control rules subse-
quently. This is at best an art today involving semi-formal design
and requirements engineering processes [58].

2. Policy Engineering. After access control relevant attributes
are engineered, administrators need to engineer access control rules.
This is accomplished through either a manual engineering process
akin to attribute engineering above or automatedmining techniques
that take as input a primitive form of access rules such as ACLs and
generate approximate ABAC rules (or user-role assignments, in the
case of RBAC) [19, 44]. We will show that, for complex situations,
DLBAC generally captures the access control state of the system
with more precision than other approaches which are based on
policy mining and classical machine learning.

3. Generalization. Most prior approaches [11, 54] that mine
access control rules from simpler forms of access control states
such as ACLs focus on accurately capturing the access control
state as given in those ACLs. Unfortunately, that leads to poor
generalization [17, 73]—that is, the ability to make better access
control decisions on users and resources with attributes that were
not explicitly seen during the mining process. However, this is
something machine learning methods, especially deep learning, are
better at. They have an innate ability to make quality predictions as
long as the test sample at prediction time aligns with the training
data distribution. We will show that the engineered rules typically
make poor access control decisions for user-resource metadata that
were not explicitly seen by the mining process.

DLBAC addresses the above issues by exploring a fundamentally
different approach to how access control is designed today. As
illustrated in Figure 1, DLBAC differs from classical approaches by
making decisions based on themetadata of users and resources and
a trained neural network. (The key distinction between the notions
of metadata and attributes albeit semantic has important practical
benefits, which is explained in section 2.1.) It accomplishes this (see
Figure 2) by first replacing access control policies with a neural
network that instead makes access control decisions. Second, the
neural network is trained using rawmetadata from the organization
instead of laboriously engineered access control attributes.

To summarize, we make the following contributions to the field
of access control:

• We propose DLBAC, a new approach of automated and dynamic
next generation access control.

• We develop a candidate DLBAC model, DLBACα, which outper-
forms classical policy mining and machine learning techniques
in many aspects, including capturing the existing access control
state of the system accurately and generalizing well to situations
that were not seen during training time.

• As DLBAC is a neural network, we address previously highlighted
concerns on the explainability of the black-box nature of neural
network-based systems for access control [12]. We apply deep
learning interpretation methods to confirm that decision-making
in DLBAC can indeed be understood to a large degree (albeit not
with 100% accuracy).

Figure 1: Decision Making in Classical Approaches vs. DL-

BAC.

• We synthesize several large-scale access control datasets with
a varying number of users and resources. We evaluate the per-
formance of DLBAC on those synthetic datasets along with two
real-world datasets.
The rest of the paper is organized as follows. Section 2 presents

an overview of the DLBAC approach. We discuss related work
in Section 3. Section 4 introduces some real-world datasets and
presents the synthetic data generation method for DLBACα, a can-
didate DLBAC model. In the same section, we also explain the
implementation of DLBACα. We conduct performance evaluation
of DLBACα in Section 5. We present approaches to understand
DLBACα decisions in Section 6. In Section 7, we discuss future
research directions, and conclude in Section 8.

2 DEEP LEARNING BASED ACCESS CONTROL

In this section, we provide a brief overview of DLBAC and explain
how it differs from classical approaches.

2.1 Decision Making in Classical Approaches vs.

DLBAC

Figure 1 illustrates how DLBAC makes a decision as compared to
two classical access control approaches (the discussion applies to
other forms of access control approaches such as relationship based
access control or ReBAC [14]). In RBAC, an access control decision
is simply a cross-reference between user-role and permission-role
assignment relations. In the case of ABAC, an access control rule is
evaluated for a given operation based on the attributes of the user
and resource in question (sometimes attributes of other entities
such as “environment” are used as well). In DLBAC, a deep neural
network makes an access control decision based on the available
metadata for the user and resource. For example, metadata could
include logs of accesses, employee join date, access time, network
access profile, etc. For simplicity, we assume metadata are repre-
sented as name-value pairs. While syntactically they appear to be
the same as attributes, which are often name-value pairs as well,
semantically they are very different. Metadata are primarily differ-
ent from attributes since they do not go through the access control
design and engineering process. A typical organization could host
multiple applications such as email, file storage, human resources,
benefits, and other cloud services. Each of those applications hold
metadata about users and resources in the organization. Metadata
are designed inherently as part of the functionality engineering
phase of the system instead of during the access control design



Figure 2: Design Process of Classical Approaches vs. DLBAC.

phase of the system. Therefore, they are immediately available to
DLBAC once the system is implemented. For example, ‘join_date’,
‘spending_history’ and ‘credit_history’ could be metadata of cus-
tomer, whereas an engineered attribute could be ‘status’ (such as
‘status = platinum’), determined based on all of those metadata.

2.2 Policy Engineering in Classical Approaches

vs. DLBAC

A conceptual representation of classical access control approaches
versus DLBAC is depicted in Figure 2. For simplicity, we assume
all methods obtain the current access control state of the system
as authorization tuples (e.g., ⟨user, resource, operations⟩), and the
metadata of users (e.g., ⟨designation, “employee”⟩) and resources
(e.g., ⟨size, “small”⟩) as the input. In ABAC, the first step of attribute
engineering involves designing users and resources attributes in the
system that are selected and properly assigned based on available
metadata. Common to ABAC and RBAC, the second stage is policy
mining/engineering, through which proper policies are developed.
Access control mining algorithms, including those using machine
learning (ML), are summarized in Section 3. The last element in the
conceptual representation of models is the output. For the RBAC
approach, the mining process’s output is a set of roles, permission
assignment to roles (PA), and user assignment to roles (UA). For
ABAC, the output includes a policy consisting of a set of access
control rules. (Note that most ABAC mining works assume that
attributes and attribute assignments are already available [54, 59]).
In contrast, DLBAC is an end-to-end access control approach. It
does not need attribute engineering since it works directly with the
users and resources metadata. The DLBAC approach’s output is a
trained neural network, which takes user and resource metadata as
input and makes access control decisions. We note that the DLBAC
is agnostic to any deep neural network architecture.

3 RELATEDWORK

There is plenty of work on mining/engineering policies either by
analyzing the current access control state in the forms of logs and
ACLs or transforming one access control model to another. We
review three classes of related work below.

