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Abstract—The pervasive nature of smart connected devices
has intruded on our daily lives and has become an intrinsic
part of our world. However, the wide use of the Internet of
Things (IoT) in critical application domains has raised concerns
for user privacy and security against growing cyber threats. In
particular, the implications of cyber exploitation for IoT devices
are beyond financial losses and could constitute risks to human
life. Most deployed access control solutions for smart IoT systems
do not offer policy individualization, the ability to specify or
change the policy according to the individual user’s preference.
As a result, currently deployed systems are not well suited to
specify access control policies in a multi-user environment, where
users access the same devices to perform different operations.
The system’s security gets tricky when the smart ecosystem
involves complicated social relationships, much like in a smart
home. Relationship-based access control (ReBAC), widely used
in online social networks, offers the ability to consider user
relationships in defining access control decisions and supports
policy individualization. However, to the best of our knowledge,
no such attempt has been made to develop a formal ReBAC model
for smart IoT systems. This paper proposes a ReBACIoT dynamic
and fine-grained access control model which considers the social
relationships among users along with the attributes to support
an attributes-aware relationship-based access control model for
smart IoT systems. ReBACIoT is formally defined, illustrated
through different use cases, implemented, and tested.

Index Terms—IoT, Access Control, Relationship-based access
control, Neo4j, Amazon Web Services (AWS)

I. INTRODUCTION AND MOTIVATION

The Internet of Things (IoT) refers to the smart and au-

tomated devices that communicate with each other to enable

convenience and remote services for users. It has proliferated

in multiple spheres of human lives and has become an intrinsic

part of our smart lifestyle. The rapid progress of IoT has led to

a technological revolution. This enables a connected ecosystem

that includes novel consumer applications in smart homes,

elder care, organizational applications (medical and health

care, vehicular communication systems), industrial applica-

tions (manufacturing, agriculture), infrastructure applications

(smart cities, energy management), and military applications

including Internet of Battlefield Things.

Although the functional aspects and the novel IoT appli-

cations completely unimaginable, the security issues involved

in this technology are often overlooked. The deployment of

resource constrained devices, along with the adoption of a

plethora of technologies in IoT, enlarges the attack surface and

introduces new security vulnerabilities [1], [2]. Open source

and proprietary IoT frameworks like SmartThings [3], Nest,

and IoTivitiy [4] help connectivity over the cloud and the edge

to enable communication and operations by devices and third-

party applications. In such a setting, IoT devices are accessed

by other smart devices and third-party applications running

remotely in the cloud and operated using mobile devices held

by end users. If such complicated systems are compromised,

an adversary can remotely issue commands to switch ON your

home thermostat or remotely issue commands to TURN OFF

your car engine [5]. To prevent such security attacks and to

make these distributed smart devices resilient against such

misuse, it is essential to deploy security mechanisms, including

access control, at different interfaces in this ecosystem without

curtailing user experience. Current access control policies fall

short when multiple users use the same devices [6]. Real-

world examples of lapses in access control models have

started to surface; for instance, a burger commercial triggered

a home assistant, and a cartoon mischievously triggered an

Amazon Echo voice assistant to fill an Amazon cart with items

[7]. Although these examples have no financial losses, other

scenarios may involve an adversary asking a voice assistant to

open the smart front door lock.

Many access control models have been proposed in the lit-

erature for different IoT application domains. The majority of

them are based on role-based access control (RBAC) [8], [9],

or attribute-based access control (ABAC) [10], [11]. Several

other access control models for IoT that are built on differ-

ent technologies, such as UCON [12]–[14] and blockchain

technology [15]–[18] have been proposed. However, most of

these models support a system-wide access control policy

defined by the security administrator. On the other hand, they

do not support policy individualization, where different users

can express their preferences on how their own or related

devices can be used. In an IoT system that involves multiple

users with complex social relationships, even though one user

can own a device, his/her actions may impact other related

users in the system. For example, in smart home IoT use

case, changing the thermostat temperature will also affect

other users in the system. Therefore, policy individualization

must exist, and different users should be able to specify their

‘relationship-based’ policies on the devices they own or for the

devices which affect them. Moreover, users should be able to

generate policies that regulate their usage according to their

preferences. The system must then collectively utilize these
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individualized policies from related users and system-defined

centralized policies for access control decisions. Furthermore,

in some IoT applications, systems’ users have complex social

relationships between them. Traditional access control models

don’t consider the relationship between IoT system users when

deciding on access. This is particularly critical in the social

IoT (SIoT) application domain [19], [20]. The objectives being

pursued by the SIoT paradigm are clear: to keep separate

the two levels of people and things; to allow objects to

have their own social networks; to enable humans to impose

rules to protect their privacy and only access the result of

autonomous inter-object interactions occurring on the objects

social network. However, how social relationships can be used

for access control in the way used in online social networks

(OSNs) [21] has not been widely studied.

Relationship-based access control model (ReBAC) models

[21]–[24] were first introduced to address access control in

online social networks (OSNs). ReBAC models’ basic idea is

to consider the social relationship between the subject user and

the object owner when deciding on different access requests.

Moreover, ReBAC models support policy individualization,

where in addition to system administrators, different users

in the system can customize their policies on their related

users or resources. However, the existing core ReBAC models

[21], [22], [24] do not capture different characteristics of

users, devices, operations, and environments, to develop fine-

grained policies and rules for socially driven authorization.

Some proposed ReBAC models [23], [25] incorporate users

or/and relationship attributes in addition to the relationships

between different users in the system when deciding on

access requests. Nevertheless, these models were designed

for social networks, which have different policy needs, and

only require a limited number of relationships, such as friend
or friend-of-friend. Furthermore, The dynamic nature of IoT

systems necessities incorporating devices’, operations’, and

environment’s attributes when deciding on an access request.

