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ABSTRACT

Commercial anti-malware programs have become
mainstream security products and are widely de-
ployed. In practice, perhaps due to economic factors,
users may only deploy a single anti-malware program.
It has been proven that there is no universally effec-
tive anti-malware program, which effectively bases
malware defense on the implicit assumption that at
least the popular anti-malware programs can provide
sufficient security. This assumption has been neither
justified nor examined in a systematic fashion. In
this paper, we propose a methodological framework
for examining this assumption. We define an anti-
malware program to be competent when it detects
and cleans all malware present on a system. Our
initial experiments demonstrate that a single anti-
malware program is not sufficient. It is challenging
to figure out how many anti-malware programs are
needed in order to achieve competence in the major-
ity of malware scenarios, although our experimental
results can serve as a good starting point toward
ultimately answering the question.

I INTRODUCTION

Commercial anti-malware program is the most popu-
lar defense tool used by desktops, laptops, and mobile
devices. Perhaps because of economic reasons, end
users have the (implicit) expectation that these pro-
grams will provide comprehensive protection, specif-
ically the effective detection and treatment of mal-
ware. As a consequence, end users seemingly trust
an anti-malware program to safeguard their system
and assume malware is automatically and effectively
treated when malware is detected. Unfortunately,
there has been no systematic study to (in)validate
the underlying assumption: a single anti-malware
program is indeed sufficient to defend against mal-
ware even though it is widely perceived that no sin-
gle anti-malware program can provide 100% detec-
tion and treatment effectiveness. If one anti-malware
program is seemingly insufficient, then how many
anti-malware programs are needed in order to pro-

tect a computer against malware? Motivated by this
question, in this paper we make the following contri-
butions. First, we propose a methodological frame-
work for examining the detection and treatment ef-
fectiveness of anti-malware programs. We define an
anti-malware program to be competent if it detects
and cleans all malware present on a system. Sec-
ond, we conduct two experiments, each dealing with
three anti-malware programs installed together on a
system. Our results revealed, in several cases, that
malware was still detected on a system after per-
forming detection and treatment with multiple anti-
malware programs. Experimental results (i) reaffirm
the widely accepted belief that one anti-malware pro-
gram is not sufficient to defend against malware, and
(ii) suggest that having multiple programs, or one
program with multiple detection engines, installed
on a system does not necessarily guarantee com-
plete protection. Our experimental results show that
competence was mostly achieved in simple scenar-
ios with anti-malware programs installed before mal-
ware penetration. The results also reveal several is-
sues in an anti-malware program’s self-defense mech-
anism against attacks that disallow proper installa-
tion and/or execution in a compromised system. We
found detection effectiveness varies based the execu-
tion order of multiple anti-malware programs.

The main focus of the paper is to qualitatively reaf-
firm the widely accepted belief that one anti-malware
program is not sufficient, while making an initial ef-
fort to address the quantitative question — how many
anti-malware programs are needed — by forecasting
a suitable amount based on our experimental results.

Related Work. Cohen’s formal study of computer
viruses shows that it is in general undecidable to
determine whether a given piece of code is a com-
puter virus [7]. This argument certainly applies to
modern malware. The implication of Cohen’s im-
possibility result is that we need to keep develop-
ing new detection tools for emerging new computer
viruses/malware. Adleman showed that a certain
class of computer virus infections can be disinfected
[1] but others cannot. Adleman’s impossibility re-
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sult justifies the importance of studying detection and
treatment effectiveness of specific anti-malware pro-
grams with respect to specific types of malware. In
this paper, we consider the detection accuracy and
treatment effectiveness of multiple anti-malware pro-
grams against diverse malware.

A large body of work related to our research exists
in the literature, which presents a broad set of ap-
proaches to tackling the problem of detecting mal-
ware. A sample of this body of work is [5,6,8,9,11,12,
14, 15, 17, 19–21]. However, these investigations only
emphasize detection accuracy. There also have been
attempts at standardizing the testing and evaluation
of anti-malware programs [2–4, 10, 13, 16, 18], which
intend to address general notions such as reliable and
transparent testing with standardized output. Unfor-
tunately, there has been no well accepted evaluation
methodology and the issue of treatment effectiveness
has not been considered until now.

Online services, such as virustotal.com, are used to
assess the signature-based detection accuracy of sev-
eral anti-malware programs on submitted files. We
execute samples in a realistic environment which fa-
cilitates infection across the system including files
and processes. This facilitates both signature and
behavior-based detection, which are seemingly a
more realistic evaluation of an anti-malware pro-
gram’s competence than a signature-based static scan
against a single submitted sample. In this paper, we
aim to verify an anti-malware program’s detection ac-
curacy and treatment effectiveness by examining and
observing multiple anti-malware programs which are
installed together and perform detection scanning in
a sequential manner. If a malware is detected, it
implies that the previous program(s) was/were not
competent due to failing in either the detection or
the treatment of malware.

The rest of the paper is organized as follows: Section
II presents our methodological framework for exper-
iments to evaluate the effectiveness of anti-malware
programs. Section III describes our experiments and
results. Section IV discusses conclusions and future
work.