Classical Policy Mining Approaches. A rich body of research
on mining classical access control models includes RBAC, ABAC,
and ReBAC. Many algorithms were proposed to mine RBAC poli-
cies [24, 72], following either top-down [19, 49, 51, 69] or bottom-
up [61] methods, while hybrid methods [23] combine the advan-
tages of both approaches. Researchers proposed different criteria to

assess the quality of mined policy [51] or satisfy various constraints
while mining [38]. Xu and Stoller proposed an ABAC mining al-
gorithm [73], a variant of which was developed to mine ABAC
policies from logs [74]. Many approaches have been proposed to
mine ABAC policies—for instance, multi-objective evolutionary op-
timization framework [47], identifying functional dependencies in
database tables to mine ABAC policies [67], and algorithms to find
both positive and negative policy rules [34]. Bui et. al. [6] utilized
XuStoller’s algorithm for mining policies in the ReBAC [14] context.
Extended versions of this research were presented in [7, 10]. They
also proposed a greedy approach for mining ReBAC policy [11].
Iyer et al. [35] proposed a ReBAC mining algorithm in evolving
systems for mining graph transitions. The authors later proposed a
method for active learning [36] of ReBAC policies from a black-box
access control decision engine using authorization and equivalence
queries. A universal access control policy mining, called Unicorn,
was proposed by Cotrini et al. [18], which builds policies in a class
of access control models including RBAC, ABAC, and ReBAC.

Using Machine Learning (ML) for Mining Access Control.

Many researchers applied ML algorithms for mining access control
policies. A probabilistic model for the role mining problem driven
from the logical structure of RBACwas proposed by Frank et al. [22].
Deep learning was used to identify relevant attributes [1] to mine
ABAC policies from natural language. Other methods including
classification trees [13], deep recurrent neural network (RNN) [53],
K-Nearest Neighbor (KNN) [20], Decision Tree [8, 9, 71] and Re-
stricted Boltzmann Machine (RBM) model [50] have also been used
to mine ABAC policy. The first unsupervised learning-based ABAC
mining method used k-modes clustering to mine rules from his-
torical operation data [40]. Naroui et al. [54] proposed to improve
an existing ABAC policy by mining a policy using ML. Cotrini et
al. [17] proposed an ABAC policy mining algorithm, named Rhap-
sody, built upon APRIORI-SD [42] which is an ML algorithm for
subgroup discovery. Rhapsody mines a generalized policy based
on sparse logs. Jabal et al. [37] proposed a novel framework for
learning ABAC policies from data, named Polisma, combining data
mining, statistical, and ML techniques. The Polisma mine a set of
rules and applies ML techniques to include requests not covered
by the mined rules. Karimi et al. [39] proposed an automatic ap-
proach for learning ABAC policy by extracting rules containing
both positive and negative attributes and relationship filters.

Classical ML for Access Control Decision Making. Classical
ML approaches have been widely used for making access decisions.
Sanders et al. [59] presented an approach to mine ABAC policies
while satisfying the least privilege principle in a large-scale or-
ganization. Symbolic and non-symbolic ML algorithms to infer
ABAC policies from access logs have been proposed by Cappelletti
et al. [12]. Liu et al. [45] proposed a permission decision engine
scheme for ABAC based on Random Forest [5]. The method, called
EPDE-ML, decoupled the decision engine from the real access con-
trol policy by moving policy updates into a separate phase.

Following our discussion in Section 2, DLBAC is fundamentally
different from current approaches. It aims to replace traditional rule-
based methods with a neural network, leading to better decision
accuracy, generalizability, and engineering ease. Comparing to the
related works that uses classical machine learning, we will show



that a deep learning based approach provides superior performance
while being amenable to usable explainability in practice.

4 DLBACα: A CANDIDATE DLBAC MODEL

This section presents a prototype of DLBAC, namely DLBACα,
which is an access control model built upon the proposed DLBAC
approach in Section 2. As illustrated in Figure 2, DLBACmodels e.g.,
DLBACα need to be fed with authorization tuples and user/resource
metadata. We apply DLBACα to two real-world and eight synthetic
datasets. First, we explain synthetic datasets construction and in-
troduce real-world datasets. Then, we discuss how the DLBACα
neural network is trained, and access decisions are made.

4.1 Synthetic Dataset Generation

An approach to generate synthetic access control datasets was
proposed in [73]. We adopt this approach with minor changes to
generate multiple synthetic datasets and briefly discuss here. The
algorithm first generates a set of attribute names for users and
resources randomly. Next, it generates a set of rules based on those
attributes and then uses these rules to inform user/resource cre-
ation and attribute value assignments. Each rule is a tuple of the
form ⟨UAE; RAE;𝑂𝑃 ;𝐶⟩, where UAE is the set of user attribute
expression, RAE is the set of resource attribute expression, 𝐶 is
the set of constraints, and 𝑂𝑃 is a set of operations. For exam-
ple, ⟨title=student; type=document; read; department=department⟩
is a rule where title=student represents the UAE, type=document

is the RAE, read is the operation, and department=department is
the constraint. A user will be authorized to operate on a resource
if the user satisfies the UAE, the resource satisfies the RAE, and
both the user and resource satisfy the constraint. For each rule, the
algorithm generates a set of users that satisfy the rule and then
generates resources where for each resource, there is at least one
user available to satisfy the rule. The following user and resource
are created based on the above rule: user(student1, title=student, de-
partment=cs), resource(document1, department=cs, type=document).
Here, the student1 and document1 are the unique ids of a user and
a resource, respectively. The user student1 has two attributes (title
and department), and the resource document1 has two attributes (de-
partment and type). Also, student1 satisfies UAE, as the user has the
title student which is part of the title in UAE. Similarly, document1
satisfies RAE for the type attribute. Both student1 and document1

satisfy the constraint as they are from the same department. Thus,
according to this rule, student1 has read access to document1.

Finally, once the rules are generated, users and resources are
created, and attributes are assigned, it is straight-forward to create
the authorization tuples. For each user, resource and operation
combination that satisfies a rule, an authorization tuple is created
or updated with a new operation, as the case may be.