He et al [6] discussed the need for a social relationship-centric

access control model for multi-user IoT devices. However, no

formal model has been proposed so far.

This paper proposes an operational relationship-based ac-

cess control model for smart IoT systems, referred to as

ReBACIoT. Our model is inspired by the attribute-aware

relationship-based access control model designed for online

social networks [23]. However, unlike the attribute-aware Re-

BAC model [23] which only captures users and relationships

attributes when deciding on an access request, ReBACIoT is a

dynamic and fine-grained model that captures different users,

sessions, devices, operations, and environmental attributes.

Moreover, unlike other access control models, ReBACIoT sup-

ports policy individualization and considers the complex social

relationships between the subjects (users) and the objects

(resources) in the authorization process. The key contributions

of this paper are as follows:

• We motivate the need for an attribute-aware relationship-

based access control model for socially-driven IoT.

• We propose ReBACIoT, a formal relationship-based access

control policy model for smart IoT systems.

• We present multiple use cases to demonstrate and highlight

the need for ReBACIoT formal policy model.

• We provide a proof of concept implementation using

Neo4j [26] graph database in AWS IoT [27] to illustrate

ReBACIoT applicability in commercial technologies.

The rest of the paper is organized as follows. Section II discuss

relevant background and related work. Section III propose the

ReBACIoT formal model, followed by policy specification in

Section IV. Different smart applications use-cases and detailed

proof of concept implementation are discussed in Sections V

and VI respectively. Our work is concluded with some future

directions in Section VII.

II. RELATED WORK

Multiple access control models have been proposed in the

literature for IoT application domains. Some models are based

on ABAC [10], [11] as in [28]–[33], while other models

are based on RBAC [8], [9] as in [34]–[38]. UCON based

access control models [12]–[14] were also utilized for different

IoT application domains [39]–[41]. Moreover, some of the

proposed models are built on blockchain technology [15]–

[18]. Several other access control models for IoT have been

proposed. For example, authors in [42] presented a certificate-

based device access control scheme in an IoT environment.

The authors in [1], [2], [43], [44] provided surveys on different

access control models in the literature.

ReBAC have been widely used in the OSNs. It enables

different content owners to specify their preferences on how

related users can access their objects (i.e., photos, posts, etc)

based on the relationship between the content owner and the

requesting user. The authors in [22], [24] proposed a ReBAC

model that utilizes user-to-user relationships (the relationship

between the requesting user and the target resource owner)

to decide on different access requests in a social network.

Cheng et al [21] has extended the ReBAC model proposed in

[22] to incorporate user-to-resource and resource-to-resource

relationships in addition to user-to-user relationships when

deciding on access requests. Carminati et al [25] [45] [46]

[47] have introduced the notion of trust to make an access

decision based on the trust level, type and depth of user to

user relationship using a centralized certificate authority which

asserts the validation of relationship path. Besides OSNs,

ReBAC models have also been proposed in other application

domains, including healthcare and education. In the same line,

Fong et al. [48] have also demonstrated the use of ReBAC in

electronic health record use cases.

In general, pure ReBAC models don’t capture different

characteristics of users, devices, operations, and environments.

Hence, they are not fine-grained and dynamic models. Accord-

ingly, the authors in [22] proposed an attribute-aware ReBAC

model. This model utilizes the relationship type between

the requesting user and target resource owner, as well as

users’ attributes and relationships’ attributes, to decide on

access requests. Attribute-aware ReBAC offers more flexi-
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Fig. 1: Conceptual ReBACIoT Model

ble and expressive policies. However, unlike our proposed

model (ReBACIoT), attribute-aware ReBAC doesn’t capture

sessions, resources, operations, and environmental attributes.

Recently, some works on ReBAC for IoT have been pro-

posed [49], [50]. In [49], the authors proposed a blockchain

architecture to enforce ReBAC in a smart city use case.

However, they neither provided a formal authorization policy

model nor implemented or tested their architecture. In [50], the

authors focused on representing how relationships actualize

and dissolve over time in relationship graphs.

III. FORMAL MODEL

This section introduces the ReBACIoT model. It is a user-

to-user ReBAC model. In other words, it decides on access

requests based on the relationship between the subject user and

the owner of the requested resource. The model is conceptually

illustrated in Figure 1, and formally specified in Table I.

A. Basic Components
Users (U ): This set refers to the system’s human users. It

consists of accessing users (AU ) and controlling users (CU ).

Accessing user is a user who tries to access a resource in the

system. Each resource in the system is owned by a specific

user; we refer to the resource owner as the controlling user.

Relationships (Σ): This set defines the relationship types

between users (U2U Relationship). Given a relationship type

σi ∈ Σ, the inverse of the relationship is σ−1
i ∈ Σ. This

model supports only one relationship between resources and

users (U2R Relationship), which is ownership.

Sessions (S): Each user creates one or more sessions during

which he may initiate an action on a resource. Each session

is linked to a unique, controlling user through the many to

one SU relation. The user-session distinction allows sessions

to partially inherit some of its unique creator user’s policies.

A user might have multiple sessions with different inherited

access control policies active concurrently and asynchronously.

Resources (R): Resources is the set of targets in the smart

system. We have two types of resources, devices (D) and

information (INFO). Devices is the set of smart devices,

and information is the set of different information on different

devices (e.g., the video feeds file on the smart camera). The

function info maps each device to the set of information

available on that device.

Actions (ACT ): The actions set refers to the actions allowed

to be performed on resources as specified by resource manu-

facturers. We have two types of actions: (a) Actions on devices

(ACTd), and (b) Actions on information (ACTinfo).