II METHODOLOGY OF EXAMINING
THE EFFECTIVENESS OF ANTI-
MALWARE PROGRAMS

Now we present a methodological framework for ad-
dressing the question — how many commercial anti-
malware programs are needed in order to protect
an end user’s computer against malware? Unfortu-
nately, there is a universal solution as what has been
proven [7]. As such, we necessarily have to pursue
particular detection solutions to particular malware
programs while bearing in mind that false positives
and false negatives are possible.

Specifically, let {C1(·), . . . , Cn(·)} be a set of available
anti-malware programs (or functions). Suppose each
Ci, 1 ≤ i ≤ n, takes as input a computer object S
(e.g., a single computer file or directory, one or multi-
ple computer processes, or a whole system in a clean
or infected state) during each instance execution of
Ci. Therefore, Ci(S) is the output after running Ci(·)
against S, which may include (i) whether S was in-
fected1, and (ii) S′ where S′ = S means that S was
deemed as not infected or deemed as infected but not
treated (possibly because Ci did not know the proper
treatment), and S′ 6= S means S was deemed as in-
fected and was treated with outcome S′.

For a given set of anti-malware programs
{C1(·), . . . , Cn(·)}, there are n! permutations on their
sequential scanning order. With respect to a given
object S and a given specific scanning order denoted
(without loss of generality) by (C1(·), . . . , Cn(·)), our
methodology is illustrated in Fig. 1 and elaborated
as follows.

C1(⋅)
S0 = S

C2(⋅)
S1 S2 Cn(⋅)

Sn-1⋅ ⋅ ⋅
Sn

T / F T / F T / F

Fig. 1: Experimental methodology

More specifically, we install (C1(·), . . . , Cn(·)) and ini-
tially disable their scanning ability. We then enable
and run C1(S0), where S0 = S, to obtain an indicator
whether S0 was infected and S1 (which may or may
not be equal to S0). Then we disable the scanning
ability of C1 and enable and run C2(S1), where S1

is output by C1, to obtain an indicator whether or
not S1 was infected and S2 (which may or may not
be equal to S1). For general i, we enable the scan-
ning ability and run Ci(Si−1) to obtain an indicator
whether or not Si−1 was infected and Si (which may
or may not be equal to Si−1). Finally, we enable and

1This can include identification of which malware infected S. We omit such identification for the sake of conciseness.
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run Cn(Sn−1) to obtain an indicator whether Sn−1
was infected and Sn.

Let us define predicate DT(Ci(Si−1)), which outputs
T = true if Ci has detected at least one object as
being malware in input Si−1 and F = false if no
malware was detected. In other words, this predi-
cate serves as the indicator of Ci’s detection capabil-
ity. Let us also define predicate SDT(Ci(S)), which
outputs T = true if and only if Ci has successfully
detected and treated all malware present in an input
S. In other words, this predicate serves as the indi-
cator of Ci treatment effectiveness against detected
malware.

We say anti-malware program C1 is competent, de-
noted by SDT(C1(S)) = T , if for every input S it
holds that

(DT(C1(S0))=T )∧(DT(C2(S1))=F )∧...∧(DT(Cn(Sn−1)=F )

where S0 = S. This means that SDT(C1(S)) = T
if and only if malware was detected in S0 = S but
was not detected in Si for 1 ≤ i ≤ n, where Si is
the output by Ci on input Si−1. Intuitively, for any
scanning permutation (C1(·), . . . , Cn(·)) of the n anti-
malware programs, SDT(C1(S)) = T for all S means
that C1 is competent. If malware is detected in Si

for some i > 0, then C1 is not competent. If there
is no Ci for some 1 ≤ i ≤ n that is competent (i.e.,
no such program in all the n! possible permutations),
then we need multiple anti-malware programs. In
this case, we can further define the minimal num-
ber of needed programs. For example, consider also
the scanning permutation (C1(·), . . . , Cn(·)), even if
SDT(C1(S)) = F , C1(·) and C2(·) together are com-
petent when

(DT(C1(S0))=T )∧(DT(C2(S1))=T )∧...∧(DT(Cn(Sn−1)=F )

where DT(Ci(Si−1)) = F for 3 ≤ i ≤ n. The above
discussion can be extended to cases of the n− 1 anti-
malware programs as competent.

Our experimental study considers the special case of
n = 3. In our given methodology, a false negative
can impact our methodology in the following man-
ner: Assume we have (C1(S0), C2(S1), C3(S2)) and
SDT(C1(S0)) = True. This implies both C2(S1) and
C3(S2) returned False. It is possible for C2(S1) and
C3(S2) to produce a false negative on some malware
that was not initially detected by C1(S0). In this
case, SDT(C1(S0)) = T is incorrect as the result
should be F for all three Ci.

Our methodology works properly in cases where false
negative maximally occurs in n−1 anti-malware pro-

grams meaning that there are at lease one Ci, which
detect the malware that was missed by all the other
programs in the set. If every anti-malware program
in a set n produces a false negative, then the result is
unreliable. In general, to determine whether or not Ci

has possibly produced a false negative on an input Sn,
the output Sn+1 must be submitted to Ci+1 for detec-
tion and treatment of malware. If sufficient number
of Ci’s report no presence of malware starting with
a given S = S0 then it may be possible to conclude
that S is in fact malware-free. Setting a threshold
value for the number of anti-malware programs that
are needed in order to draw this conclusion is a core
issue of the framework.

