

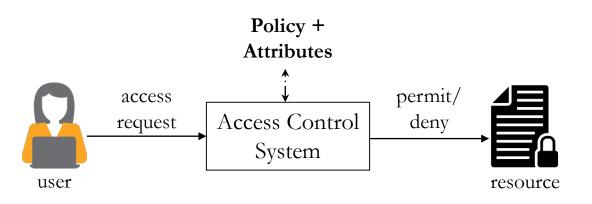
Toward Deep Learning Based Access Control

<u>Mohammad Nur Nobi</u>, Ram Krishnan, Yufei Huang^{*}, Mehrnoosh Shakarami, Ravi Sandhu

> University of Texas at San Antonio *University of Pittsburgh

> > April 26, 2022

- There are many mainstream approaches for access control
 - Access Control Lists (ACLs), Role Based Access Control (RBAC), Attribute Based Access Control (ABAC), Relationship Based Access Control (ReBAC), etc.
- These approaches have their benefits and numerous advancements
- Skilled security administrators needed to engineer and manage accesses
 - Over-provisioned to ease administrative burden
 - Under-provisioned for the sake of tightened security



Access Control State

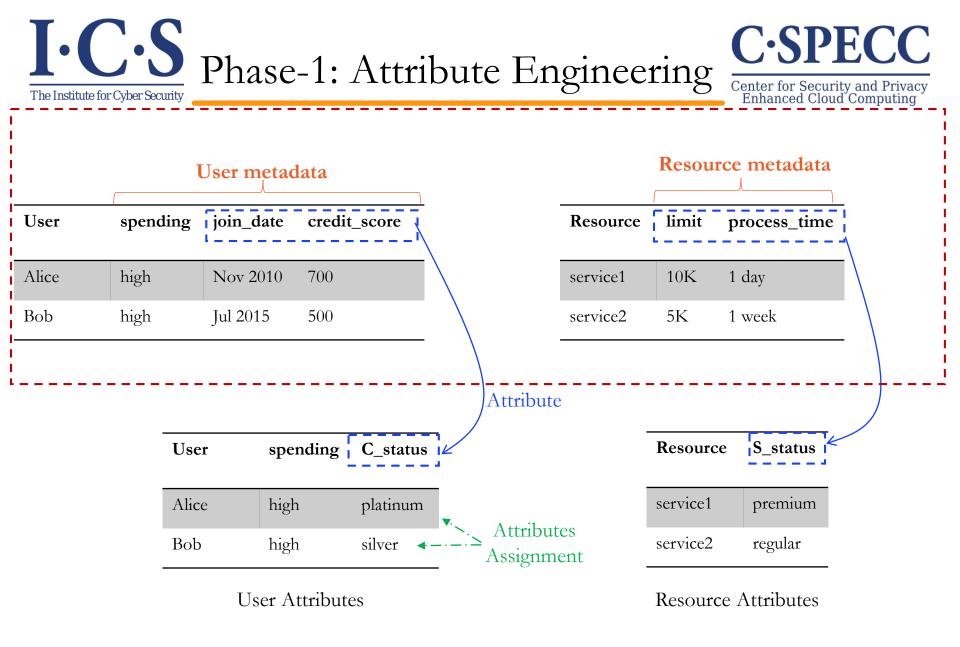
<Alice, service1, read> <Alice, service2, {read, write}> <Bob, service1, {read, write}> <Bob, service2, {read}>

Authorization Tuple <User, Resource, {Operations}>

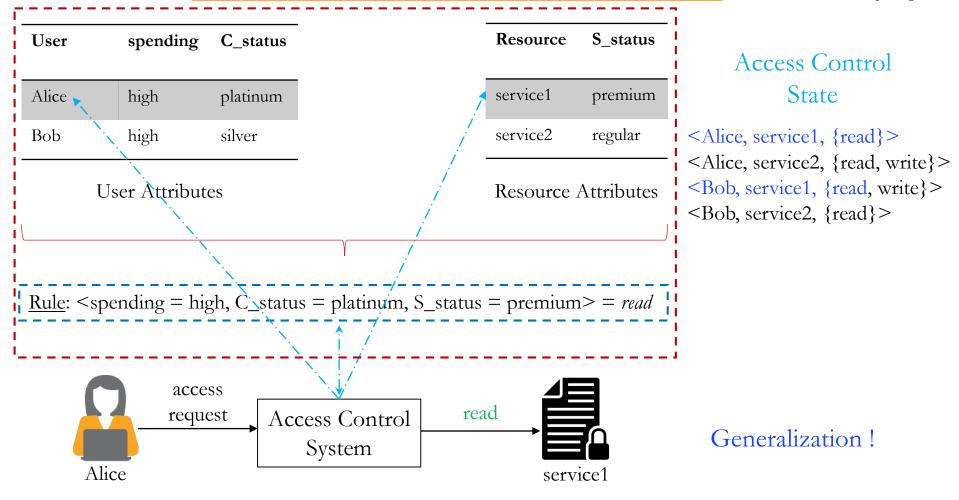
User Metadata

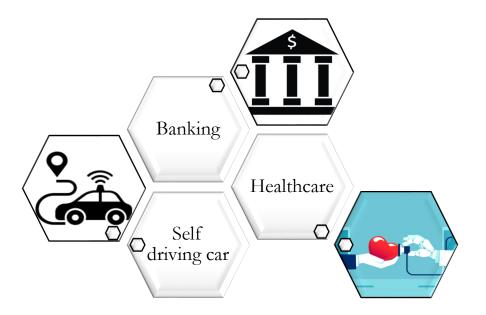
Resource Metadata

User	spending	join_date	credit_score	Resource	limit	process_time
Alice	high	Nov 2010	700	service1	10K	1 day
Bob	high	Jul 2015	500	service2	5K	1 week