Policies (P ): We have two types of policies, user-specified

policies and system-specified policies. In user-specified poli-

cies, ReBACIoT allows users to express their preferences

concerning themselves or their related users and resources.

Accessing user policy (PAU ), accessing session policy (PAS),

and target resource policy (PTR) are policies specified by

different users in the system and are applied to accessing user,

accessing session, and target resource respectively. Accessing

user policies (PAU ) is the set of policies specified by different

users in the system and include policies that regulate the

accessing user access rights granted by different users in the

system. Accessing session policies (PAS) is a subset of the ac-

cessing user policies set (PAU ). A user creates sessions during

which he/she initiates some actions on specific resources. For

a session si, the session policies set Psi is inherited from the

user uj , where uj = user(si), and Psi ⊆ Puj
. Two different

sessions initiated by the same user may inherit different

subsets of policies. How different sessions inherit policies

from users is considered part of administrative access control

which is outside the scope of this model. Target resource

policies (PTR) is the set of policies specified by different users,

including the target’s controlling user, and regulate the target

resource access rights. On the other hand, system-specified

policies PSY S is the set of policies defined by the system ad-

ministrator and applied system-wide. It is categorized into two

types: system authorization policies (PSY Sauth) and conflict

resolution policies (PSY Scr). System authorization policies

enable the administrator to decide on authorization rights for

users on resources. Authorization policies written by multiple

users may conflict and require conflict resolution policies.

System conflict resolution policies are outside this model’s

scope and are part of administrative access control models.

Environment State (ES): Environment state is a singleton

set, where current denotes the posture of the environment at the

current time. This can be described by different environment

attributes as shown in Section III-B

Relationship Graph (RG): The relationship graph is depicted

similarly to the OSN’s social graph proposed in [22], where

the relationship between different smart system users can be

depicted as a directed labeled simple graph. Each user is

represented as a node, and the edges between nodes represent

the U2U relationship between different users. For every rela-

tionship σi ∈ Σ, there exist an inverse relationship σ−1
i ∈ Σ.

We do not explicitly always show the inverse relationships on

the relationship graph, but we assume the original relationship

and its inverse twin always exist simultaneously.

Access Decision Module (ADM ): The access decision mod-

ule receives the request, converges all required policies as well

as the relationships on the relationship graph, and decides on
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TABLE I: ReBACIoT Model Formalization Part I: Basic Components

Users, Relationship, and Sessions
−U is the set of users, which include accessing users (AU ⊆ U ) and controlling users (CU ⊆ U ).
−Σ is the set of relationships between users (i.e., relationship types).

−Σ = {σ1, σ2, .., σn, σ
−1
1 , σ−1

2 , .., σ−1
n } denotes a finite set of relationship types, where each type specifier denotes a relationship

type supported in the system between two users.
−S is the set of sessions (each session is created, terminated and controlled by an individual user).
−SU ⊆ S × U is a many to one relation assigning each session to its single controlling user. We define the derived function
user(s) : S → U , where: user(si) = uj such that (si, uj) ∈ SU .

Resources and Actions
−R is the set of resources. Resources can be devices (D) or information (INFO), R = D ∪ INFO.
−D is the set of devices deployed in the smart system.
−INFO is the set of possible information on devices (device manufacturers specified)
−The function info : D → 2INFO specifies the valid information for each device (device manufacturers specified)
−ACT is the set of actions, ACT = {act1, act2, . . . , actn}. Actions are initiated by sessions on resources.
−ACT = ACTd ∪ ACTinfo.
−ACTd is the set of possible actions on devices (device manufacturers specified).
−ACTinfo is the set of possible actions on devices information (device manufacturers specified).
Environment State
−ES = {current} is a singleton set where current denotes the environment at the current time instance
Policies
−P is the set of policies that govern the ability of accessing users to access target resources.
−PAU is the set of accessing user policies.
−PAS is the set of accessing session policies. We define PAS ⊆ PAU .
−PTR is the set of target resource policies.
−PSY S is the set of system-specified policies. This set is furthered divided into system authorization policies (PSY Sauth) and

conflict resolution policies(PSY Scr). We have PSY S = PSY Sauth ∪ PSY Scr

- We have P = PAU ∪ PTR ∪ PSys.
Relationship Graph
−RG is the relationship graph of an IoT smart system users. It is modeled as a triple RG = 〈U,E,Σ〉 where:

• U : is the set of users in the smart system.
• Σ is the set of relationships between users (i.e., relationship types).
• E is the set of graphs edges. We have E ⊆ U × U × Σ.

−RG is the directed labeled relationship graph, where (ui, uj, σk) ∈ RG refers to a relationship from user ui to user uj with the relationship name σk.

TABLE II: ReBACIoT Model Formalization Part II: Attribute Functions and Values

−UA, SA,RA,ACTA,ESA,EdgeA and CountA are sets of user, session, resource, action, environment state, edge, and count attribute
functions receptively.