III EVALUATION EXPERIMENTS AND
RESULTS

Guided by our methodology while considering the
feasibility of experiments, we consider two sets with
each consisting of three anti-malware programs. For
a given set of anti-malware programs, denoted by
{C1(·), C2(·), C3(·)}, we consider all possible scanning
permutations, resulting in 3! = 6 cases. For a spe-
cific order (C1(·), C2(·), C3(·)), C1 detects and treats
malware possibly present in a given S = S0, then
we submit S1, namely the output of C1, as input to
C2(·). If C2 detects the presence of a malware in S1,
then C1 failed in detection and/or treatment of the
malware present in S0. Similarly, in order to deter-
mine if C2 effectively detected and treated malware
present in S1, we submit S2, which is the output of
C2, as input to C3(·). If C3(·) detects the presence of
a malware in S2, then C2 failed in detection and/or
treatment of malware present in S1. The complete
scanning sequence must be performed even in cases
where a Ci does not detect any malware. This is be-
cause Ci could have produced a false negative, which
may not be noticed until after the rest of the scanning
sequence is completed. In the above experiments, all
three programs of a set are installed together. Once
installation is completed, their scanning abilities are
disabled. When performing a scanning permutation,
only the scanning ability of Ci is enabled. Once scan-
ning completes, the scanning ability of Ci is again
disabled. This is to ensure that only one Ci is ca-
pable of malware detection at any given time during
our tests. In this approach, C2 verifies C1 scanning
results and C3 verifies C2. C3 is not verified, thus we
consider C1 and C2 results verified as true, and C3

results true but unverified. Our analysis will focus
mostly on C1 and C2 results.
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1 EXPERIMENT DESIGN

Sets of anti-malware programs. Testing was per-
formed using two sets of three anti-malware programs
each, labeled as EAZ and KGB respectively as shown
in Table 1. Their scan results, documented in log
files, were the basis of determining if malware was
detected and treated. The 6 programs were chosen
and grouped into sets based on the facility of be-
ing installed together. Each anti-malware program
was a free trial version, which was installed and
fully updated before each experiment. All instruc-
tions given by the program during installation, de-
tection and treatment were followed. In cases where
an anti-malware program asked the user to choose
treatment, we chose the closest equivalent treatment
options in this order: disinfection, quarantine, dele-
tion. As mentioned above, during the experiments,
we performed detection database updates for every
tested anti-malware program after initial installation
and before each experiment to guarantee the latest
detection information was in use.

1st Anti-malware
set - EAZ

2nd Anti-malware
set - KGB

ESET Smart Security Kaspersky Internet Se-
curity

AVG Internet Security G-Data Internet Secu-
rity

ZoneAlarm Extreme
Security

BitDefender Total Se-
curity

Table 1: Anti-malware sets used in Experiments 1
and 2

Experiment implementation. All experiments
were performed on VMWare Workstation running a
snapshot containing a clean and fully updated install
of Windows 7, 32 bit operating system. As a prelim-
inary step, each anti-malware program used in test-
ing was installed and performed a full system scan in
this clean state. None of the programs detected any
malicious objects, this was done to ensure an initial
malware free testing environment. We implemented
two experiments (with respect to each of the two sets
of anti-malware programs) as elaborated below.

Experiment 1. All three anti-malware programs of
a set were installed together and their scanning abil-
ities disabled in a system with a malware-free state
followed by the execution of one known malware sam-
ple for 3 minutes. Each anti-malware program was
allowed to perform detection and treatment in its de-
fault manner followed by a user requested full system

scan. Once completed, the program’s scanning abil-
ity was disabled and the next anti-malware program
in the set was enabled and requested to perform a full
system scan. This same step was taken with the final
anti-malware program in the set. Once each program
completed its detection and treatment of malware, we
recorded if the program detected any malware on the
system along with the total number of detected ma-
licious objects. The steps are highlighted in Figure
2.

System in 

clean state

Install anti-

malware program 

1 & disable it

Install anti-

malware program 

2 & disable it

Install anti-

malware program 

3 & disable it

Run anti-malware 

program 3 to scan 

& disable it

Run anti-malware 

program 2 to scan 

& disable it

Run anti-malware 

program 1 to scan 

& disable it

Run a malware 

sample for 3 

minutes

Fig. 2: Experiment 1 steps

Experiment 2. One known malware sample was
executed for 3 minutes with the system initially in a
clean state. After 3 minutes all three anti-malware
programs of a set were installed with their scanning
ability disabled and each allowed to perform detec-
tion and treatment in its default manner followed by
a user requested full system scan. Once completed,
the program’s scanning ability was disabled and the
the scanning ability of the next anti-malware program
in the set was enabled and requested to perform a full
system scan. This same step was taken with the fi-
nal anti-malware program in the set. Recording mal-
ware detection for each anti-malware program was
also done in the same fashion as in Experiment 1.
The steps are highlighted in Figure 3.