I-**C**-**S** The Institute for Cyber Security Phase-2: Policy Engineering





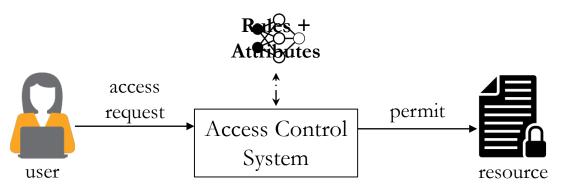
• Learn by example

•

The Institute for Cyber Security

- Learn directly from the raw data (no feature extraction)
- Obtain an excellent accuracy

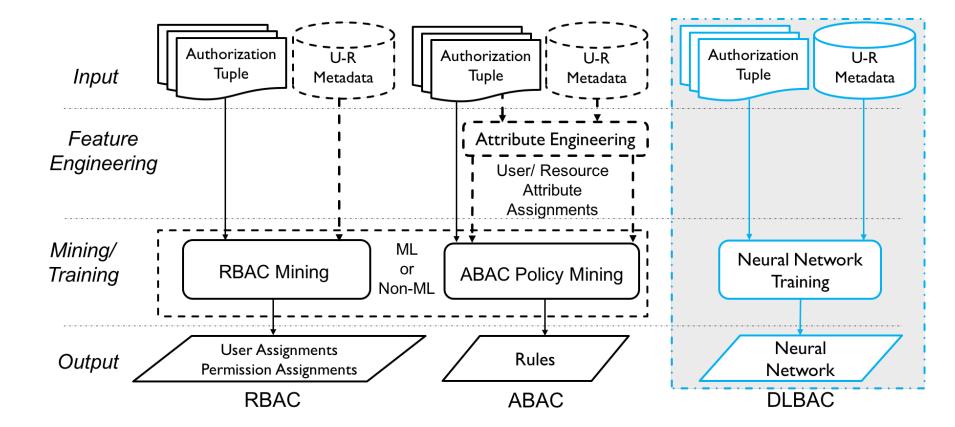
- C-SPECC Center for Security and Privacy Enhanced Cloud Computing
- Could it learn from existing access control state of the system?
- Could it learn directly from the metadata?
- Could it make access control decisions that are accurate and generalize better?

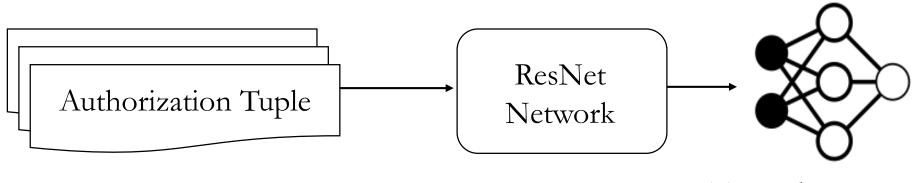


- Obviates the need for related processes
 - Attribute Engineering and Assignments
 - Policy Engineering

Deep Learning Based Access Control (DLBAC)

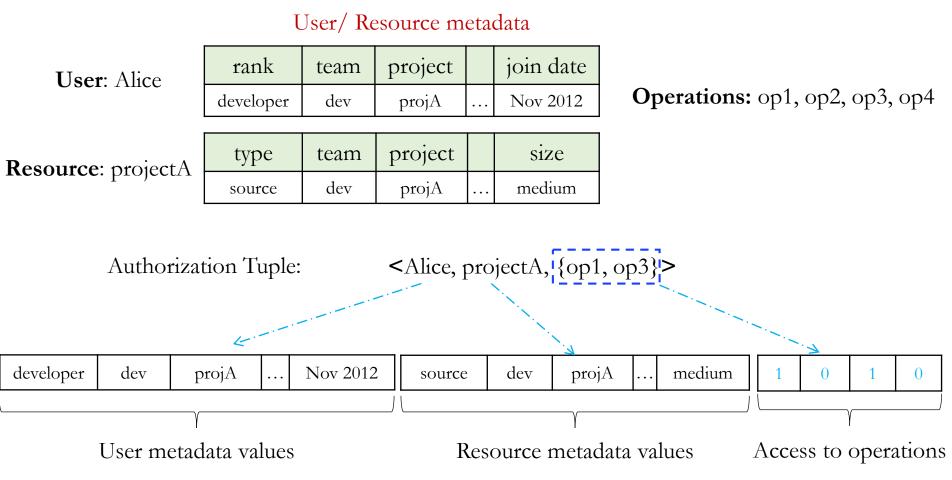
Policy Engineering in Classical Approaches vs. DLBAC





