

**Institute for Cyber Security** 



#### ACON: Activity-Centric Access Control for Social Computing

Aug. 25, 2011 International Conference on Availability, Reliability and Security

> Jaehong Park, Ravi Sandhu, Yuan Cheng Institute for Cyber Security University of Texas at San Antonio

# **Social Computing**

- Characteristics
  - Social computing systems (SCS) provide services to promote information sharing by utilizing user activity information and shared contents
    - Best seller, friends recommendation, friend activity notification, location-based service
  - Both user and SCS provide/access information to be shared
  - A user wants to control other user's or SCS's activities against shared information or users related to her
  - User wants to protect their privacy
  - Both resource and user as a target of activity
    - Alice pokes bob, a buyer rates sellers
  - A user's activity influences access control decisions
    - Rating based popularity





# Activities in SCS

- No traditional access control can cover all the controls necessary for SCS
- Activity as a key concept for access control
- Why Activity-centric?
  - Multiple kinds of activities (in addition to user's general usage activity against resource) that have to be controlled.
    - User's usage/control activity on user/resource, SCS's service/control activities
  - A user's usage/control activity influences SCS's control decision on own and other users' activities as well as SCS activities.
    - Once Alice invites Bob as a friend, Bob is allowed to see Alice's information
    - If Alice is a friend of Bob and Bob become a friend of Chris, 1) if Chris allows friends of friends to his contents, Alice can access Chris's contents; 2) SCS can recommend Chris and Alice as a friend
    - Buyers' ratings on a seller may collectively used to control the seller's sale activity.





## Activity Taxonomy in SCS







# User's Usage Activities

- Usage Activity on Resources
  - Read/view shared comments/photos
  - Typical Focus of Access Control
- Usage Activity on Users
  - Poke, recommend friends





# User's Control Activities

#### • Control Activity on Resources

- By changing attributes and policies of resources
- set a resource as a violent content (attribute), accessible only by direct friends (policy)
- Parents can set attributes and policies of children's resources
- Focus of Discretionary Access Control

#### • Control Activity on Users

- By changing user attributes and policies
- To control activity performed by/against a particular user (self or other related users) without knowing a particular resource
- Control Activity on Sessions
  - By controlling session attributes and policies that are inherited from a user





# SCS's (Automated) Activities

- Service Activities
  - To promote users' social interactions and information sharing
  - Friends recommendation, friend activity notification, locationbased coupons, most-viewed videos
- Control Activities
  - Through managing policies and attributes of users, resources and sessions
  - User rating-based seller trustworthiness or product popularity
- Decision Activities
  - SCS evaluates requests for user's usage and control activities as well as SCS's service and control activities





Activity(-centric Access) Control Framework

- To capture various users and SCS activities and their influences on control decisions
- To support controls on various access/usage and control activities in SCS
- To support personalized user privacy control
- To support automated management of SCS services and controls





#### **ACON Framework**



# **ACON Framework Components**

- Users
  - represent a human being who performs activities in an SCS
  - Carry attributes and policies
- Sessions
  - Represent an active user who has logged into the SCS
  - A user can have multiple sessions, but not vise versa
  - Carry attributes and policies that could be different from user attributes and policies





## ACON Framework Components (cont)

- Activities
  - User, SCS, SCS administrator's activities
  - Comprise action, target users, target resources
    - Action
      - An abstract function available in SCS
      - E.g., read, rate, poke, friend-invite, activity notification
    - Target users(' sessions)
      - Recipients of an action
    - Target Resources
      - Include users'/SCS's shared contents, user/resource/session policies and attributes





## ACON Framework Components (cont)

- SCS's Decision Activity
  - based on the consolidated individual user/resource policies and attributes together w/ SCS policies and attributes
- SCS's Activity Module (SAM)
  - A conceptual abstraction of functions that performs
    SCS's automated service and control activities
- SCS Administrators
  - Human being w/ a management role





# **ACON Framework Characteristics**

- Policy Individualization
  - A user's individual policy includes privacy preferences and activity limits
  - Collectively used by SCS for control decision on activities
  - Can be configured by related users
- Separation of user and resource policies
  - User policy allows controls on 1) user activities w/o knowing a particular resource and 2) activities performed against the user w/o knowing a particular resource or the actors
  - E.g., 1) Bart cannot be a friend of Homer's coworker, 2) Homer doesn't want to receive violent contents
- User-session distinction
- User relationship independent access control
- SCS's automated service and control activities





## ACON<sub>user</sub> Model – User Activity Control

- U, S, ACT, R, T, P, SCS and D (users, sessions, actions, resources, attributes, policies, social computing system and decision predicate, respectively);
- U<sub>T</sub> ⊆ U and R<sub>T</sub> ⊆ R (target users and target resources, respectively);
- dot notation: we understand *e.T* and *e.P* to respectively denote the set of attributes and set of policies associated with entity *e*;
- A, the set of activities is defined as A ⊆ACT × (2<sup>R<sub>T</sub></sup> × 2<sup>U<sub>T</sub></sup> ∅);
- Let  $A = \{a_1, a_2, ..., a_n\}$ , we denote the components of each individual element as  $a_i = (a_i ACT, a_i R_T, a_i U_T)$ ;