System in 

clean state

Run anti-malware 

program 3 to scan 

& disable it

Run anti-malware 

program 2 to scan 

& disable it

Run anti-malware 

program 1 to scan 

& disable it

Run a malware 

sample for 3 

minutes

Install anti-

malware program 

3 & disable it

Install anti-

malware program 

2 & disable it

Install anti-

malware program 

1 & disable it

Fig. 3: Experiment 2 steps

Malware samples used in the experiments.
For Experiments 1 and 2, a test set consisting of
500 known malware samples were used. The mal-
ware used in the experiments were randomly chosen
from 974 samples downloaded between August 2010
and November 2010 from the GFI SandBox malware
repository. The specific download date was chosen
to not be recent so as to give the anti-malware pro-
gram maintainers time to incorporate detection and
treatment of the malware samples. The sets con-
sisted of network worms, peer-to-peer worms, email
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viruses, rootkits, bots, password stealers, malware
downloaders, and backdoors. Several malware sam-
ples included in the set such as bots, backdoors, and
malware downloaders initially infect a system with
one malware which may then download and/or in-
stall several other malware programs. This produces
a compromised system with several malicious objects
consisting of many different malware types.

We infected our system by executing one malware
sample per experiment and allowing the sample to
run for three minutes. This infection approach was
used to evaluate an anti-malware program’s effective-
ness and resilience in a compromised system con-
taining a possibly high number of malicious objects.
Our approach created a realistic infected environment
closely emulating current malware trends. Most anti-
malware programs perform multiple diurnal detection
database updates, thus we assume that given the test
set download date of 2010, sufficient time had passed
for the anti-malware program to detect, inspect, and
create detection signatures and/or rules for the mal-
ware samples used in the experiments.

2 EXPERIMENT 1 RESULTS

Scanning
permuta-
tion

DT(C1(·)) DT(C2(·)) DT(C3(·))

EAZ 500 13 0
EZA 500 8 4
ZEA 500 0 0
ZAE 500 0 0
AEZ 500 6 0
AZE 500 7 2
KGB 500 0 0
KBG 500 0 0
GBK 500 0 3
GKB 500 6 0
BKG 500 7 1
BGK 500 2 4

Table 2: Experiment 1 results for DT(Cn)

The detection results (DT ) of Experiment 1 are listed
in Table 2 and the competence results (SDT ) are
listed in Table 3. The first column of each table is
the scanning permutation being evaluated. In Ta-
ble 2, columns 2,3, and 4 report the total number
of samples in which DT (Cn(·)) = T for C1(·), C2(·),
and C3(·) respectively. For example, in Table 2, the
first permutation listed is EAZ with DT (C1(·)) = 500
means that of the tested 500 samples in our set,

DT (C1(·)), which in this case is DT (E(·)), detected
at least one object as malicious in every sample in
the set. DT (C2(·)) = 13 indicating in only 13 of 500
samples did DT (C2(·)), which is DT (A(·)), detect
an object as malicious. DT (C3(·)) = 0, means that
DT (Z(·)) did not detect a malicious object in any of
the 500 samples.

Scanning
permuta-
tion

SDT(C1(·)) SDT(C1∧

C2)
SDT(C1∧

C2∧C3)

EAZ 487 13 0
EZA 488 8 4
ZEA 500 0 0
ZAE 500 0 0
AEZ 494 6 0
AZE 493 5 2
KGB 500 0 0
KBG 500 0 0
GBK 497 0 3
GKB 494 6 0
BKG 493 6 1
BGK 494 2 4

Table 3: Experiment 1 results for SDT(C1 ∧ ...∧Cn)

In Table 3, columns 2, 3, and 4 report the total num-
ber of times SDT(C1 ∧ ... ∧ C3) = T for a given per-
mutation, representing the total number of samples
for which competence was achieved. More specifically
for each permutation in column 1, column 2 reports
the total number of samples in our data set which
competence was achieved by SDT(C1), column 3 re-
ports competence for SDT(C1 ∧ C2), and column 4
for SDT(C1 ∧C2 ∧C3). For example, in Table 3, the
first permutation listed is EAZ with SDT(C1) = 487
which means competence was achieved by SDT(E)
in 487 out of 500 tested samples. Competence was
established by assuring these 487 samples were not
detected by C2 = A and C3 = Z thus validating the
complete detection and treatment of the 487 sam-
ples by C1 = E. Continuing with the example of per-
mutation EAZ, SDT(C1 ∧ C2) = 13, which means
13 samples were detected and treated by C1 and C2

and not detected at all by C3. The implication is
these 13 samples were detected by C1 and possibly
not treated correctly leading to their re-detection by
C2. These 13 samples not being detected by C3 im-
plies C2 succeeded in detection and treatment thus
competence was achieved only after being detected
and treated by both C1 and C2. The final result for
EAZ is SDT(C1 ∧C2 ∧C3) = 0 which implies C3 did
not detect any malicious objects for any of the 500
tested samples. Since there is no fourth anti-malware
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program in our permutations to compare competence
results against SDT(C1 ∧ C2 ∧ C3), we must accept
these results as true but unverified, as opposed to
SDT(C1) and SDT(C1 ∧ C2), where the competence
results have been verified true. The approach de-
scribed here for determining DT and SDT values
were equally applied to the result listed in Table 4
and Table 5.