− Session attribute functions can be inherited attribute functions from the session’s unique user creator or it can be unique session attribute functions.
− Each session si inherits a subset of the attribute functions in UA from its unique user creator (controlled by the session creator user(si)). For every inherited attribute function

att ∈ UA, att(si) = att(user(si)) at all time.
− SuA is the unique session attribute functions set.
− Resource attribute functions set RA can be divided into two subsets: (a)Device attribute functions DA. (b)Information attribute functions INFOA. RA = DA ∪ INFOA.
− EdgeA and CountA are attributes related to the relationship graph.
− Edge attribute functions set EdgeA describe edges in the relationship graphs.
− Count attribute function set CountA is a singleton set, where CountA = {count}.
− Count attribute count captures the number of occurrence for the attribute-based relationship graph path specification as described in Section IV-A and Section III-B .
− For each attribute att in UA ∪ SA ∪DA ∪ INFOA ∪ACTA ∪ ESA ∪ EdgeA ∪ CountA, Range(att) is the attribute range, a finite set of atomic values
− attType : UA ∪ SA ∪DA ∪ INFOA ∪ACTA ∪ ESA ∪ EdgeA→ {set, atomic}.
− attType : CountA→ {atomic}.
− The attribute count ∈ CountA maps the occurrence of a specific path in the relationship graph to a specific number in Rang(count).
− Each att ∈ UA ∪ SA ∪DA ∪ INFOA ∪ACTA ∪ESA ∪EdgeA correspondingly maps users in U , sessions in S, devices in D , information in INFO, actions in ACT ,

the environment state current , or edge in E to atomic or set attribute values. Formally:

att : U or S or D or INFO or ACT or {current} or E →
{
Range(att), if attType(att) = atomic

2Range(att), if attType(att) = set

the access. Policy conflicts are resolved using conflict resolu-

tion policies in PSY S . An access request is a triple (s, r, act),
whereby an accessing user session s requests to perform an

action act on a resource r. For example, if Alice, the parent

at home, wishes to turn on (turn on) the home security

alarm (home alarm). This request can be modeled as (sAlice,

home alarm, turn on) where user(sAlice) = Alice.

B. Attributes in ReBACIoT

In IoT smart systems, the dynamism of communication

between people, connected devices, data, utility, and the

changing nature of the environmental characteristics in IoT

smart systems requires that actors’ rights change accordingly.

Therefore, it is critical to capture users’, sessions’, resources’,

and environment’s attributes when deciding on an access

control request. See Table II for attribute functions definition.

Attributes are functions that take an entity, such as a user,

and determine a specific value from its range. For each

attribute function attj , there is a range of possible values

(Range(attj)) that attj can be evaluated to. An atomic

valued attribute will return one value from its range, while

a set valued attribute will return a subset of its range. UA,

SA, ACTA, RA, and ESA are sets of attributes associated
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with users, sessions, actions, resources, and environment state,

respectively. User attributes (UA) define users’ characteristics,

such as name, age, etc. Session attributes (SA) capture session

characteristics. Some session attributes are inherited from the

session’s user creator, for instance, user age, user gender,

etc. Other session attributes (SuA) are unique to the session,

for example, the type of connection, the device used for the

access, etc. Action attributes (ACTA) is the set of attributes

associated with the requested action, for instance, action level

of danger. Resource attributes RA is the set of attributes

associated with resources. We have two types of resource

attributes, device attributes DA, and information attributes

INFOA, that describe different devices and information

characteristics, respectively. Hence, RA = DA ∪ INFOA.

Different environment characteristics are captured through the

environment state attributes ESA. Examples of environment

states attributes may include weather, time, etc. Moreover,

we define two relationship graph related attributes , Edge

attributes(EdgeA) and count attributes (CountA). EdgeA
are characteristics that describe edges in relationship graphs.

For instance, relationship weights, relationship types, and so

on. CountA describes the occurrence requirement for the

attribute-based path specification; it specifies the lower bound

of the occurrence of such bath, as described in Section IV-A.

IV. POLICY SPECIFICATION

In IoT, attribute-based policies should capture the requesting

user and session attributes, the requested action attributes, the

requested resource attributes, and the current environment at-

tributes. The authors in [23] proposed an attribute aware policy

specification language for social networks ReBAC models.

However, their policy only captures users’ and relationships’

attributes. In this paper, we adapt this policy language for

IoT application use cases. Moreover, we extend it to capture

resources’, actions’, and environmental attributes in addition to

users’ and relationship attributes. Towards this goal, in Section

IV-A, we introduce the attribute-based policy language for

relationship graph related attributes, which is adapted from

[23] and specifies access control requirements on relationship

paths (nodes and relationship) between accessing user and

the target’s controlling user in the relationship graph. Then,

in Section IV-B, we introduce the authorization function

grammar, which specifies access control requirements on the

requesting session, the requested device, the requested action,

and the environmental context. Finally, in Section IV-C we

utilize the attribute-based policy language for relationship

graph attributes and the authorization function to present our

formal policy language for ReBACIoT . This policy language

governs accessing user policies (PAU ), accessing session

policies (PAS) target resource policies (PTR), and system

authorization policies (PSY Sauth). System conflict resolution

policies (PSY Scr) are outside the scope of this model.

A. Attribute-Based Policy Language for Relationship Graph
Features

Access control requirements related to different attributes

are specified using attribute-based policies. Many users may

TABLE III: Attribute quantifiers [23]

∀[+m,−n] All entities from the mth to the nth last,
m+ n ≤ h where m & n are non-negative integers and h is a hop-count limit

∀[+m,+n] All entities from the mth to the nth, m ≤ n ≤ h

∀[−m,−n] All entities from the mth last to the nth last, h ≥ m ≥ n

∃[+m,−n] One entity from the mth to the nth last, m+ n ≤ h

∃[+m,+n] One entity from the mth to the nth, m ≤ n ≤ h

∃[−m,−n] One entity from the mth last to the nth last, h ≥ m ≥ n

∀{2{±N}} All entities in this set

∃{2{±N}} One entity in this set

exist on the relationship path between two users in the relation-

ship graph (RG). Each user (node) or relationship (edge) has

attributes that can be used for specifying access control rules.

Sometimes, when a user tries to access a specific resource,

the attributes of all users or relationships on the path between

the requesting user and the resource controlling user need

to be considered. In some cases, attributes of only certain

users or relationships are used. To capture these cases, we

need attribute quantifiers. In this model, we use the attribute

quantifiers proposed in [23] and shown in Table III. As

illustrated in Table III, the universal quantifier ∀ denotes ”all”

user(s) or relationship(s), while the existential quantifier ∃
denotes ”at least one” user or relationship. The notations [] and

{} denote ranges and a set of users/relationships, respectively.