#### ACON<sub>user</sub> Model – User Activity Control

- $AP\_R_T: A \rightarrow 2^{R_T \times P}, AP\_U_T: A \rightarrow 2^{U_T \times P}, AT\_R_T: A \rightarrow 2^{R_T \times T}, AT\_U_T$ : $A \rightarrow 2^{U_T \times T}$ , mappings of activity to a set of target resources and policies, a set of target users and policies, a set of target resources and attributes, and a set of target users and attributes respectively defined as:
  - $AP_R_T(\{a_1,..,a_n\}) = AP_R_T(\{a_1\}) \cup ... \cup AP_R_T(\{a_n\}), AP_R_T(\{a_i\}) = \{(r_t, p) | r_t \in a_i.R_p p \in r_t.P\}$
  - $AP_U_T(\{a_1, ..., a_n\}) = AP_U_T(\{a_1\}) \cup ... \cup AP_U_T(\{a_n\}), AP_U_T(\{a_i\}) = \{(u_t, p) \mid u_t \in a_i, U_p \in u_t, P\}$
  - $AT_R_T(\{a_1,..,a_n\}) = AT_R_T(\{a_1\}) \cup ... \cup AT_R_T(\{a_n\}), AT_R_T(\{a_i\}) = \{(r_t,t) \mid r_t \in a_i, R_p, t \in r_t, T\}$
  - $AT_U_T(\{a_1, ..., a_n\}) = AT_U_T(\{a_1\}) \cup ... \cup AT_U_T(\{a_n\}), AT_U_T(\{a_i\}) = \{(u_t, t) \mid u_t \in a_i. \cup_p t \in u_t. T\};$





#### ACON<sub>user</sub> Model – User Activity Control

- $AP(a)=AP_R_T(a)UAP_U_T(a)$ ,
- $AT(a)=AT_R_T(a) \cup AT_U_T(a);$
- $allowed(s,a) \Rightarrow D(s.P,s.T,a,AP(a), AT(a),scs.P,scs.T)$ , where  $s \in S$  and  $a \in A$ .





#### ACON<sub>user</sub> Model – Session Management

- user\_sessions :  $U \rightarrow 2^{S}$ , session\_users :  $S \rightarrow U$ ;
- user\_added\_sessionT:  $S \rightarrow 2^T$ , user\_removed\_sessionT:  $S \rightarrow 2^T$ ;
- $scs\_added\_sessionT: S \rightarrow 2^T$ ,  $scs\_removed\_sessionT: S \rightarrow 2^T$ ,  $scs\_required\_sessionT: S \rightarrow 2^T$ ;
- user\_added\_sessionP :  $S \rightarrow 2^{P}$ , user\_removed\_sessionP :  $S \rightarrow 2^{P}$ ;
- scs\_added\_sessionP :  $S \rightarrow 2^{P}$ , scs\_removed\_sessionP :  $S \rightarrow 2^{P}$ , scs\_required\_sessionT :  $S \rightarrow 2^{T}$ ;
- user\_removed\_sessionT(s) ⊆ {t ∈ T | t ∈ session users(s).T ∧ t ∉ scs\_required\_sessionT (s)};
- user\_removed\_sessionP(s) ⊆ {p ∈ P | p ∈ session users(s).P ∧ p ∉ scs required\_sessionP(s)};





#### ACON<sub>user</sub> Model – Session Management

- assignS\_T:  $S \rightarrow 2^{T}$ , assignS\_P:  $S \rightarrow 2^{P}$ , assignment of attributes and policies to sessions respectively;
- assignS\_T(s) ⊆ {t∈T | (t ∈ session\_users(s).T ) ∨ (t∈ user\_added\_sessionT(s)) ∨ (t ∈ scs\_added\_sessionT(s)) ∧ ¬((t∈ user\_removed\_sessionT(s)) ∨ (t∈ scs\_removed\_sessionT(s)))};
- assignS\_P(s) ⊆ {p∈P|(p ∈ session\_users(s).P)V(p∈ user\_added\_sessionP(s))V(p∈scs\_added\_sessionP(s))A¬((p∈ user\_removed\_sessionP(s))V(p∈scs\_removed\_sessionP(s)))}.





## Examples

- A buyer can rate a seller only if the buyer bought a product from the seller (SCS.P).
  - N: a list of users, sellerList :  $S \rightarrow 2^N$
  - allowed(s, rate,  $u_t$ )  $\Rightarrow u_t \in sellerList(s)$
- A user can recommend a friendship between two friends if they are not a friend to each other(SCS.P).
  - N: a list of users, friends :  $S \rightarrow 2^{N}$
  - allowed(s, f-recommend,  $u_t 1$ ,  $u_t 2$ )  $\Rightarrow$ ({ $u_t 1$ ,  $u_t 2$ }  $\in$  friends(s))/( $u_t 2 \notin$  friends( $u_t 1$ ))/

 $(u_t 1 \notin friends(u_t 2))$ 





## Summary

- Developed activity-centric access control framework for security and privacy in social computing systems.
- Developed initial models for user activity controls and session management.