The DT(C1(·)) values in all the permutations match
the number of samples in our malware data set. Dur-
ing this experiment, since the scanning ability of the
first anti-malware program of a permutation was en-
abled prior to a malware being executed, accessing
the malware file caused the anti-malware program,
in almost every case, to immediately detect and treat
the sample which often resulted in automatic dele-
tion. A result of DT(C2(·)) > 0 was reported for 7
of the tested permutations. In each of these cases
the samples were detected by C1 but possibly not ef-
fectively treated resulting in some malicious object
left active on the system. As a result C2 detected
and treated the remaining active malicious objects.
A result of DT(C3(·)) > 0 was reported for 5 of the
tested permutations. In each of these cases the sam-
ple was detected by both C1 and C2 but was not
treated correctly by either one or the other or both
thus facilitating C3 to detect the remaining malicious
objects.

The SDT(C1) results were very high with 4 scanning
permutations where C1 achieved competence in all
500 samples. C1 in the rest of the permutations per-
formed well with the lowest being C1 = E (ESET)
in permutation EAZ with 487 samples where ESET
was competent. The results for SDT(C1 ∧ C2) and
SDT(C1 ∧C2 ∧C3) successfully detected and treated
the unaccounted samples from SDT(C1). The per-
mutation EZA returned SDT(C1) = 488, SDT(C1 ∧
C2) = 8, and SDT(C1 ∧C2 ∧C3) = 4. The four sam-
ples detected by C3 were detected and not correctly
treated by C1 and were not detected at all by C2, this
detection trend also occurred in permutations AZE,
GBK, BKG, and BGK.

Overall, the permutations performed relatively well in
Experiment 1 with the vast majority of samples be-
ing detected and treated by C1 producing high level
of competence, although there were 8 permutations
with a combined total of 61 samples where multi-
ple anti-malware programs were required to achieve
competence. Of these 61, there were a combined 14
samples in 5 permutations which required the com-
plete permutation of 3 programs to seemingly achieve

competence. These results confirm that, in general,
having one anti-malware program installed in a clean
state may greatly increases detection accuracy and
treatment effectiveness. One caveat to this notion
is the competence of an anti-malware program is,
at minimum, partially dependent on having detec-
tion databases up to date which was done during
this experiment. It is unclear if consumers follow
due diligence and keep their detection databases up-
dated which may decrease their anti-malware pro-
gram’s competence.

3 EXPERIMENT 2 RESULTS

The detection results (DT ) of Experiment 2 are listed
in Table 4 and the competence results (SDT ) are
listed in Table 5.

Scanning
permuta-
tion

DT(C1(·)) DT(C2(·)) DT(C3(·))

EAZ 372 192 128
EZA 406 216 161
ZEA 154 261 102
ZAE 146 302 251
AEZ 328 104 31
AZE 295 98 126
KGB 472 64 21
KBG 461 43 9
GBK 389 104 57
GKB 371 179 102
BKG 302 112 31
BGK 299 183 92

Table 4: Experiment 2 results for DT(Cn)

In Experiment 2, the DT results were much higher
than the results of Experiment 1 for C1, C2, and
C3. For every permutation the summation of the
totals for DT (C1(·)) + DT (C2(·)) + DT (C3(·)) sur-
passed 500 resulting from multiple objects infected
by each sample during the 3 minute period before
the scan by C1 was performed. This led to the same
sample being detected by multiple anti-malware pro-
grams in a given permutation. Note, if all 500 sam-
ples in our set were detected by all three programs
in a given permutation, the maximal result for DT
would be DT (C1(·))+DT (C2(·))+DT (C3(·)) = 1500.
In 10 out of 12 permutations the highest number
of detections occurred in C1. The top 3 detection
totals for C1 were permutations KGB (472), KBG
(461), and EZA (406). The top three detection to-

Page 6 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 61



tals for DT (C1(·))+DT (C2(·)) were EZA (622), EAZ
(564), and GKB (550). For DT (C1(·))+DT (C2(·))+
DT (C3(·)), the top three detection totals were EZA
(783), ZAE (699), and EAZ (692). Permutation EZA
is particularly interesting due its high detection rate
in all three measurements which implies this permu-
tation requires multiple engines to achieve effective
detection for several different types of malware. The
permutations KGB and KBG only appear in the top
detection for C1 = K implying Kaspersky is capa-
ble of effectively detecting several malicious objects
infected by our broad malware sample set. Further
proof of this is evident by the totals of DT (C1(·)) +
DT (C2(·)), and DT (C1(·)) +DT (C2(·)) +DT (C3(·))
for KGB and KBG which are 64, 21 and 43, 9 respec-
tively.