These ranges and sets are located at a specific distance on

the relationship path between accessing user and the target

resource’s controlling user. Plus and minus signs express the

forward (from the start) and backward directions (from the

end), followed by a number that denotes the position from

the front or the back. The indicator for users starts from

0. On the other hand, the indicator for relationships begins

from 1. For instance, for a relationship, +1 indicates the

first relationship on the path, while −2 means the second

last. However, for users, +0 denotes the starting user, and

-1 represents the second last user on the path. The attribute-

based policy for the attributes related to the relationship graph,

which are nodes (users) and edges (relationships) attributes, is

defined as follows:

A relationship graph attributes-based policy rule

(RGAttPolicy) is a triple,

〈quantifier, f(UA,EdgeA), f(CountA)〉 .

In a relationship graph attributes-based policy rule, a quantifier

denotes the quantity and the position of specific node/edge

attributes. It is applied to a user and edge attribute func-

tion (f(UA,EdgeA) but not to the count attribute function

(f(CountA). f(UA,EdgeA) is a boolean function of the

quantified user and/or edge attributes. For instance, consider

the following three rules:

• Ra : 〈∃[+1,−1], familyMember(u) = True, count ≥ 3〉
• Rb : 〈∃[+1,−1], familyMember(u) = True∧adult(u) =
True,−〉

• Rc : 〈∀[+1,−1], T rustLevel(e) ≥ 7,−〉
Ra defines a rule stating that ”there must be at least three

common connections (paths) between the requester and the

resource owner, which contains a family member”. In Rb and

Rc, the count attribute predicate is not used and is shown as
′−′, which means count ≥ 1 in default. Rb defines a rule
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TABLE IV: ReBACIoT Model Formalization Part III: Authorization Policy

− Accessing user policies PAU , accessing session policies PAS , target resource policies PTR, and system authorization policies PSY Sauth are defined using the following formula:
< Authorization(s : S, act : ACT, r : R, current : ES), GraphRule >

− The graph rule GraphRule is described using the grammar of Table V.
Attributes Authorization Function
−Authorization(s : S, act : ACT, r : R, current : ES) is a propositional logic formula returning true or false specified using the following grammar.

• α ::= term | term ∧ term | term ∨ term | (term) | ¬term | ∃x ∈ set.α | ∀x ∈ set.α
• term ::= set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic
• setcompare ::=⊂|⊆|�⊆
• atomiccompare ::=<|=|≤
• set ::= sa(s) | acta(op) | da(d) | infoa(info) | esa(current), where attType(sa) = attType(acta) = attType(da) = attType(infoa) = attType(esa) = set
• atomic ::= sa(s) | acta(op) | da(d) | infoa(info) | esa(current) | value, where attType(sa) = attType(acta) = attType(da) = attType(infoa) = attType(esa) = atomic

−For a specific session si, resource rj and action actk , the authorization function Authorization(si, actk, rj , current) is evaluated by substituting the actual attribute values of sa(si),
acta(actk), esa(current), and da(rj) if the requested resource is a device (ri ∈ D) or infoa(rj) if the requested resource is an information (rj ∈ INFO) for the corresponding symbolic
placeholders and evaluating the resulting logical formula to be True or False. Any term that references an undefined attribute value is evaluated as False.

TABLE V: Grammar for graph rules

GraphRule → “(”StartingNode“, ”PathRule“)”
PathRule → AttPathSpecExp |AttPathSpecExp
Connective PathRule
AttPathSpecExp → PathSpecExp |PathSpecExp

” : ”RGAttPolicy
Connective → ∨ |∧
PathSpecExp → PathSpec |“¬”PathSpec
PathSpec → “(”AttPath“, ”HopCount“)” |
“(”EmptySet“,” HopCount“)”
HopCount → Number
AttPath → Path |Path” : ”RGAttPolicy
Path → TypeSeq|TypeSeqPath
EmptySet → ∅
TypeSeq → AttTypeExp |AttTypeExp“ · ”TypeSeq
AttTypeExp → TypeExp |TypeExp“ : ”RGAttPolicy
TypeExp → TypeSpecifier |TypeSpecifier Wildcard
RGAttPolicy → use dedicated parser to process
StartingNode → ua|uc

TypeSpecifier → σ1|σ2| . . . |σn|σ−1
1 |σ−1

2 | . . . |σ−1
n |Σ

Wildcard → “ ∗ ”|“?”|“ + ”
Number → [0− 9]+

stating that ”there must be at least one common path between

the requester and the resource owner, which contains an adult

family member”. Rc defines a rule saying that ”there must

be at least one common bath between the requester and the

resource owner, in which the trust level of each edge in the

bath is greater than or equal to 7”. Hence, the system will

check each edge on the path to ensure its trust value meets

the requirement before granting access.

B. Attributes Authorization Function

An attribute authorization function is a boolean func-

tion. It is inspired by the work of [32], and defined us-

ing the grammar of Table IV. For a specific session si,
action actk, and a resource rj the authorization function

Authorization(si, actk, rj , current) is evaluated by substi-

tuting the actual attribute values of sa(si), acta(actk), da(rj)
(if the requested resource is a device in the smart system

rj ∈ D) or infoa(rj) (if the requested resource is an

information on a smart device in the smart system rj ∈
INFO), and esa(current) for the corresponding symbolic

placeholders and evaluating the resulting logical formula to

be True or False. Any term that references an undefined

attribute value is evaluated as False. Term refers to any atomic

logical declarative sentence. An atomic sentence is a type of

declarative sentence that is either true or false and cannot be

broken down into other sentences [51].