4.1.1 Syntax of Synthetic Dataset. We adapt this data generation
approach by creating manymetadata instead of attributes. Wemain-
tain four operations and various metadata (eight to thirteen) for
each user/resource for different datasets. We define the syntax of
DLBACα’s dataset to contain a set of authorization tuples. An autho-
rization tuple could be illustrated of the form ⟨𝑢𝑖𝑑 |𝑟𝑖𝑑 |𝑚𝑢

1 : 𝑣1,𝑚𝑢
2 :

𝑣2, ...,𝑚𝑢
𝑖
: 𝑣𝑖 |𝑚𝑟

1 : 𝑣1,𝑚𝑟
2 : 𝑣2, ...,𝑚𝑟

𝑗
: 𝑣 𝑗 |⟨𝑜𝑝1, 𝑜𝑝2, 𝑜𝑝3, 𝑜𝑝4⟩⟩. The

uid and rid in the tuple indicates the unique id of a user and a re-
source, respectively. The next part gives the metadata values of all
𝑖 metadata of a user and𝑚𝑢

1 indicates the first user metadata name
(e.g. umeta0) whereas its value is indicated by 𝑣1. The subsequent
part presents the metadata values of all 𝑗 metadata of a resource,
and first resource metadata name (e.g. rmeta0) and its value are
represented by𝑚𝑟

1 and 𝑣1, respectively. The last part is a binary se-
quence with a ‘1’ meaning ‘grant’ and a ‘0’ meaning ‘deny’ for that
operation. For example, ⟨1011|2021|30 49 5 26 63 129 3 42 | 43 49 5 16
63 108 3 3 |⟨1 1 0 1⟩⟩ is a sample authorization tuple of our dataset
where 1011 and 2021 are the user and resource’s unique number.
The next eight numbers indicate the metadata values of a user,
the following eight numbers represent resource’s metadata values,
and the final four binary digits signify the user has 𝑜𝑝1, 𝑜𝑝2, 𝑜𝑝4
access to the resource. (In the example above, we also skip naming
the metadata with the assumption that it could be inferred from
the position of the metadata value.) For simplicity, we assume the
metadata values in our datasets are categorical, and each metadata
value is an integer representation of a category. We anticipate that
our results will hold even in cases of metadata with real numbers.

4.1.2 Dataset Visualization. We use t-SNE plots [68] to visualize
the samples in our datasets. A t-SNE plot discovers relationships
in the data by identifying analogous clusters of data points with
several features and projecting high dimensional features into a low
dimensional feature space while retaining essential information.We
project each of our samples to a 2-dimensional feature and plot them.
(Note that our datasets have varying numbers of features/metadata
ranging from 16 to 26 in total.) Each dot in the plot (Figure 3)
represents an authorization tuple, where multiple tuples of the
same color indicate that they have the same access permissions. For
example, two tuples with only read and write access permissions
will have the same color. Notably, a dataset with n operations will
have tuples with 2𝑛 different access combinations and plotted with
2𝑛 distinct colors. For instance, the authorization tuples of a dataset
with two operations (e.g., read and write) can be plotted with four
different colors (tuples with the read access, write access, read and
write access, and no access).

The position of a tuple in the plot is fixed according to the user
and resource metadata values. For instance, two different users with
the samemetadata values may have access to a resource (or multiple
resources with the same metadata values). Therefore, these tuples
will have the same position regardless of their access permissions.
Figure 3(a) depicts a dataset of 1650 users and 320 resources. The
tuples (dots) take the position all over the plot according to their
metadata values. This dataset has four different operations, and
thereby, there are tuples with 16 distinct colors. However, we ob-
serve different tuples with the same access permission (same color)
are grouped, and groups are isolated from one another, as shown
in the figure with blue circles. Thus, a simple classifier can easily
distinguish them without much difficulty (e.g., making one rule for
each circle). The access control states in real-world situations might
be much more complicated [52]. Figure 3(e) shows the visualization
of a dataset from Amazon. Even though this is not a complete ac-
cess control scenario of the entire Amazon enterprise [17], samples
with access (green dots) significantly overlap with other samples
without access (red dots) which means tuples with very similar
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Figure 3: Comparing Complexity of Datasets. (a) A dataset with 1650 users, 320 resources, eight user/resource metadata, (b) A

dataset with 1000 users, 639 resources, 11 user/resource metadata, (c) A dataset with 800 users, 656 resources, 11 user/resource

metadata, (d) 4500 users, 4500 resources, 11 user/resource metadata, (e) An Amazon dataset [2] (The dataset has more samples

with ‘grant’ access. Therefore, for better visualization, we considered all the tuples with ‘deny’ access permission and randomly

selected a similar number of tuples with ‘grant’ access permission).

metadata values have entirely different accesses. A simple classifier
would create too many rules to model such a dataset.

4.1.3 Introducing Complexity into Synthetic Datasets. Informed by
t-SNE visualization of the Amazon dataset, we seek to introduce
complexity into our synthetic datatsets to closely reflect real-world
situations. We observe that, in practice, the access privileges of
users and resources with somewhat similar metadata could vary. It
is also expected that not all the metadata of a user/resource would
contribute equally to their permissions. To reflect such scenarios
in some of our datasets, we determine accesses considering all the
metadata values of user and resource but hide a portion of metadata
values from the policy miner (when dealing with mining methods)
and model training phase (when dealing with ML methods). How-
ever, during rule generation, we ensure that the metadata that we
will hide contributes to a lesser extent toward permission decisions
by excluding them from being part of the constraint of the rules. In
a nutshell, hiding metadata attempts to simulate a scenario, where
access decisions are made based on access control attributes that
are not fully informed by the entire metadata set. In a perfect world,
access control attributes could succinctly capture the relevant meta-
data distributed across an organization. However, it is reasonable
to hypothesize that this is not a practical assumption.

Figure 3(b) represents a dataset with 11 user and 11 resource
metadata. The authorization tuples were created considering all the
metadata. To simulate a similar situation while visualizing tuples
and understand how it looks from a policy mining (or classification)
perspective, we make only the first eight user and the first eight
resource metadata values available for visualization. As shown,
many dots of other colors now start to mix, indicating two tuples
with similar user-resource metadata values may have very different
accesses. Indeed, such proximity of the tuples is challenging for
clustering or rule creation. The more metadata we hide, the more
complicated the dataset for policy mining and ML approaches.

We still notice a few portions in the plot where the same colored
dots are clustered together and separable, as shown with red circles
in Figure 3(b). This is because the dataset generation algorithm [73]
creates the metadata values based on a distribution, where the value
range (i.e., number of values for each metadata) is sparse. For ex-
ample, there are around one hundred different values for specific
metadata (e.g., department) in a dataset with hundred users. One
can easily cluster all the users into hundreds of groups based only
on the department. However, there might be the case where meta-
data values are required to be chosen from a set of a limited number

Table 1: List of Datasets.