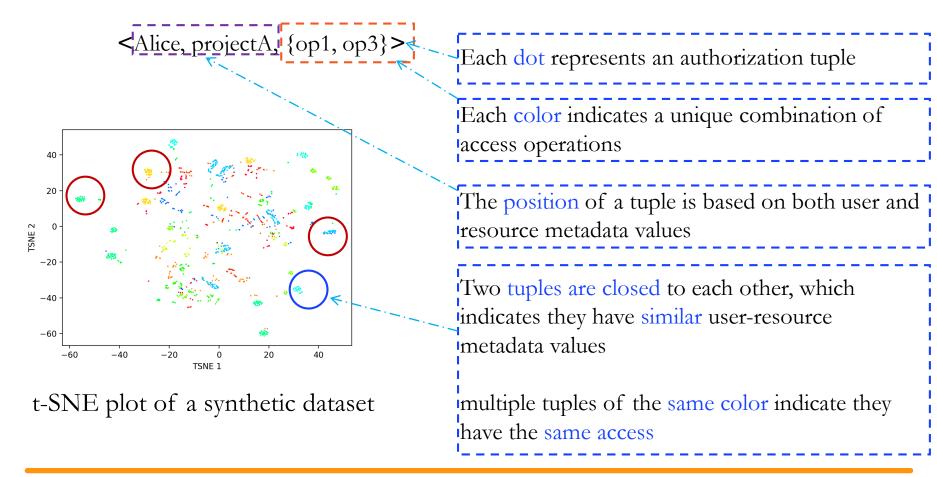
Trained ResNet

Authorization Tuple and Dataset in DLBAC_{α}

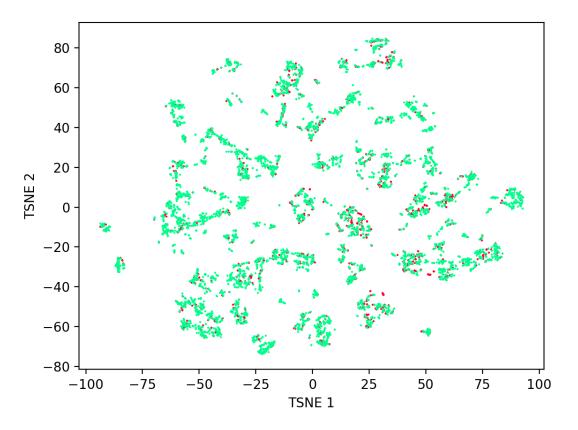


A dataset for DLBAC α is the collection of such authorization tuples (samples)

Generate a synthetic dataset using Xu et al. [1]



1. Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC.



A dataset representing Amazon access control system

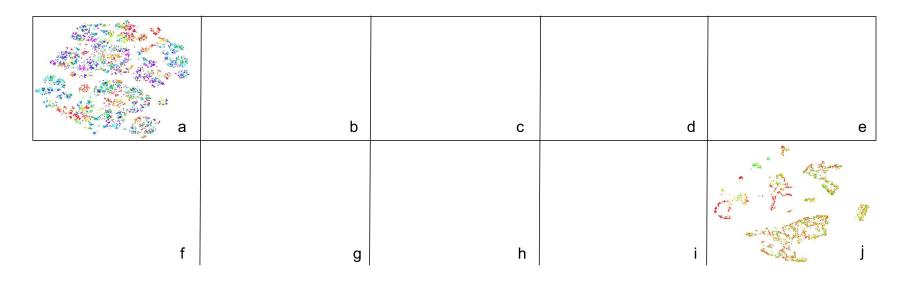
https://www.kaggle.com/c/amazon-employee-access-challenge/

I.C.S The Institute for Cyber Security

List of Datasets

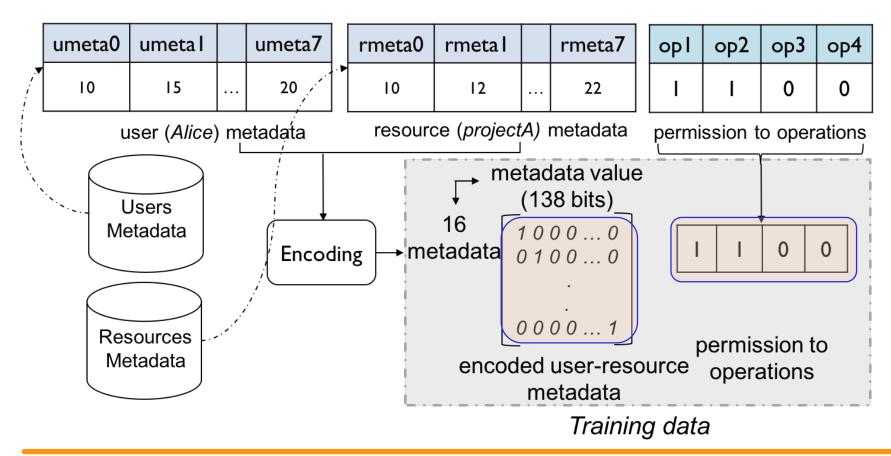
C-SPECC Center for Security and Privacy Enhanced Cloud Computing

#	Dataset	Туре	Users	User	Resources	Resour	rceAuthorization
				Metada	ita	Metad	ataTuples
1	a mazon-kaggle	Real-world	9560	8	7517	0	32769
2	amazon-uci	Real-world	4224	11	7	0	4224
3	u4k- $r4k$ - $auth11k$	Synthetic	4500	8	4500	8	10964
4	u5k- $r5k$ - $auth12k$	Synthetic	5250	8	5250	8	12690
5	u5k- $r5k$ - $auth19k$	Synthetic	5250	10	5250	10	19535
6	u4k- $r4k$ - $auth21k$	Synthetic	4500	11	4500	11	20979
7	u4k- $r7k$ - $auth20k$	Synthetic	4500	11	7194	11	20033
8	u4k- $r4k$ - $auth22k$	Synthetic	4500	13	4500	13	22583
9	u4k- $r6k$ - $auth28k$	Synthetic	4500	13	6738	13	28751
10	u6k- $r6k$ - $auth32k$	Synthetic	6000	10	6000	10	32557