C. Policy Formalization
As shown in Table IV, each access control authorization

policy is composed of two parts: the authorization function and

the graph rule. It is represented as a pair < Authorization(s :
S, act : ACT, r : R, current : ES), GraphRule >. The

attributes’ authorization function Authorization(s : S, act :
ACT, r : R, current : ES) set attributes specifications

on the requesting session s, requested action act, requested

resource r, and the current environment state current. On the

other hand, the graph rule GraphRule specifies the type and

attributes of the relationship path between the access requester

and the controlling user of the target resource.

Graph Rules. Table V defines the syntax for the graph rules

using Backus-Naur Form (BNF). This syntax is adapted from

[23]. Each graph rule specifies a starting node (startingnode)

and a path rule (pathrule). Starting node stands for the

user where the policy evaluation begins, which can be the

accessing user (ua) or the resource’s controlling user (uc).

A path rule comprises one or more attribute path spec ex-

pressions (AttPathSpecExp). Each attribute path spec ex-

pression consists of one or two parts, the path spec expres-

sion only (PathSpecExp) or the path specifier expression

and the relationship graph attribute policy (RGAttPolicy).

Since this is an attribute-aware U2U ReBAC, we add the

term RGAttPolicy similarly to the addition of AttPolicy
in [23]. The RGAttPolicy is defined in Section IV-A.It

facilitates policies capable of capturing relationship graph

attributes (RGA). The RGAttPolicy, in this case, is called

a global relationship graph attribute-based policy. It denotes

the relationship graph attributes that need to be applied on the

entire PathSpecExp. The PathSpecExp can be expressed

as a path specifier (PathSpec) with or without negation. The

PathSpec state the required sequence of relationship types

and the corresponding maximum number of edges on the graph

(the hop count limit for the sequence). Users can specify a

more complicated and fine-grained policy for an action against

a target by connecting multiple path spec expressions with

conjunctive connective “∧” and disjunctive connective “∨”.

Also, negation “¬” over path specs is used to imply the

absence of the specified pattern of relationship types and hop

count limit as authorization requirements. The path specifier

consists of two parts, the attribute path (AttPath) and the

hop count (HopCount) or the empty set and the hop count.

The attribute path consists of the path (path) or the path
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and a relationship graph attribute policy (RGAttPolicy). The

path path is a sequence of characters, denoting the pattern

of relationship path between two users that must be satisfied,

the RGAttPolicy (if it is there) is called a local relationship

graph attribute-based policy that applies only to this path
segment, and the hopcount limits the maximum number of

edges on the path. The pattern of relationship path (path)

represents a sequence of type sequence (TypeSeq) . TypeSeq
can be one attribute type expressions (AttTypeExp) or mul-

tiple attribute type expressions concatenated together where,

AttTypeExp“ · ”TypeSeq denotes multiple AttTypeExp
concatenated together. The AttTypeExp consists of one or

two parts, the type expression only (TypeExp), or the type

expression and a local RGAttPolicy, which needs to be

applied to this type expression only. The TypeExp consists of

one type specifier (TypeSpecifier), or one TypeSpecifier
and a wildcard (Wildcard). The (TypeSpecifier) denotes

a relationship in the set of relationships. Hence, the path
is basically a sequence of TypeSpecifier (relationships)

denoting the pattern of relationship types required between the

starting node and the evaluating node in the relationship graph

to denote the access. We use three kinds of wildcard notations

representing different occurrences of relationship types: an

asterisk (*) for 0 or more, plus (+) for 1 or more, and a

question mark(?) for 0 or 1. The hop count (HopCount)
describes the maximum distance between the starting node

and the evaluated node in the graph. The AttPath can be the

empty set, and HopCount = 0, indicating that only the policy

writer can access the resource under the specified conditions.

V. USE CASE SCENARIOS

The following section describes two use cases that utilize

ReBACIoT authorization policies in different IoT domains.

Use Case 1: Smart Home. The child John, would like to

grant his direct friends who are older than nine years access

to entertainment devices during weekend evenings only.

P1 :〈 (day(current) ∈ {Sa,S} ∧ {17:00}
≤ time(current) ≤ {19 : 00} ∧ EntertainmentDevices(r)=

True), (ua, ((friend, 1):∃ {+0}, age(u) ≥ 9,−))〉
In this use case, the authorization policy has two parts, the

authorization function (day(current) ∈ {Sa, S} ∧ 17:00 ≤
time(current) ≤ 19:00 ∧ EntertainmentDevices(r) =
True) and the graph rule. The graph rule consists of two

parts: (1) A starting node equal to ua indicating that the

graph rule should be calculated starting from the accessing

user in the relationship graph. (2) One attribute path specifier

expression. The attribute path specifier expression has two

parts a path specifier ((friend, 1)) and a relationship graph

attribute policy (∃{+0}, age(u) ≥ 9,−). The relationship

graph attribute policy ∃{+0}, age(u) ≥ 9,− indicates that

there must be at least one connection between the requesting

user and the target controlling user, where the requesting

user’s age is greater than or equal to nine. The path specifier

(friend, 1) indicates that this connection path has one edge

with a direct relationship friend. The authorization function

(day(current) ∈ {Sa, S} ∧ 17:00 ≤ time(current) ≤
19:00 ∧ EntertainmentDevices(r) = True) captures the

required environment and resource attributes. In other words,

to grant the access request, the day needs to be Saturday or

Sunday, the access time between 5:00 pm and 7:00 pm, and

the requested resource needs to be an entertainment device.