# Dataset Type Users User
Metadata

Resources Resource
Metadata

Authorization
Tuples

1 𝑎𝑚𝑎𝑧𝑜𝑛-𝑘𝑎𝑔𝑔𝑙𝑒 Real-world 9560 8 7517 0 32769
2 𝑎𝑚𝑎𝑧𝑜𝑛-𝑢𝑐𝑖 Real-world 4224 11 7 0 4224
3 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ11𝑘 Synthetic 4500 8 4500 8 10964
4 𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ12𝑘 Synthetic 5250 8 5250 8 12690
5 𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ19𝑘 Synthetic 5250 10 5250 10 19535
6 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ21𝑘 Synthetic 4500 11 4500 11 20979
7 𝑢4𝑘-𝑟7𝑘-𝑎𝑢𝑡ℎ20𝑘 Synthetic 4500 11 7194 11 20033
8 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ22𝑘 Synthetic 4500 13 4500 13 22583
9 𝑢4𝑘-𝑟6𝑘-𝑎𝑢𝑡ℎ28𝑘 Synthetic 4500 13 6738 13 28751
10 𝑢6𝑘-𝑟6𝑘-𝑎𝑢𝑡ℎ32𝑘 Synthetic 6000 10 6000 10 32557

of values (say, ten departments for hundred users). Evidently, it is
harder to cluster one hundred users into ten groups than a hundred.
To reflect this, for each metadata, we define a fixed and smaller
set of values (6 to 20 unique values) following the same distribu-
tion used by Xu et al. [73]. We choose each metadata value from
the corresponding list during user/resource creation and metadata
value assignment. This strategy creates datasets with significantly
overlapped samples as depicted in Figure 3(c). We also extended the
number of users and resources to simulate a larger organization,
which adds more overlaps among samples and higher complexity
to the dataset, as shown in Figure 3(d).

Finally, we synthesized eight different datasets (datasets #3-#10
in Table 1) used for DLBACα experimentation and evaluation, with
varying numbers of users, resources, user and resource metadata,
and authorization tuples, each reflecting a varying degree of com-
plexity. We use the following naming convention for our synthetic
datasets, as listed in Table 1:𝑢⟨approx. number of users⟩−𝑟 ⟨approx.
number of resources⟩ − 𝑎𝑢𝑡ℎ⟨approx. number of authorization
tuples⟩. We use ‘u’, ‘r’, and ‘auth’ to indicate users, resources, and
authorization tuples, respectively. We also visualize all the synthetic
datasets in Figure 4(a-h) using t-SNE plots. As illustrated in the
Figure, each plot has dots with one of 16 different colors (for four
operations), and those dots mix extensively.

4.2 Real-world Dataset

Amazon published two datasets that contain access control infor-
mation which is widely used in access control research [12, 17, 39].
We name these datasets as 𝑎𝑚𝑎𝑧𝑜𝑛-𝑘𝑎𝑔𝑔𝑙𝑒 and 𝑎𝑚𝑎𝑧𝑜𝑛-𝑢𝑐𝑖 , and list
them in the Table 1 (1-2). The 𝑎𝑚𝑎𝑧𝑜𝑛-𝑘𝑎𝑔𝑔𝑙𝑒 dataset was released
in Kaggle [2] (a platform for predictive modeling competitions) as
a challenge to the community to build a machine learning model
to determine the employees’ accesses. The dataset holds historical
access data where employees were manually allowed or denied
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Figure 4: t-SNE Visualization of Synthetic and Real-world Datasets from Table 1. Figures a-h corresponds to synthetic datasets

#3−#10 and i-j corresponds to real-world datasets #1−#2 in Table 1, respectively.

access to resources over time. The dataset has about nine thousand
users and seven thousand resources with over 32K authorizations
tuples. Each tuple specifies eight user metadata that depicts a user’s
properties, a resource id to identify the resource, and a binary flag
to indicate whether the user has access to the resource or not. How-
ever, the dataset is highly imbalanced, and about 93% of the tuples
are with grant access. We visualize this dataset in Figure 4(i). As we
see, there are dots from two colors where green and red correspond
to tuples with grant and deny access, each. Notably, a significant
number of dots are from grant accesses.

The 𝑎𝑚𝑎𝑧𝑜𝑛-𝑢𝑐𝑖 dataset was provided by Amazon in the UCI
machine learning repository [3]. This dataset contains access in-
formation of more than 36,000 users and 27,000 permissions. For
any permission, less than 10% of all users have requested access.
The dataset is widely used in access control researches, and in most
of the cases, the experiments are confined to only 5 to 8 most re-
quested permissions [12, 17, 39]. Likewise, we took the seven most
requested permissions, and for each permission, we list users who
have access to the selected permissions. However, this dataset is
also imbalanced, around 75% tuples with the deny access. In addi-
tion, the dataset is not ABAC in nature, and there are some tuples
in the dataset where users with identical attribute values do not
have the same access permissions. Because of this, policy mining
or classification approaches may suffer while clustering the users
for different permissions. We visualize this dataset in Figure 4(j).

4.3 Neural Network Architecture and Training

ForDLBACα, the deep neural network takes user/resourcemetadata
values as input. It includes a classification layer with the number
of neurons equal to the number of operations, where each neuron
outputs the probability of granting the permission for a related oper-
ation, op. Given a feature vector 𝑥 of the user and resource metadata,
the neural network can be defined as a prediction function 𝑓 such
that 𝑦 = 𝑓 (𝑥), where 𝑦 is the predicted label or permission (grant
(1) or deny (0)) of 𝑜𝑝 , obtained from comparing the probability
of granting the permission at the output of the network with a
threshold. Note that for all DLBACα experimentation, we consider
a threshold of 0.5. To train the neural network 𝑓 (i.e. determine
the network’s weights), a set of training authorization tuples X
of size 𝑁 is collected, where (𝑥𝑖 , 𝑦𝑖 ) denotes the 𝑖-th sample in X,

Figure 5: Preparing Training Data for DLBACα.

where 𝑥𝑖 is the feature vector of the user and resource metadata
and 𝑦𝑖 is the corresponding 𝑜𝑝 or the target label. As discussed
in Section 4.1.3, for some synthetic datasets, we hide a portion of
metadata from the policy mining algorithm to mimic some com-
plex situations. We apply this for the datasets having more than
eight user metadata and eight resource metadata. In such a case, 𝑥𝑖
represents the feature vector of the first eight user metadata and
the first eight resource metadata. So, for example, for a dataset with
13 user-resource metadata, we hide five metadata from the user
metadata and five from the resource metadata.