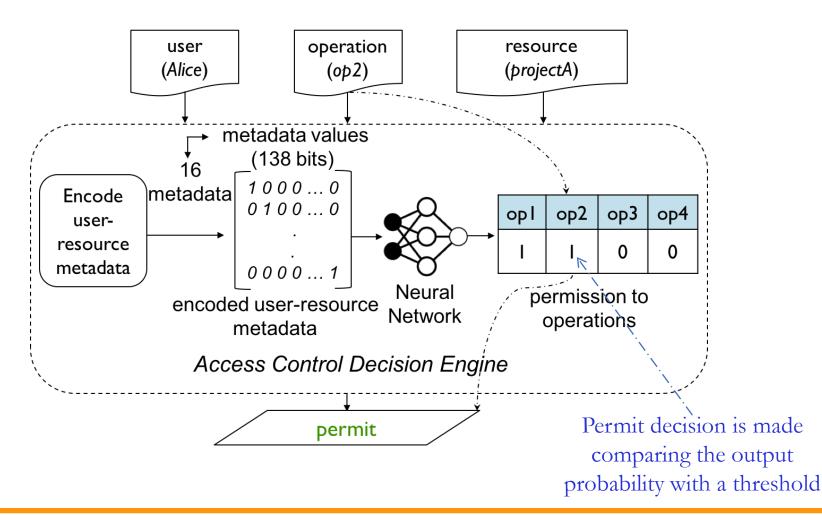


Preparing Training Data for DLBACa

We consider the data in our datasets are categorical



Decision Making Process in DLBACα



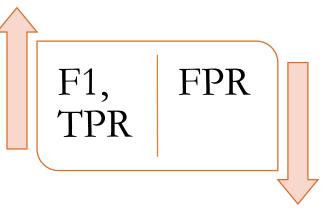
Multiple instances of DLBACα	 ResNet (DLBAC_{α-R}) DenseNet (DLBAC_{α-D}) Xception (DLBAC_{α-X}) 	
Classical ML Algorithms	 SVM Random Forest (RF) Multilayer Perceptron (MLP) 	
State-of-the-art policy mining and ML-based techniques	 XuStoller [1] Rhapsody [2] EPDE-ML [3] 	

[1] Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC

[2] Cotrini et al. 2018. Mining ABAC rules from sparse logs. In IEEE Euro S&P.

[3] Liu et al. 2021. Efficient Access Control Permission Decision Engine Based10n Machine Learning. Security & Communication Networks.

80% samples for the training, and 20% testing



A higher F1 score: better generalization A higher TPR: accurate and efficient in granting access