Use Case 2: Smart Health. Doctor Alex wants to grant

each nurse that he supervises access to the medical records

of the patients under the supervision of both the doctor and

the nurse. Nurses are not allowed to access the medical records

of patients who are not under their supervision but under the

doctor’s supervision. Nurses can access those medical records

only during their shifts from 8:00 am to 5:00 pm.

P2 : 〈 ( 08 : 00 ≤ time(current) ≤ 05:00∧
MedicalRecords(r) = True),
( ua, (Responsiblenurse, 1)∧

(SupervisorResponsibledoctor, 2) ) 〉
In this use case, the graph rule consists of two parts: (1)

The starting node ua indicating that the graph rule should be

calculated starting from the accessing user in the relationship

graph. (2) Two attribute path specifier expressions with a

connective logical and (∧) between them. Each attribute path

specifier expression consists of one path specifier. The first

path specifier is (Responsiblenurse, 1) indicating that there

must be a connection path of one edge in the relationship graph

between the requesting user and the target resource owner

(which is the patient ) with a relationship Responsiblenurse.

In other words, the requesting user needs to be the respon-

sible nurse of the target owner (The patient). The second

path specifier is (SupervisorResponsibledoctor, 2) indicat-

ing that there must be another connection path of two edges in

the relationship graph between the requesting user and the tar-

get resource owner with a relationship sequence Supervisor
and Responsibledoctor, in other words the requesting user

need to be a nurse reported to a doctor who in turns the

responsible doctor of the target resource owner. Note here

that the two attribute path specifier expressions don’t contain a

relationship graph attribute policy (RGAttPolicy) indicating

that there is no graph related attributes that need to be

satisfied on the two specified paths ((Responsiblenurse, 1)
and (SupervisorResponsibledoctor, 2)). Moreover, the au-

thorization function (08 : 00 ≤ time(current) ≤ 05:00 ∧
MedicalRecords(r) = True) indicates that to grant the

access the time of request should be between 8:00 am and

5:00 pm and the resource should be a medical record.

VI. PROOF OF CONCEPT IMPLEMENTATION

In this section, we provide a proof of concept implemen-

tation of the ReBACIoT model demonstrating its practicality.

Section VI outlines our implemented use case while section

VI-B illustrates our architecture and underlying details.

A. Use Case Outline
We modeled the use case based on the ReBACIoT compo-

nents, as shown in Table VI. The goal is to evaluate the user

access request based on the policies at the end of Table VI
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TABLE VI: ReBACIoT Implementation Use Case

U = {Alex,Bob, John, Juliet, Andrew}
UA = {UserAge,Admin}
UserAge : U → {x : x is an integer }
Admin : U → {True, False}
UserAge(Alex) = 36, UserAge(Bob) = 32
UserAge(John) = 14, UserAge(Juliet) = 9
UserAge(Andrew) = 14
Admin(Alex) = Admin(Bob) = True
Admin(John) = Admin(Juliet) = Admin(Andrew) = False

S = {...}
SA = {UserAge,Admin, SessionT imeOut}
UserAge : S → {x : x is an integer }
Admin : S → {True, False}
SessionT imeOut : s : S → {x : x is an integer }

Σ = {Spouse, Child, Friend}

R = D ∪ INFO
INFO = {}, D = {SmartDoor, SmartLight, SmartTV, P layStation}
RA = DA ∪ INFOA
INFOA = {}, DA = {EntertainmentDevices,DeviceOwner}
EntertainmentDevices : D → {True, False}
DeviceOwner : D → U
EntertainmentDevices(SmartDoor) = False
EntertainmentDevices(SmartLight) = False
EntertainmentDevices(SmartTV ) = True
EntertainmentDevices(P layStation) = True
DeviceOwner(P layStation) = John
DeviceOwner(SmartDoor) = Alex
DeviceOwner(SmartLight) = Alex
DeviceOwner(SmartTV ) = Alex

ACT = ACTSmartDoor ∪ACTSmartLight∪
ACTSmartTV ∪ACTPlayStation

ACTSmartDoor = {lock, unlock}
ACTSmartLight = {turn on, turn off}
ACTSmartTV = {turn on, turn off}
ACTPlayStation = {turn on, turn off}
ACTA = {}

ES = {Current}
EA = {T ime}
T ime : ES → {x : x is an hour of a day }
P1 :〈 (day(current) ∈ {Sa,S} ∧ {17:00} ≤ time(current) ≤ {19 : 00}
∧EntertainmentDevices(r) = True),
(ua, ((Friend, 1) : ∃{+0}, age(u) ≥ 9,−))〉
P2 : 〈(DeviceOwner(r) = Alex), (ua, (∅, 0))〉
P3 : 〈(DeviceOwner(r) = Alex), (ua, (Spouse, 1))〉

(P1, P2, and P3). Our smart IoT system has five users: Alex,

Bob, John, Juliet, and Andrew. We have two user attributes:(1)

UserAge determining users’ age. (2) Admin determining if

the user is a system admin. We have three session attributes,

UserAge and Admin inheriting values from the user creator,

while SessionT imeOut is a unique session attribute function.