Since the metadata values in our dataset are categorical, we map
them to binary values by utilizing encoding. We encode a tuple’s
user/resource metadata value using one-hot encoding [27] to trans-
form the categorical values into a two-dimensional binary array.
The row in the array represents metadata, and the column holds
the encoded binary representation of the corresponding metadata
value. (Amazon dataset’s metadata values are too sparse, and we
use binary encoding for them considering its memory efficiency in
such cases [63]). As each operation is binary, we apply them directly
as the target labels without any processing. Figure 5 illustrates the
overall training data preparation for DLBACα. As illustrated, we
encode the metadata values of a user𝐴𝑙𝑖𝑐𝑒 and a resource 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝐴
and apply permissions to the associated operations without further
processing. We train DLBACα based on the training data, and this
trained DLBACα is used inAccess Control Decision Engine (discussed
below) to produce access decisions for test data.



Figure 6: Decision Making Process in DLBACα.

4.4 Decision Making Process in DLBACα

Access Control Decision Engine (Decision Engine) is a DLBAC compo-
nent responsible for receiving and authorizing any access request.
In DLBACα, the Decision Engine (Figure 6) takes three inputs (user,
resource, and operation). The Decision Engine retrieves the user and
resource metadata from the internal databases and then encodes
them to obtain corresponding binary representation. The encoded
input is fed into the neural network to predict the corresponding
request’s access permission. The network outputs access informa-
tion for all the operations. The decision engine then determines the
actual access authorization based on the requested access and the
network’s output. For the specific example in Figure 6, user Alice
wants op2 access on projectA resource. The output of the neural
network for the op2 is 1, which indicates that Alice has op2 access
on projectA. Thus, the Decision Engine authorizes this request.

5 EVALUATION

In this section, we experimentally evaluate the performance of
DLBACα using both synthetic and real-world datasets.

5.1 Evaluation Methodology

We experiment and evaluate the performance for all the datasets
listed in Table 1. We consider each dataset to represent an organiza-
tion with its own unique characteristics. We split each dataset into
training (80%) and testing (20%) sets. As the test dataset is entirely
unseen during training, the evaluation shall adequately measure
the generalization of any method.

Instances of DLBACα. DLBAC is agnostic to deep neural net-
work architecture, and we will show that the deep learning-based
model’s performance is consistent across datasets. For demonstra-
tion, we implement three instances of DLBACα using three dis-
tinct deep neural network architectures including ResNet [29],
DenseNet [33], and Xception [15], and name them as DLBACα−R,
DLBACα−D, and DLBACα−X, respectively. For DLBACα−R, we use
the ResNet network with depth 8 for the first four datasets in Table 1
whereas, for the rest of the datasets, we use a ResNet with depth 50.
For DLBACα−D, we use the DenseNet architecture with [6,12,24,16]
layers in the four dense blocks. We adopt the source code from the
Keras application for all the model architectures implementation.1

1https://github.com/keras-team/keras-applications

The DLBACα instances were developed in Python using Keras
library with a TensorFlow backend and trained on Google Colab
(a 12GB NVIDIA Tesla K80 GPU). We apply Adam optimizer with
an initial learning rate of 0.001, scheduled to reduce the learning
rate by dividing by ten after every 10 epochs. The epoch and batch
size was chosen as 60 and 16, respectively, with an early stop after
5 consecutive epochs without any performance improvement. As
the DLBACα outputs an access probability between ‘0’ and ‘1’ for
each operation, we use binary cross-entropy loss. We have created
a repository in GitHub consisting of all the datasets, source code,
and trained networks.2

Machine learning (ML) algorithms. We compare the per-
formance of DLBACα instances with classical machine learning
approaches such as Support Vector Machine (SVM) [16] and Ran-
dom Forests (RF) [5]. We also compare with Multi-Layer Perceptron
(MLP) [62] with four hidden layers (a shallow network) to evaluate
how significant the performance difference is between a deep and a
non-deep neural network. We use the SVC and RandomForestClas-

sifier class of the Python scikit-learn library [57] for SVM and RF
implementation, respectively, with their default configurations. We
implement MLP using Keras library.

Policy mining algorithms. There is no other existing deep

learning-based access control approach to the best of our knowl-
edge, so a direct comparison of our work results is not currently
possible. Therefore, we compare DLBACα with ABAC policy min-
ing algorithms being one of the flexible and generalized access
control approaches. We compare the performance of DLBACα in-
stances with the following policy mining algorithms. While a few
other works exist as discussed in our related work, a key decision
factor in selecting these works was our ability to readily access their
source codes and our ability to clearly understand, modify/tweak
as needed and compile them.

(1) The policy mining algorithm proposed by Xu and Stoller [73],
which we refer to as XuStoller.

(2) Rhapsody [17], a policy mining algorithm built upon an ML algo-
rithm for subgroup discovery named APRIORI-SD [42]. Rhapsody
performance has a direct correlation with multiple parameters.
We trial with different parameter values and selected the policy
with the highest F1 score while maintaining an FPR below 0.05.

(3) EPDE-ML [45], a permission decision engine scheme based on
ML where a trained RF model makes the access control decision.
Evaluation metrics. For ML algorithms, we compute the F1

score and compare the performance with DLBACα instances and
show that deep learning based algorithms generally perform better
than traditional ML and MLP techniques. For an extensive compar-
ison against policy mining algorithms, we compute the F1 score,
False Positive Rate (FPR), True Positive Rate (TPR), and Precision.
We consider the standard definitions [17, 45] of these evaluation
metrics. Policies (or models) with a higher F1 score lead to better
generalization. They can make more accurate access control de-
cisions on users and resources with attributes not explicitly seen
during the mining (or training) process. Also, the higher TPR and
Precision are better as these scores indicate how accurately and
efficiently the policies (or models) can grant access. On the contrary,
the policies (or models) with a lower FPR are better as they are

2https://github.com/dlbac/DlbacAlpha

https://github.com/keras-team/keras-applications
https://github.com/dlbac/DlbacAlpha


Figure 7: F1 Score Comparison: ML Algorithms vs. DLBACα

Instances.

less likely to give access to requests, those which should be denied
according to the ground truth access control policy.