A lower FPR: efficient in denying access

Under-Provision vs. Over-Provision

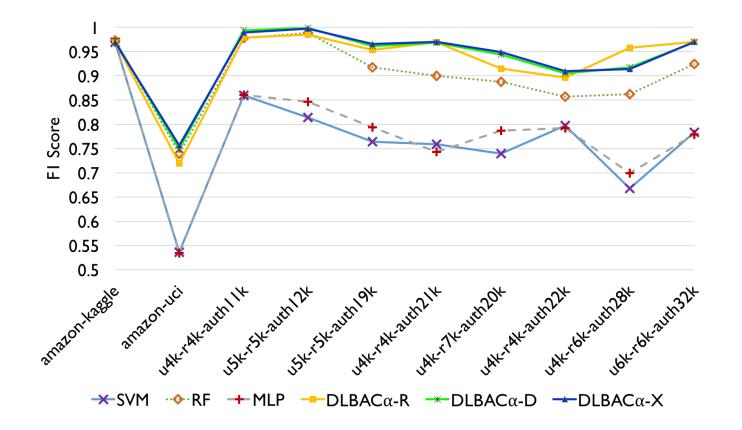
Comparison with ML Algorithms

The Institute for Cyber Security

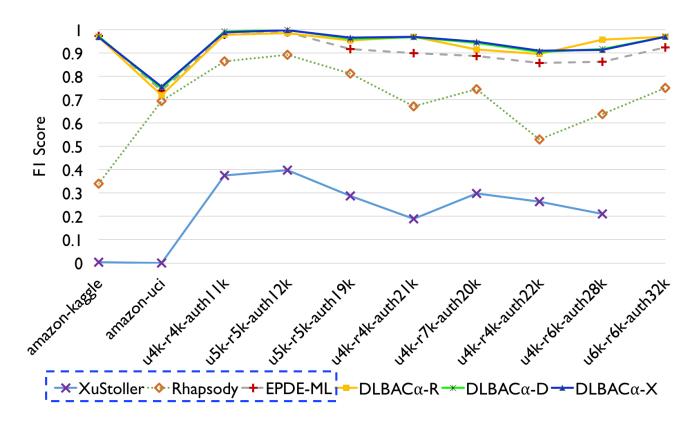
I·C·S

Center for Security and Privacy Enhanced Cloud Computing

C·SPECC

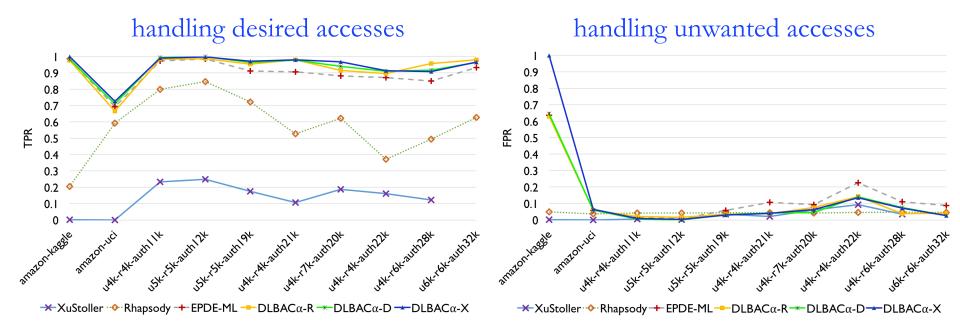


DLBACa instances are more effective and accurate than classical ML approaches for making accurate access decisions



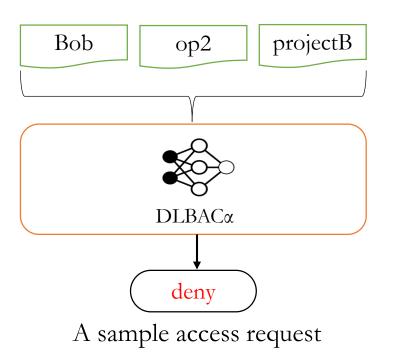
A DLBACα can make more accurate access control decisions and generalize better

Comparison with Policy Mining Algorithms (cont'd)



A DLBACα can balance both permitting desired accesses and denying unwanted accesses

Understanding DLBAC Decisions C-SPECC

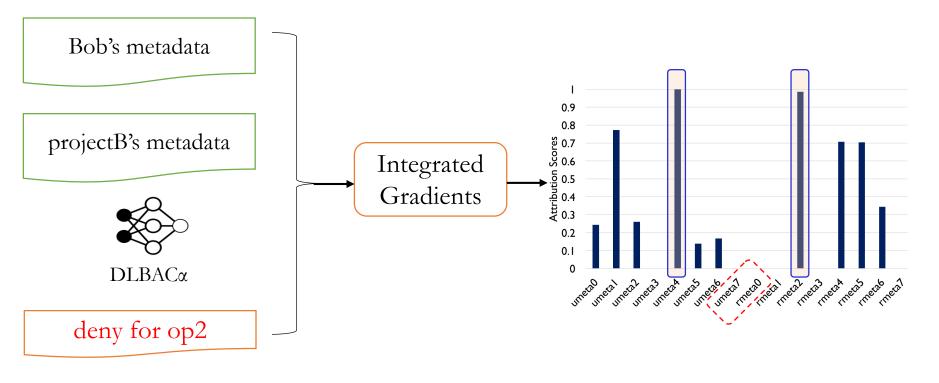


Why does Bob's 'op2' access been denied for projectB resource?

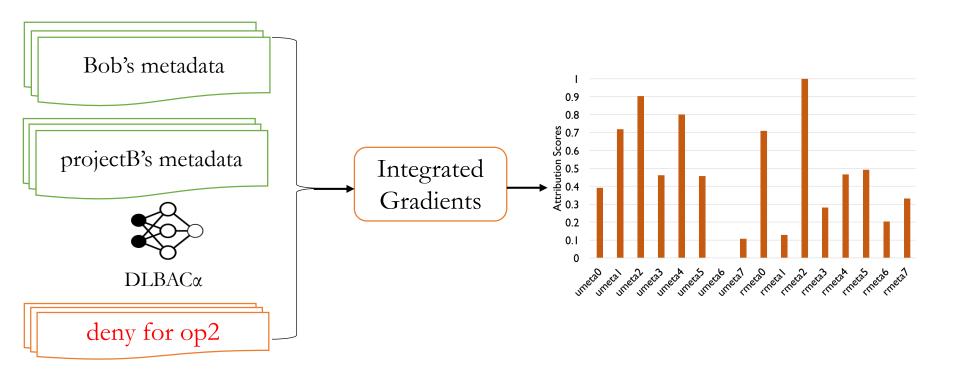
Which metadata are important/ influential for this decision?