The session set is not defined here since it is a dynamic

set which will be defined during run time. We defined three

relationships Spouse, Child, and Friend. Bob and Alex are

Spouse, John and Juliet are children of Bob and Alex, and

Andrew is John’s friend. In this use case, we don’t have any

information resources, hence, the information set (INFO)

is empty and the resources set (R) is equal to the devices

set. We also created four devices: SmartDoor (owner Alex),

SmartLight (owner Alex), SmartTV (owner Alex), and PlaySta-
tion (owner John). We have two device attribute functions:

(a) EntertainmentDevices determines if the device is for

Fig. 2: Deployed System Architecture using AWS

entertainment, and (b) DeviceOwner specifies the owner of

each device. Each device d has a set of supported actions, re-

ferred as ACTd. In our use case, we don’t have action attribute

functions, accordingly, the set of action attributes (ACTA) is

empty set. We have one environment attribute ( T ime), which

takes an environment state as an input, and return the current

time. Finally, we have three user defined policies: (1) P1 is

defined by user John, as explained in use case 1 in Section

V. (2) P2 is written by Alex, and is explained as following.

The authorization function part ((DeviceOwner(r) = Alex))
implies that this policy applies on the devices owned by

Alex. The graph rule part ((ua, (∅, 0)) indicates that only the

policy writer (Alex) can access the devices specified by this

policy. (3) P3 is written by Alex, where the authorization

function part ((DeviceOwner(r) = Alex)) implies that this

policy applies on the resources owned by Alex. The graph

rule part ((ua, (Spouse, 1))) indicates that in the relationship

graph starting from the requesting user, there should be an

edge between the requesting user and the requested resource’s

owner with a Spouse relationship.

B. Enforcement Architecture

Our deployed system architecture is shown in Fig-

ure 2. We simulated the environment with AWS Lambda

[52], AWS S3 bucket [53] and Neo4j Graph database

[26]. We created four JSON files uploaded to AWS

S3 bucket: users attributes.json, env attributes.json, de-
vices attributes.json, and user policy.json to capture attributes

of users, environment, and devices, together with user defined

policies respectively. We defined a Lambda function to analyze

the users attributes.json file and insert the user information

into the Neo4j graph database.

Neo4j is a graph database that has nodes and relationships

instead of tables or documents, as shown in Figure 3. Rela-

tionships are kept locally alongside the nodes to offer more

flexible format [54]. The system is optimized for traversing

through the data quickly, with millions of edges per second.

The data from the Neo4j graph database can be retrieved

through a Cypher Query Language [55]. In our use case, the

Neo4j graph database (shown in Figure 3) is used (deployed

in AWS EC2 [56]) to build the relationship graph between

79

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 14,2023 at 23:47:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Relationship Graph in Neo4j

Fig. 4: Access Request Handling Sequence Diagram

the system’s users and to calculate the total number of edges

between the requesting user and the target device owner. The

decision module (written in Python 3.9) receives the access

request, and then analyzes it according to the contents of the

JSON files and the Neo4j relationship graph.

We developed a web application in the Flask [57] to create

our use case. The details of user access request handling are

formulated in Figure 4. A user sends the authentication request

through the IDP (Identity Provider). If the authentication is

valid, the user sends the access request (user, device, action)

through the web application. The decision module receives

the access request from the application. Then for each defined

policy it performs the following two checks: (1) First, using the

Cypher Query Language it checks the accessing user node’s

validation in the Neo4j graph. If the accessing user exists in

the graph, the decision module finds the paths between the

accessing user and the requested device owner, and checks

whether one of the paths satisfy the graph rule of the tested

policy. If the graph rule is satisfied by one of the paths, then

the decision module performs the second check, if the graph

rule is not satisfied for any of the paths between the accessing

user and the device owner, then the decision module will check

the next policy. (2) In the second step, the decision module

extracts the attributes of the requesting session, device, action,

and the current environment state from the attributes’ JSON

file, and checks whether they satisfy the authorization function

part of the tested policy. If the two checks are satisfied, the

TABLE VII: Multiple users requesting one device

Number Of Users Number Of
Devices

Average Processing
Time in ms

1 1 266.200
2 1 290.597
3 1 315.887
5 1 461.493

TABLE VIII: Multiple users requesting multiple devices

Number Of Users Number Of
Devices

Average Processing
Time in ms

1 1 249.344
2 2 464.507
3 3 514.615
4 4 533.962

session is established and the user can access the requested

device within that session. If none of the policies is satisfied,

then the decision module will reject the request.

C. Performance Analysis
In this section, the performance of our implementation is

evaluated by conducting multiple test cases. We examined

situations with different sets of requests. Each set of authoriza-

tion requests is processed ten times to determine the average

processing time. The multi-threading paradigm of Python

is used to evaluate multiple user requests simultaneously.

Table VII shows the average processing time of the decision

module when multiple users send access request for one device

(PlayStation). From these results, we can notice that when the

number of requests increase, the average processing time of

the decision module also increases.

Table VIII shows the decision module average processing

time when multiple users send access requests for multiple

devices simultaneously. The first row the average processing

time when Alex requests to unlock the SmartDoor. The

second row appends one more request to the previous, and

checks if Bob can turn on the SmartLight. Third row

has three simultaneous requests, appending John request to

turn on the PlayStation with earlier two. Finally, the last

row shows the decision module average processing time with

four requests, adding Juliet request to turn on the SmartTV .

The system decided correctly according to our defined policies

(P1, P2, and P3), where all the requests were approved except

Juliet request to turn on the SmartTV . As can be noticed

that with the increase in number of requests for multiple

users and different devices (one user per device), the average

processing time of the decision module also increases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an attribute aware relationship

based access control model for socially driven smart IoT

systems. The model supports policy individualization allowing

system users to define their own policies, and further captures

social relationships among users to define a dynamic and

fine-grained access control approach. We developed a formal

ReBACIoT policy model and attributes aware relationship

based policy specification language. Additionally, we pre-

sented two use case scenarios for our model in different IoT
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environments. We demonstrated the applicability of one of the

use cases through a proof-of-concept implementation using the

Neo4j graph database and AWS. Furthermore, we provided a

performance test to show how our system responds in different

scenarios. We can conclude that our model is applicable and

functional based on the evaluation. In the future, we plan

to use user-device and device-device relationships to cover

some more practical real-life scenarios. We will also conduct

a comprehensive theoretical and empirical analysis comparing

our proposed approach with other existing approaches.
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