5.2 Results

5.2.1 Performance comparison with ML algorithms. Figure 7 illus-
trates the overall performance of all ML approaches and DLBACα
instances for each dataset with respect to F1 score. The performance
of all the algorithms is consistent and better for the 𝑎𝑚𝑎𝑧𝑜𝑛-𝑘𝑎𝑔𝑔𝑙𝑒
dataset, but it is not the case for 𝑎𝑚𝑎𝑧𝑜𝑛-𝑢𝑐𝑖 dataset. In this case,
SVM and MLP performed significantly lower, and other approaches
including DLBACα instances could not achieve high performance.
Such a result is expected due to the inconsistency in the access per-
missions in that dataset. The dataset contains tuples where users
with identical attribute values do not have the same access permis-
sions, as discussed in Section 4.2. The advantage of the DLBAC ap-
proach is more evident if the dataset is processed correctly.We show
this using our synthetic datasets. For synthetic datasets, DLBACα
instances achieved the highest F1 score, while SVM and MLP per-
formed the worst. Also, the instances of DLBACα’s improvements
over RF are significant (for p-value < 0.05; paired T-test (not shown
here)) for all the synthetic datasets except 𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ12𝑘 dataset.
The performance advantage of DLBACα instances is particularly
pronounced in synthetic datasets with a large number of authoriza-
tion tuples, where DLBACα instances report 0.03 to 0.09 improve-
ments over RF as shown in the figure. Notably, the performances of
all algorithms vary with the complexity of the datasets. However,
DLBACα instances show the lowest variation in its performance
across the datasets, implying that DLBACα is most robust against
changes in data characteristics such as number of hidden metadata,
number of users, resources, and authorization tuples. Except for the
𝑢4𝑘-𝑟6𝑘-𝑎𝑢𝑡ℎ28𝑘 dataset, all algorithms’ performances drop with
the increase of hidden metadata (e.g., the 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ22𝑘 dataset
with 13 metadata where we hide 5 of the metadata from the feature
vector as discussed in Section 4.3), suggesting that an increase in
data complexity generally impacts performance. Overall, the exper-
imental results indicate that DLBACα is more effective and robust
than classical ML approaches, including MLP, for making accurate
access decisions.

While the performance advantages of DLBACα are not apparent
in the Amazon datasets, we emphasize that those datasets are not

Figure 8: F1 Score Comparison: Policy Mining Algorithms vs.

DLBACα Instances.

Figure 9: FPR Comparison: Policy Mining Algorithms vs.

DLBACα Instances.

Figure 10: TPR Comparison: Policy Mining Algorithms vs.

DLBACα Instances.

reflective of the access state complexity of the entire organization
but that of a small portion of the company. This is one of the reasons
why we synthesized additional datasets for our experimentation.

5.2.2 Performance comparison with policy mining algorithms. Fig-
ures 8, 9, 10, and 11 compare the F1 score, FPR, TPR, and Precision,
respectively of policy mining algorithms and DLBACα instances.
We could not experiment XuStoller algorithm for the largest syn-
thetic dataset (𝑢6𝑘-𝑟6𝑘-𝑎𝑢𝑡ℎ32𝑘) as it took a very long runtime



Figure 11: Precision Comparison: Policy Mining Algorithms

vs. DLBACα Instances.

without any output. We can make the following observations based
on all these experimental results.
• A deep learning based approach can make more accurate access

control decisions and generalize better. The F1 score of EPDE-ML
and DLBACα instances are significantly better than the rule-based
approaches such as XuStoller and Rhapsody. That signifies, in
general, machine learning-based approaches can make better gen-
eralization and accurate access control decisions. As we see in
Figure 8, the performance improvements of DLBACα instances
over EPDE-ML, which is statistically significant for most datasets,
suggest that deep learning based algorithms make the more accu-
rate decision and have even better generalization capability than
classical ML-based policy mining approaches.

• A deep learning based approach can properly balance both over-

provision and under-provision. XuStoller and Rhapsody achieved
the best FPR as shown in Figure 9, indicating they are unlikely
to give access to requests that should be denied according to the
actual access control policy. However, that is not the case for
denying access. As we see in Figure 10, the TPR for Rhapsody is
between 0.2 to 0.85, and for XuStoller, it is from 0 to 0.25. Such a
lower TPR indicates that these algorithms are pretty inefficient
while denying access (under-provisioned) even though the re-
quests deserve grant access according to the actual access control
policy. On the other hand, the EPDE-ML performed lowest in
terms of FPR (over-provisioned) across synthetic datasets ranging
from 0.06 to 0.23. Their average TPR and Precision are below
0.9. Such higher FPR and comparably lower TPR and Precision
suggest that EPDE-ML could not achieve desirable performance
in terms of over-provision and under-provision. The DLBACα
instances obtained a much higher TPR and Precision as illustrated
in Figure 10 and 11. Also, the DLBACα instances reached an FPR
which is comparable to XuStoller and Rhapsody, as shown in
Figure 9. This suggests that deep learning based approach can
balance better between over- and under-provisioning.

• An imbalanced dataset may affect some performance that could

be calibrated. The FPR result of DLBACα instances for 𝑎𝑚𝑎𝑧𝑜𝑛-
𝑘𝑎𝑔𝑔𝑙𝑒 dataset is high, and the TPR for 𝑎𝑚𝑎𝑧𝑜𝑛-𝑢𝑐𝑖 dataset is
relatively low, arising due to the characteristics of the dataset [70].
As discussed in Section 4.2, these datasets are imbalanced, one has
unreasonablymore samples from the grant class, and the other has
more from the deny class. We argue that this is a typical machine

learning problem, and EPDE-ML has a similar performance for
these datasets. For balanced datasets, the FPR and TPR of DLBACα
instances are consistent, and FPR is below 0.05 for most of the
datasets while TPR is above 0.95, as demonstrated in Figure 9
and 10. Evidently, these metrics could be calibrated based on the
tolerance to over vs. under-provisioning of an application context.
Specifically, one could favor a particular metric in DLBACα by
modifying the loss function to increase the weight of the minority
class [31], adjusting the threshold for granting permissions as
described in Section 4.3, etc. We note that an improvement in one
of the metrics will likely negatively impact one or more of the
others and that every work is prone to this issue.
Overall, the DLBACα instances achieved better or comparable

performance for all the metrics across datasets, suggesting that
deep learning based approaches generalized better and made more
accurate access control decisions than rule based and classical ML
based approaches. These results demonstrate the effectiveness of
using DLBAC as an access control system.