- Propose two approaches
 - Integrated Gradients
 - Knowledge Transferring

Center for Security and Privacy Enhanced Cloud Computing

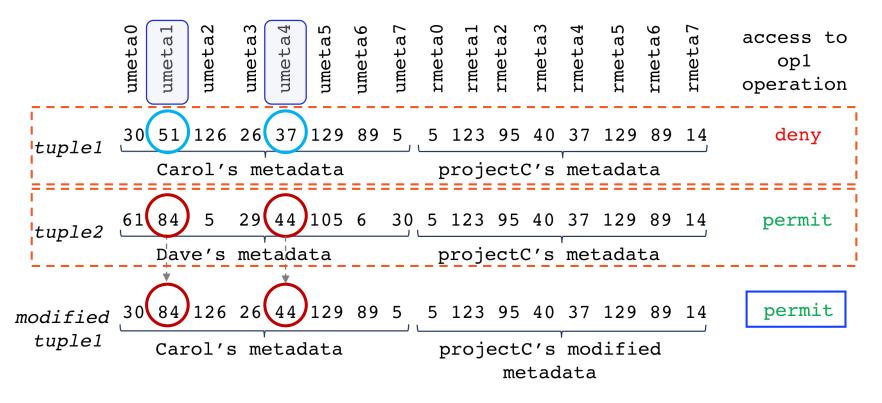


Local Interpretation



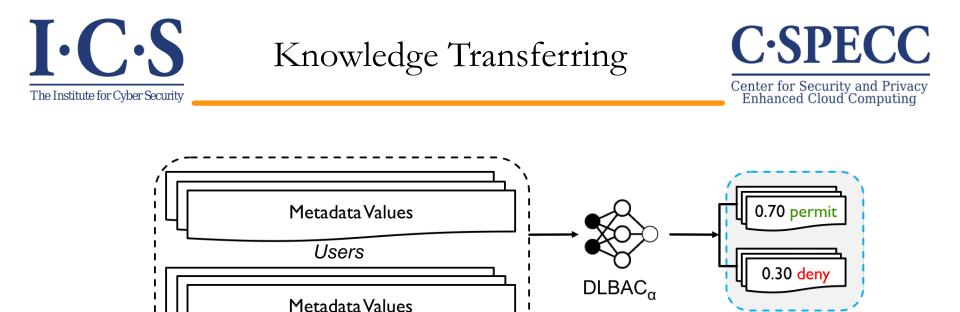
Global Interpretation

Application of Integrated Gradientbased Understanding



- Strengthen the effect of "influential metadata"
- Can be utilized in future access modification

doesn't establish the relationship among metadata



approximately understand the decision in the form of traditional rules

Resources

• Rule: local interpretation

Decision Tree Training

• DT: global interpretation

Access

probabilities of an operation

Target output

Future Research Directions

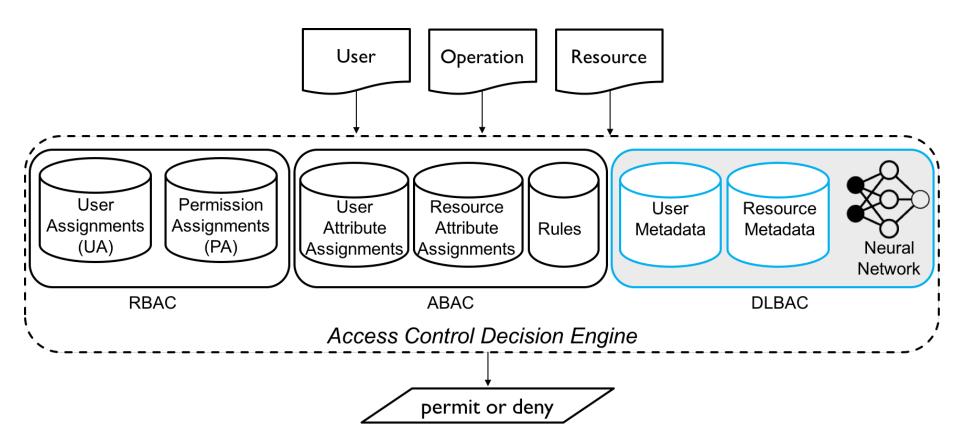
- DLBAC Administration
- DLBAC in Tandem
- Adversarial Attacks from Access Control Perspectives
- Bias and Fairness

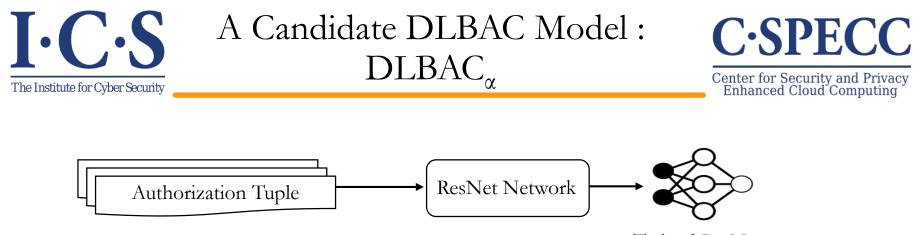
DLBAC Source code and datasets URL:

https://github.com/dlbac/DlbacAlpha

Backup

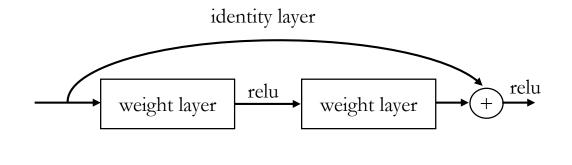
Decision Making in Classical Approaches vs. DLBAC





Trained ResNet

- ResNet dominates in different deep learning applications
- Reduces parameters and faster training
- Reducing the effect of vanishing gradient problem through identify layers