Scanning
permuta-
tion

SDT(C1(·)) SDT(C1∧

C2)
SDT(C1∧

C2∧C3)

EAZ 180 64 128
EZA 190 43 161
ZEA 86 157 102
ZAE 106 71 251
AEZ 251 98 31
AZE 207 49 126
KGB 403 57 21
KBG 412 38 9
GBK 302 76 57
GKB 239 146 102
BKG 298 104 31
BGK 287 116 92

Table 5: Experiment 2 results for SDT(C1 ∧ ...∧Cn)

Given the very high DT results in this experiment,
the SDT totals were much lower with no permutation
capable of achieving competence for all 500 tested
malware samples. The top 3 competence totals for
C1 were permutations KBG (412), KGB (403), and
GBK (302). The top 3 summations of competence to-
tals for C1 ∧C2 were permutations KGB (460), KBG
(450), and BGK (403). For C1 ∧ C2 ∧ C3, the top
3 permutations for the summation of competence to-
tals were BGK (495), GKB (487), and KGB (481).
Kaspersky again had the best result with C1 = K in
KBG detecting 82.4% of the samples. The permuta-
tion KGB was able to detect 92.0% of the samples
after completing C1 ∧ C2. The permutation BGK,
which only appeared in the top 3 of C1∧C2∧C3 came
closest to achieving competence for all 500 samples,
detecting 99.0%, with 5 samples undetected.

A key factor in disallowing better competence results,
especially in C1, and C1 ∧ C2 was anti-malware pro-
grams either failing to install or failing to perform
a scan in a compromised system. During Experi-
ment 2, there were 384 instances of installation fail-
ure and 297 instances of an installed anti-malware
program unable to scan the system. A total of 681
instances occurred where a detection scan was not
performed by one or more members of a permutation
set. The permutations with the most failures overall
were ZEA, ZAE, and AZE, with ZoneAlarm having
the most failed installs overall and AVG having the
most failed scan attempts. KGB, KBG, an GKB were
the most resilient with the least amount of failures.
Using ZEA as an example, a typical failure scenario
would occur with ZoneAlarm crashing during install
and not completing. In this instance, the totals of
both DT (C1(·)) and SDT (C1) were not incremented
and the test continued with the remaining permuta-
tion components EA. ESET would install correctly
but would fail to perform a detection scan, in this
case again both DT (C2(·)) and SDT (C1 ∧C2) totals
were not incremented and the test finished with the
final permutation component A. AVG would install
and scan the system successfully and accordingly the
totals for DT (C3(·)) and SDT (C1 ∧ C2 ∧ C3) were
incremented as needed. This general approach of
not incrementing DT and SDT totals and contin-
uing with the test was followed in all instances where
a failure, as described above, occurred.

No anti-malware program being found competent in
Experiment 2 along with the observed failures is a
troubling result. One could conjecture a cross sec-
tion of consumers tend to buy or update their cho-
sen anti-malware program only after suspicion of mal-
ware present on their system. In these cases the re-
sults of Experiment 2 do not put detection accuracy
and treatment effectiveness in the user’s favor. It is
unclear if this is the result of malware able to com-
promise the system and the anti-malware program,
or the program’s lacking a self-defense mechanism to
protect themselves in s compromised environment or
a mix of both. One could conjecture the last option
is possibly most likely. Experiment 2 illustrates the
need to enhance the resilience of anti-malware pro-
grams when installed and updated, along with com-
petence when scanning a malware infected system.

4 DISCUSSION

Experiment 1 evaluated 2 permutation sets of 3 anti-
malware programs each. For each set a maximal 3! =
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6 permutations were evaluated for an experiment to-
tal of 12 permutations. Each permutation set was
tested against a malware data set of 500 samples
resulting in 1,500 individual anti-malware program
test per permutation, 9,000 tests per permutation
set, and 18,000 tests for Experiment 1. The same
testing occurred in Experiment 2 for a grand total
of 36,000 individual anti-malware program tests car-
ried out in this research across 24 total permutations.
Of these 24, only 4 permutations, 16% overall, were
found competent for SDT(C1) for all 500 samples,
all occurring in Experiment 1. For SDT(C1 ∧ C2),
only 3 permutations, 12.5% overall, in Experiment
1, achieved competence for all 500 samples. Com-
petence for SDT(C1 ∧ C2 ∧ C3) was achieved for all
500 samples by 5 permutations, 20.8% overall, again
occurring only in Experiment 1. Overall, only 7
permutations, 29.2%, all occurring in Experiment 1
were verified to have achieved competence with all
500 samples though permutation BGK in Experi-
ment 2 did come close with 495. Experiment 1 pro-
duced no failures, every anti-malware program in ev-
ery permutation installed, updated, and scanned cor-
rectly. The high amount of competence results in
Experiment 1 suggest anti-malware programs prop-
erly detect and treat malware when installed in a
clean state and allowed to passively monitor the ma-
chine. In Experiment 2, many problems were en-
countered during anti-malware program installation
and scanning which may have facilitated failed com-
petence attempts. This implies that anti-malware
programs may not be resilient to infected states and
may fail when being installed or executed in a com-
promised environment. Installing and executing the
anti-malware program from a boot CD, USB or some
other external media, may reduce problems and pro-
vide better detection and treatment, but this might
be an unrealistic approach as one can conjecture that
average users may prefer the faster and more con-
venient method of downloading an installable anti-
malware program or the ISO image of a bootable anti-
malware CD from some online source and attempt to
install and execute within the infected system.