6 UNDERSTANDING DLBAC DECISIONS

As the core of a DLBAC system is a neural network, a major chal-
lenge is providing insights into why and how DLBACmakes certain
decisions. That is, explainability is a key challenge for DLBAC. For
instance, in Figure 6, the Decision Engine received a request that
user Alice wishes op2 access on projectA resource. Based on the re-
sult of the neural network, the decision engine approved the request.
However, it is not quite obvious why the neural network made that
prediction for this request. Such a justification is generally straight-
forward in traditional access control systems as the decisions are
made based on written policies. But, it is challenging for DLBAC
due to the black-box nature of a neural network [64]. As the de-
cisions are made based on provided user/resource metadata, it is
essential to understand why a decision is made and which metadata
influenced that decision. Many techniques have been introduced to
help gain insights into a neural network’s internal details. In this
section, we investigate two state-of-the-art approaches for this pur-
pose: Integrated Gradients [66] and Knowledge Transferring [25]. We
experiment on DLBACα−R instance (as introduced in Section 5.1),
and for brevity, we refer it to DLBACα in the following discussion.
The related source code is uploaded to GitHub.3

6.1 Integrated Gradients

Integrated Gradients is an effective interpretation technique that
focuses on attributing the decisions of a neural network to the
input features of the prediction samples. It attributes a network’s
decision to its input features in terms of gradient, which specifies the
most effective elements for a decision. To understand the decision
of DLBACα for a tuple, it is required to provide the user/resource
metadata values, the decision, and the neural network as input to
the Integrated Gradients. Then, Integrated Gradients outputs the
attribution scores of the input metadata that we normalize in the
scale of 0 to 1, denoting the degree of impact on the decision. Such an
interpretation is known as local interpretation which helps to better
understand each decision of a neural network. It is also helpful to
have a global interpretation [26] of a network to understand the
3https://github.com/dlbac/DlbacAlpha/tree/main/understanding_dlbac_alpha
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Figure 12: Local and Global Interpretation (blue: local inter-

pretation of a decision in DLBACα. orange: global interpre-

tation of DLBACα for the grant access of an operation).

network’s overall knowledge. Generally, it takes a set of decisions
to generate a global interpretation of a network.

For DLBACα, we investigate explainability for both specific ac-
cess control decision and the overall knowledge learned by the net-
work. For this purpose, we train DLBACα on our 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ11𝑘
dataset. Then, we request op1 operation access to projectD resource
for a user Dave and the Decision Engine grants the request. To
learn the reason behind this decision, we perform local interpreta-
tion with metadata values of Dave and projectD, the decision (grant
access on op1 operation), and the DLBACα network. As depicted in
Figure 12 (blue bars), for this particular request, user’s umeta4 and
resource’s rmeta2 metadata are the most important and influential.

To achieve global interpretation for the grant access to op1 oper-
ation, we take the op1 access information for a set of fifty random
samples with grant access from the 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ11𝑘 dataset. (Note
that the more samples we use, the more precise the result we get.
However, Integrated Gradients is memory inefficient, so we could
not test more samples using our workstation with 16 GB of mem-
ory). We provide each user/resource metadata and their respective
decisions for the op1 operation to Integrated Gradients to obtain
the global interpretation. Figure 12 (orange bars) depicts the global
interpretation of DLBACα for the 𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ11𝑘 dataset for the
grant access to op1 operation. The result identifies resource’s rmeta2

as the most influential metadata, user’s umeta2 as second most in-
fluential metadata, and the attribution scores of other metadata.

6.1.1 Application of Integrated Gradients based Understanding. Im-
proved explainability could be utilized to achieve other benefits.
For instance, developers can utilize interpretation techniques to
debug [55] incorrect decisions from the neural network in decision

engine. We show that Integrated Gradients based interpretation can
be used to grant/deny access permissions bymodifying propermeta-
data. As shown in Figure 13 (tuple2), the user Carol doesn’t have op1
access on projectC resource. Applying local interpretation on other
tuple with op1 access (e.g., Dave has the op1 access to projectD re-
source as shown in Figure 13 (tuple1)) revealed the attribution scores
of different metadata for op1 operation. As circled in tuple1, Dave’s
‘umeta1’ and ‘umeta4’ are the most dominant metadata for this spe-
cific access. To grant Carol’s op1 access on projectC resource, we
utilize attribution scores of tuple1. Our result shows that replacing
Carol’s ‘umeta1’ and ‘umeta4’ metadata value with Dave’s metadata

Figure 13: Applying Integrated Gradients to Grant Access.

Figure 14: Modifying Metadata Value Based on Integrated

Gradients Across Tuples (4581 tuples) with Deny Access.

value enables Carol’s op1 access to projectC resource. As reported,
modifying one or two significant metadata changes corresponding
access. The opposite holds for least-significant metadata where
modifying multiple metadata could not alter related access.

We also experiment with such a metadata value modification
across all the samples of a specific decision (e.g., tuples with ‘deny’
access on op1) in the same dataset to see the impact of a global
interpretation. The idea is to alter the metadata values of influential
metadata for a specific decision. For instance, according to Figure 12,
the rmeta2 has the most influence on denying access. If we alter
the rmeta2 value of any tuple, say tupleA, with a rmeta2 value from
a known tuple with grant access, say tupleB, the chance of denying
access for tupleA might reduce and increases the chance of getting
access. Also, altering the value of multiple influential metadata of
the same tuple may eventually help to get access.

To investigate that we alter different metadata values, one by
one, of all the tuples with deny access (4581 such tuples) on op1

in order of their significance level in the global interpretation. For
example, we first change the value of rmeta2 metadata, next umeta2
metadata, and so on. We utilize the user/resource metadata values
from tuple1 in Figure 13 as a known tuple with the ‘grant’ access for
op1 operation. As described in Figure 14, initially, with no change,
no tuple has been granted access. However, with the change of first
metadata (rmeta2), around 5% of the tuples receive grant access.
By changing the second metadata value, around one-third of the
tuples get grant access. A similar surge continues to obtain grant
access for over half of all the tuples before decreasing for sixth
metadata (rmeta5) modification, reaching below 40%. It indicates
that some tuples with such a big number of metadata modifications
fall under a different distribution for which they have the ‘deny’
access. Overall, using this technique, a system admin can estimate
the impact of metadata value vs. dependent accesses.