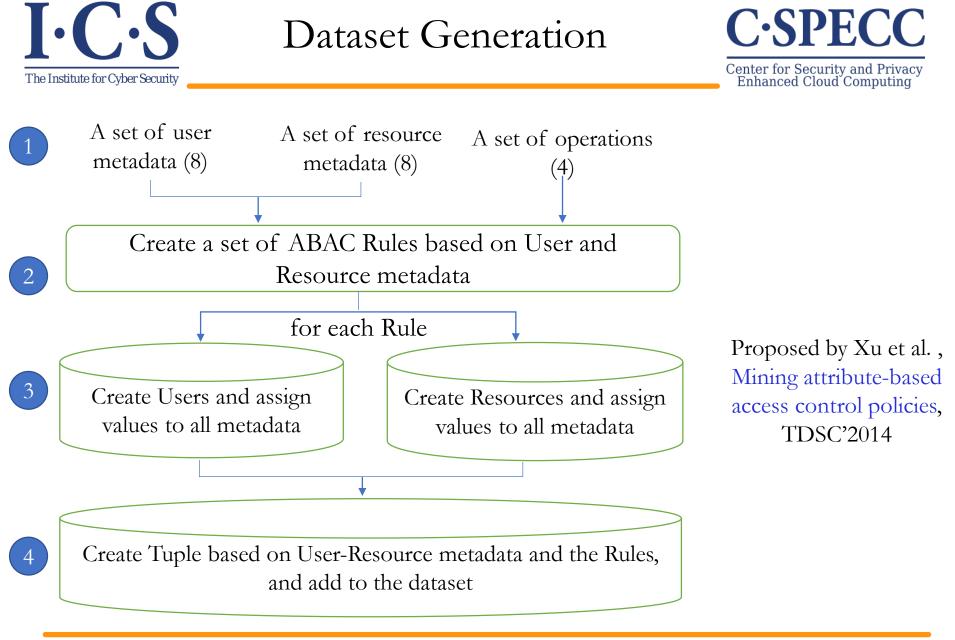
How about Authorization Tuples?

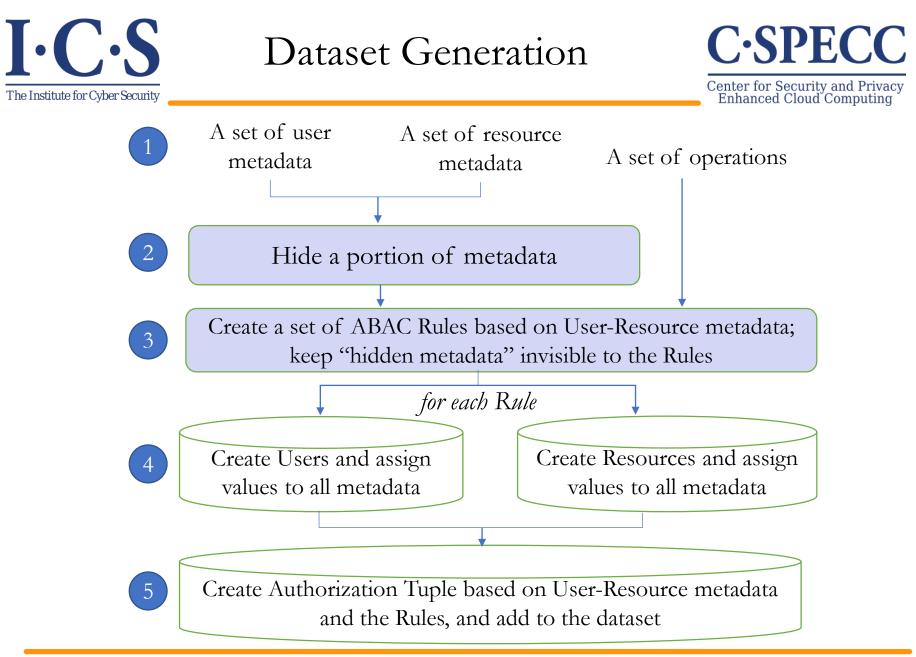
Network Architectures

For dataset 1-4: ResNet8 For dataset 5-10: ResNet50

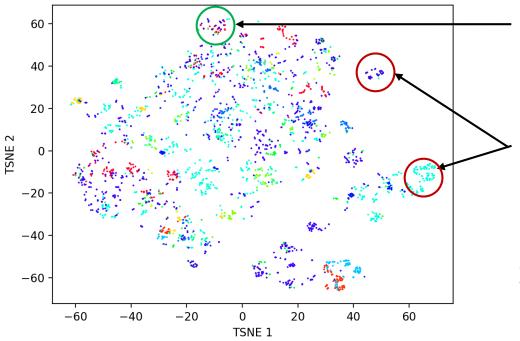
Layers	Output Size	DenseNet-121		
Convolution	112×112			
Pooling	56 × 56			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 6$		
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$		
Transition Layer	56 × 56			
(1)	28×28			
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 12$		
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$		
Transition Layer	28×28			
(2)	14×14			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 24$		
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$		
Transition Layer	14×14			
(3)	7 × 7			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 16$		
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$		
Classification	1×1			
Layer				

ResNet, DenseNet





Dataset Generation



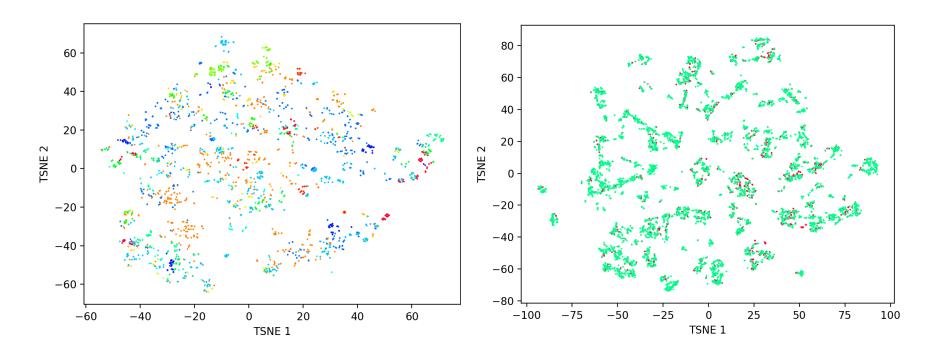
Mixes authorization tuples of other colors