Turnover rates. Table 6 lists the turnover rate, as
a percentage, from DT to SDT for C1, and C1 ∧ C2

for Experiments 1 and 2. The turnover rate for
C1 ∧ C2 ∧ C3 was intentionally omitted since those
results are accepted as true but unverified, as op-
posed to the rest of the results which are verified as
true. In cases where competence was achieved for
all 500 samples in C1 or C1 ∧ C2, a value of N/A
was recorded for the subsequent Cn results. The
turnover rate is calculated by dividing the compe-

tence result SDT (C1 ∧ ... ∧Cn) by its corresponding
detection result. For example, in Table 6, for Exper-
iment 1, the first permutation is EAZ. According to
Table 2 DT (C1(.)) = 500 with C1 = E, in Table 3, the
corresponding competence value is SDT (C1) = 487.
This signifies ESET detected 500 samples as being
malicious but only effectively treated 487 samples,
thus ESET’s turnover ratio in this specific instance
is 487/500 = 97.4%. The turnover rate is an im-
portant measure of an anti-malware program’s treat-
ment effectiveness of detected malicious objects. The
higher the number of samples for which competence
was achieved for a specific anti-malware program, the
higher that program’s turnover rate will be. A low
turnover rate indicates an anti-malware program may
be very effective in malware detection but less effec-
tive in treatment. On the other hand, a high turnover
rate indicates an anti-malware program is highly ef-
fective in treatment leading to full eradication of de-
tected malware from a system.

C1 C1 ∧ C2 C1 ∧ C2 ∧ C3

Experiment 1
EAZ 97.4 100 N/A
EZA 97.6 100 N/A
ZEA 100 N/A N/A
ZAE 100 N/A N/A
AEZ 98.8 100 N/A
AZE 98.6 71.4 N/A
KGB 100 N/A N/A
KBG 100 N/A N/A
GBK 99.4 0 N/A
GKB 98.8 100 N/A
BKG 98.6 85.7 N/A
BGK 98.8 100 N/A
Experiment 2
EAZ 48.4 33.3 N/A
EZA 46.8 20 N/A
ZEA 55.8 60.1 N/A
ZAE 72.6 23.5 N/A
AEZ 76.5 94.2 N/A
AZE 70.2 50 N/A
KGB 85.8 89 N/A
KBG 89.3 88.4 N/A
GBK 77.6 73 N/A
GKB 64.4 81.5 N/A
BKG 98.7 92.8 N/A
BGK 96 63.4 N/A

Table 6: Detection to Competence Turnover Rate

In Experiment 1, for C1, the turnover rates were
very high with the lowest being 97.4% by ESET
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in permutation EAZ. There were 4 instances of a
100% turnover rate. For C1 ∧ C2, 5 instances of
100% turnover rate occurred, but the lowest rate was
71.4% by ZoneAlarm in permutation AZE. The aver-
age turnover rates for C1 and C1 ∧C2 in Experiment
1 were very high at 99% and 82.1% respectively. The
consistently high turnover rates in Experiment 1 im-
ply malware infection occurring after an anti-malware
program is running on a system have a much lower
chance of survival due to highly effective treatment
leading to complete eradication.

In Experiment 2, for C1, the highest turnover rate
was 98.7% in permutation BKG, the lowest rate was
46.8% in permutation EZA. For C1 ∧C2, the highest
turnover rate was 94.2% by permutation AEZ and the
lowest rate was 23.5% by permutation ZAE. There
was no 100% turnover rate in Experiment 2. The
average turnover rates for C1 and C1 ∧ C2 in Ex-
periment 2 were 73.5% and 64.1% respectively. This
range of turnover rates implies effective treatment is
difficult in a compromised environment and is also
highly subjective based on an individual anti-malware
program’s capabilities.

The turnover rates can be used to measure the false
negative production since the rate is reflective of com-
petence which is based on detection and treatment
effectiveness. Given that a 100% turnover rate is
equivalent to competence in all 500 tested samples,
we measure false negative production for a given per-
mutation with a given C1...Cn by subtracting the
turnover rate from 100. For example, in Table 6, Ex-
periment 1, the turnover rate for permutation EAZ
with C1 = 97.4%, thus the false negative rate is
100 − 97.4 = 2.6%. For Experiment 1, in C1 there
were 4 permutations (ZEA, ZAE, KGB, KBG) with
no false negatives, the permutation EAZ produced
the highest false negative rate of 2.6%. As for C1∧C2,
there were 5 permutations (EAZ, EZA, AEZ, GKB,
BGK) with no false negatives and the lowest false
negative was permutation AZE with 28.6%. In Ex-
periment 2, for C1, the lowest false negative rate was
permutation BKG with 1.6% and the highest was
EZA with 53.2%. As for C1 ∧ C2, the lowest false
negative rate was permutation AEZ with 5.8% and
the highest false negative rate was EZA with 80%.
In both experiments, the false negative rates seem
relatively high, with 1.6% perhaps being tolerable,
while the other rates above 2% (more than 10 sam-
ples) are a clear sign that even in Experiment 1, where
the anti-malware programs seemingly have the upper
hand, false negatives can be higher than expected.