Figure 15: Knowledge Transferring Technique.

6.2 Knowledge Transferring

Although Integrated Gradients determines the attribution scores of
each metadata for a decision, it does not establish the relationship
amongmetadata or the network’s logic [66].Knowledge Transferring
could help to identify such relationships. With Knowledge Transfer-

ring, we can extract a decision tree to approximately understand
the decision of DLBACα in the form of traditional rules. While
accurate reconstruction of the representation details is infeasible,
the generated decision tree will give an approximate explanation of
the underlying logic of DLBACα. Though the decision tree makes
classification decisions understandable [57], it does not generalize
as well as deep neural networks. Interestingly, a neural network’s
generalization ability is likely to be transferred to a decision tree
through a method called distillation [30], which has been widely
used in ML literature and we adopt in this paper. As explained in
Section 4.3, DLBACα outputs whether a user has access to any re-
source by giving the probability of granting the access instead of a
direct yes/no answer. Therefore, we can determine those probability
outputs for all the tuples in a dataset and train a decision tree, as
shown in Figure 15. These probabilities represent the knowledge of
the neural network, and we aim to transfer it to a decision tree.

To explore Knowledge Transferring technique, we train DLBACα
for the𝑢4𝑘-𝑟4𝑘-𝑎𝑢𝑡ℎ11𝑘 dataset that we used for the Integrated Gra-
dients experiment. We take op1 access probabilities for all the sam-
ples. Then, we train a decision tree (DT) on the same dataset. How-
ever, instead of giving corresponding ground-truth permissions
from the dataset, we provide the probability outputs of DLBACα.
Eventually, we construct a DT with a maximum depth of eight
that facilitates retrieving underlying rules for any specific deci-
sion. While the tree serves the global interpretation, a rule for any
specific decision represents the local interpretation. We apply the
metadata values of Dave and projectD that we described in previous
section, and retrieve the access rules from the DT for op1 operation.
We observe that Dave obtained grant access to projectD for op1
based on following rule:

〈 〈
⟨ umeta0 > 31 ∧ umeta0 < 63 ⟩ ∧ ⟨

umeta2 < 20 ⟩ ∧ ⟨ umeta6 < 50 ⟩
〉
∧
〈
⟨ rmeta0 < 72 ⟩ ∧ ⟨ rmeta2

< 18 ⟩ ∧ ⟨ rmeta5 < 111 ⟩
〉 〉

. It is worth mentioning that the deci-
sion tree should be generated with unlimited depth to obtain more
precise rules. Note that the Integrated Gradients and Knowledge
Transferring techniques are orthogonal in terms of insights they
each provide into the neural network and do not substitute each
other. For better insights, one could use both methods.

7 FUTURE RESEARCH DIRECTIONS

In this section, we discuss some of the challenges for DLBAC and
explore some ideas of how those could be addressed.

Access Control Administration.Amajor task in access control
is policy administration, i.e. updating the system’s rules to affect
a particular change. It is a significant challenge for DLBAC as a
policy change amounts to adjusting the current neural network’s
weights. This can, of course, be obtained by retraining the network.
However, that is neither ideal nor cost-effective. Fine-tuning is one
of the common approaches that helps a neural network to learn
new changes by updating the current network’s weight [43]. This
allows one to implement policy changes by making minor changes
to the network. However, the network should handle the issue of
catastrophic forgetting, which is a common pitfall in fine-tuning.
We believe these issues can be effectively mitigated by developing
methods based on life-long learning [56] for DLBAC.

Adversarial Attacks. Adversarial attacks are a common con-
cern for any machine learning based system, deep learning net-
works in particular. An adversary can obtain unauthorized access
by fooling the network with modified samples that are indistin-
guishable from natural ones by human [75]. However, such attacks
could be mitigated by applying adversarial training [46]. In the
context of DLBAC, an adversarial attack is to acquire access per-
missions based on modified/perturbed user and resource metadata.
In access control, the datasets and the adversarial attack profile are
somewhat interesting and different from traditional image domains.
One typically expects a mix of categorical and continuous metadata.
Moreover, since some metadata are more trustworthy than others,
an adversary does not have the complete flexibility to change an
entire sample imperceptibly. These observations could be leveraged
to develop better defenses against adversarial attacks in DLBAC.
Another related aspect needs to investigate whether DLBAC can
efficiently handle an access request if some of its user/resource
metadata are deleted, a.k.a attribute hiding attack.

Bias and Fairness. As DLBAC learns based on metadata dis-
tributed across various parts of an enterprise, there might be differ-
ent types of human biases or errors in training data. As such, the
DLBAC network trained based on such data can inadvertently be
biased, favoring some decisions. For example, as observed in the
𝑎𝑚𝑎𝑧𝑜𝑛-𝑘𝑎𝑔𝑔𝑙𝑒 dataset, most of the authorization tuples were with
‘grant’ decision, and DLBACα instances were biased towards the
same decision. Certain metadata could be influenced by various
factors including ethnographic. Therefore, to obtain a fair and trust-
worthy DLBAC system, it is critical to audit training data, evaluate
decisions for fairness, and establish a proper feedback loop [48].

DLBAC in Tandem with Traditional Access Control. Evi-
dently, in practice, we do not foresee (nor advocate) that DLBAC
will simply substitute traditional forms of access control immedi-
ately. One research challenge is how DLBAC could be effectively
integrated to operate in tandem with traditional access controls
such as RBAC or ABAC. One of the issues that will arise is con-
flicting decisions between, say, RBAC and DLBAC. If that conflict
were to be resolved in favor of RBAC, that decision could be used
to fine-tune the DLBAC network. DLBAC could also be used in the
background for monitoring or auditing purposes.



8 CONCLUSION

We proposed DLBAC, a deep learning based access control ap-
proach, to deal with issues in classical access control approaches.
As DLBAC learns based on metadata, it obviates the need for at-
tribute/role engineering, policy engineering, etc. We implemented
DLBACα, a prototype of DLBAC, using both real-world and syn-
thetic datasets. We demonstrated DLBACα’s effectiveness as well
as its generalizability. As the core of DLBAC is a neural network,
we applied two different state-of-the-art techniques to understand
DLBAC decisions in human terms. We also discussed some future
directions to build new models upon DLBAC and address current
challenges, including access control administration issues.
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