There are tuples of same color those are easily distinguishable

Metadata values are assigned based on a very sparse distribution

A dataset with 1000 users and 639 resources, **3 hidden** user/resource metadata. We determine a fixed set of values for each metadata

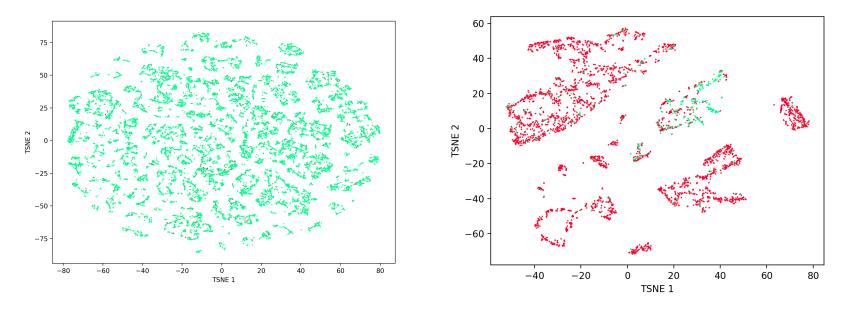
Dataset Generation



A dataset with 800 users and 665 resources, 3 hidden metadata, **fixed set of metadata values**.

A real-world dataset from Amazon

I-C-S The Institute for Cyber Security Characteristics of AmazonKaggle and AmazonUCI Datasets



Amazon Kaggle Dataset

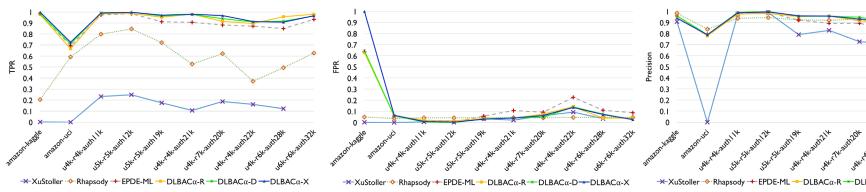
Amazon UCI Dataset

Highly imbalanced !

Performance Comparison with Policy Mining Algorithms The Institute for Cyber Security

I•()

C·SPECC Center for Security and Privacy Enhanced Cloud Computing



A deep learning based approach can properly balance both over-provision and under-provision

Ater Acouti 24

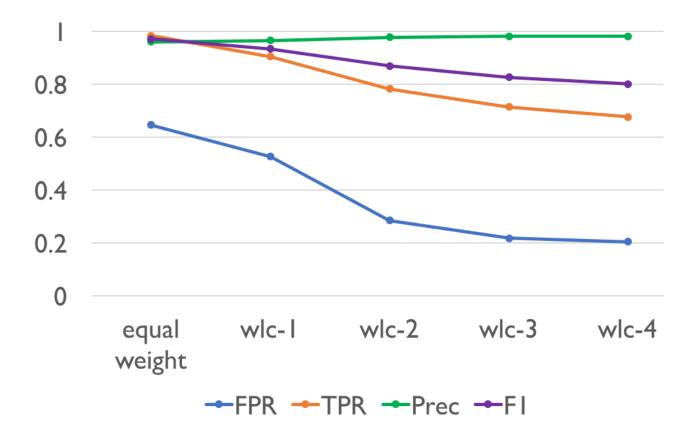
-DLBACα-D

Attrokeauth Bt

uberbeauti314

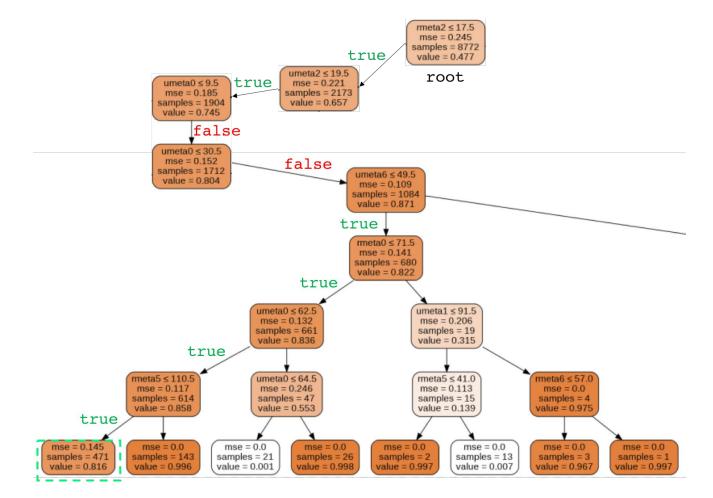
-DLBACα-X

FPR Performance Improvement in DLBACα



I-C-S The Institute for Cyber Security

Decision Tree Generated from KT in DLBACα



- Propose DLBAC framework as an automated access control system
- Experiment and evaluate the performance of DLBAC prototype using both synthetic and real-world access control data
- DLBAC Performance:
 - Make more accurate access control decisions and generalize better
 - Properly balance both permitting desired accesses and denying unwanted accesses
- Propose two methods for understanding DLBAC decisions in human terms