An interesting observation from the turnover rates
is the order of anti-malware programs may have an
impact on their detection capabilities. For example,
in Experiment 2, ZoneAlarms’s turnover rate varied
from 72.6% to 20% and in Experiment 1, Kasper-
sky’s rate varied from 100% to 85.7%. Other cases
produced turnover rates with less than 1% difference
for various sequence position. The fact that some
anti-malware programs have varying detection rates
when in a different sequence position may imply im-
proved performance can be achieved when various
anti-malware programs are used in specific sequence
and merits further investigation.

Experiment observations. From the results of Ex-
periments 1 and 2, we can observe the following:

1. Competence seems readily achievable with the
anti-malware program running before malware
is executed on the system.

2. Competence was mostly achieved with signa-
ture based detection upon invoking a mouse
over of the malware sample.

3. The combined detection power of multiple en-
gines increases competence though, as the re-
sults suggest, there are cases where even 3 en-
gines may not be enough to achieve competence
and completely eradicate malware from a sys-
tem.

4. An infected system seems to facilitate the in-
stability of an anti-malware program.

5. An anti-malware program installed in an in-
fected system may have a higher risk of false
negative production.

6. The tested anti-malware programs seem to lack
a self-defense mechanism possibly facilitating
malware to attack it resulting in compromise
when being installed or performing a scan in
an infected system.

7. Malware running in the system may block ac-
cess to resources required by an anti-malware
program causing a crash when attempting to
run.

An initial assessment at how many anti-
malware programs to deploy. The results suggest
having one anti-malware program installed on a sys-
tem may be considered competent in some but not
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all malware scenarios. How many anti-malware pro-
grams should be deployed on a system to provide ad-
equate protection from malware remains a non-trivial
question but we can forecast possible answers based
on our results. We assess the suitable number of anti-
malware programs for low, medium and high protec-
tion on a system.

Based on Experiment 1 results we can assess that
in general, at least 2 anti-malware programs should
be present for low protection, 3 for medium protec-
tion and possibly 4 or 5 for high protection. There
were many competent instances after scanning with
SDT(C1 ∧ C2) indicating 2 anti-malware programs
may provide minimal protection. Most of the anti-
malware program sequences were competent after
SDT(C1 ∧ C2 ∧ C3) thus three programs may pro-
vide medium protection since there were a few mal-
ware found which could infect further many other files
and processes. Forecasting high protection with 4
or 5 anti-malware programs may suffice for the min-
imal number of malware left from the first three.
Based on Experiment 2 results it is clear that 3 anti-
malware programs may not suffice for low protection.
In SDT(C1 ∧ C2 ∧ C3), none of the instances seem
to achieve competence and almost all reported high
DT amounts. Given these high infection amounts, a
suitable amount of anti-malware programs, such as
4, 5, or more, to provide even low protection may be
needed but currently would be too many and unreal-
istic for practical purposes.

Assuming that not all consumers follow due diligence
in keeping detection databases up to date and some
anti-malware programs do not run harmoniously to-
gether, making an effective deployment of an ade-
quate number of anti-malware programs to achieve
competence is a difficult task with no simple solution.
A better approach maybe one anti-malware program
using the detection techniques of several other anti-
malware programs to improve detection and treat-
ment effectiveness. Possibly for the foreseeable fu-
ture, users are seemingly left with inadequate protec-
tion choices resulting in a likely facilitation of mal-
ware infection.

Limitations.

1. We limited our permutation sets to 3 anti-
malware programs each which forcibly disallows
the verification of SDT for C3, thus leaving
our verified results to permutations of two anti-
malware programs.

2. Selecting malware samples from a small time

frame of upload dates may reduce diversity and
create unintended bias in testing.

In future testing, we will address the above item 1
by incorporating more computing power to run tests
and verify results with longer permutation sets. We
will address the above item 2 by populating our test
set with several samples from a broader time frame
to reduce any possible bias.

IV CONCLUSION AND FUTURE WORK

We reported our initial study on anti-malware pro-
gram competence to establish detection efficiency us-
ing multiple anti-malware programs. We introduced
the notion of an anti-malware program achieving
competence when it detects and cleans all malware
present on a system. We presented a general frame-
work and reported some initial results based on mul-
tiple runs of two experiments. In several results, a
single anti-malware program was not competent in
various malware scenarios, which reaffirms the widely
accepted belief that one anti-malware program is in-
sufficient for complete malware protection. Further-
more, when attempting to achieve competence in a
malware infected system with multiple anti-malware
programs running, malware was still detected. Based
on experiment results, we forecast that employing a
minimum of 5 anti-malware programs on a system
may be required to achieve competence in a broad
and diverse range of malware scenarios, which may
prove too many and unrealistic for practical use. A
possible remedy is to use one anti-malware program
that employs the detection techniques of several anti-
malware programs, although achieving this may be
impractical given the nature of open market compet-
itiveness. Our future work includes extensive experi-
ments with several malware samples to create longer
permutations of multiple anti-malware programs. We
will also craft new experiments of detection and dis-
infection of malware under a diverse set of realistic
end user scenarios.
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