
ABAC with Group Attributes and Attribute Hierarchies
Utilizing the Policy Machine

Smriti Bhatt
Institute for Cyber Security
Dept. of Computer Science

Univ. of Texas at San Antonio
San Antonio, TX 78249

Smriti.Bhatt@my.utsa.edu

Farhan Patwa
Institute for Cyber Security
Dept. of Computer Science

Univ. of Texas at San Antonio
San Antonio, TX 78249

Farhan.Patwa@utsa.edu

Ravi Sandhu
Institute for Cyber Security
Dept. of Computer Science

Univ. of Texas at San Antonio
San Antonio, TX 78249

Ravi.Sandhu@utsa.edu

ABSTRACT
Attribute-Based Access Control (ABAC) has received sig-
nificant attention in recent years, although the concept has
been around for over two decades now. Many ABAC models,
with different variations, have been proposed and formal-
ized. Besides basic ABAC models, there are models designed
with additional capabilities such as group attributes, group
and attribute hierarchies and so on. Hierarchical relation-
ship among groups and attributes enhances access control
flexibility and facilitates attribute management and admin-
istration. However, implementation and demonstration of
ABAC models in real-world applications is still lacking. In
this paper, we present a restricted HGABAC (rHGABAC)
model with user and object groups and group hierarchy.
We then introduce attribute hierarchies in this model. We
also present an authorization architecture for implement-
ing rHGABAC utilizing the NIST Policy Machine (PM).
PM allows to define attribute-based access control policies,
however, the attributes in PM are different in nature than
attributes in typical ABAC models as name-value pairs.
We identify a policy configuration mechanism for our pro-
posed model employing PM capabilities, and demonstrate
use cases and their configuration and implementation in PM
using our authorization architecture.

Keywords
Attribute-Based Access Control; Group Attributes; Group
Hierarchy; Attribute Hierarchy; Policy Machine;

1. INTRODUCTION
Attribute-Based Access Control (ABAC) [1, 2] has been

around for over two decades. Numerous ABAC models [3–
10] have been proposed. Despite the existence of these dif-
ferent ABAC models, there is no consensus on a specific
standard ABAC model. However, a well-accepted simplest
form of attribute-based access control includes users, user at-
tributes, objects, object attributes, actions, and permissions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ABAC’17, March 24 2017, Scottsdale, AZ, USA
c© 2017 ACM. ISBN 978-1-4503-4910-9/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3041048.3041053

or operations allowed for users on specific objects, based
on attributes of users and objects. This typical foundation
provides great freedom to researchers to incrementally en-
hance this basic ABAC architecture based on customized
needs and requirements in different scenarios. Any addi-
tional component that uses or is compatible with the basic
ABAC components can be incorporated with them in order
to get a more powerful and flexible ABAC model.

The move towards ABAC models is mainly inspired by
limitations of traditional access control models. Three most
significant and widely adopted access control models are
Discretionary Access Control (DAC) [11], Mandatory Ac-
cess Control (MAC) [11], and Role-Based Access Control
(RBAC) [12–14]. Among these, RBAC has been the most
successful since its introduction in early 1990s. RBAC is
policy neutral and is capable of expressing DAC and MAC.
However, role-based access control has its own set of lim-
itations such as role explosion and role-permission explo-
sion [15]. It is also restrictive in nature since accesses are
based only on roles and it is difficult to include other char-
acteristics of users, and contextual or environmental factors
(e.g. time, location, etc.) in access control policies.

On the other hand, attribute-based access control policies
can easily incorporate these factors with environmental and
contextual attributes [3, 4], as well as define access control
policies based on different characteristics of users and ob-
jects, besides roles. Although ABAC research has received
significant attention in academia, it is not so common to find
implementations of these models in the industry. There are
a few existing tools such as XAMCL [16] and Policy Ma-
chine (PM) [17–19] that are capable of expressing different
types of attribute-based access control policies. However,
wide adoption of these tools remains a challenge.

In this paper, we present a restricted HGABAC [4] model
known as rHGABAC including user and object groups, group
attributes, and group hierarchy. We then introduce attribute
hierarchies [5,20] to rHGABAC model. Unlike most ABAC
models formalized as logical-formula authorization policy
(LAP) [21], we formalize rHGABAC as a single-value enu-
merated policy. In a single-value enumerated policy, a policy
tuple comprises of a single value of user attribute and a single
value of object attribute. Due to this property, rHGABAC
model is restricted in nature and is not capable of expressing
some kinds of policies which can be represented in HGABAC
or other types of enumerated policies. An example of policy
that can’t be expressed in rHGABAC is where a user who
is both a Manager and an Admin can access objects of type

Private. A different policy where a user who is a Manager
or an Admin can access objects of type Private can be easily
expressed in rHGABAC. In other words, rHGABAC cannot
express conjunctive policies.

PM is also a single-value enumerated authorization policy
which makes it a feasible choice for implementing rHGABAC
model. Although PM hasn’t been specifically designed for
group attributes and hierarchical relationships, we can real-
ize these features with its containment property. The con-
tainment property exists among PM attributes through its
assignment relation. It implies that if there exist any two
elements x and y such that x is assigned to (contained in) y
by one or more assignment relations, then x acquires or gets
all the properties and capabilities of y in addition to its own
directly conferred properties [18].

Previously, we have proposed a role-centric [22] ABAC ex-
tension for OpenStack [23] and enforced it in OpenStack us-
ing the PM and our authorization engine (AE) [10]. Whereas,
here instead of an application dependent AE, we present a
more general authorization architecture independent of ap-
plications using it. A hierarchical ABAC model with group
attributes, hierarchical relations, and set-valued attributes
allows to define more fine-grained access control policies and
also simplifies the management and administration of at-
tributes and policy. A use case incorporating both aspects
of rHGABAC model—group attributes and hierarchy, and
attribute hierarchy—is configured and implemented in the
PM using this authorization architecture. These added ca-
pabilities facilitate attribute assignment for users and ob-
jects thereby reducing administrative tasks.

The rest of the paper is organized as follows. Section 2
presents relevant background on group attributes and at-
tribute hierarchies, and the Policy Machine (PM). Section 3
presents rHGABAC model and an extended version of the
model with attribute hierarchies, along with formal defini-
tions. Section 4 discusses the details of our implementation
and authorization architecture. In Section 5, we demon-
strate a use case and its configuration and implementation.
We evaluate policy decision time for different types of ac-
cess control policies in the PM and Authorization Engine in
Section 6, and finally conclude the paper in Section 7.

2. BACKGROUND
In this section, we briefly describe relevant background on

group attributes and attribute hierarchies and their signifi-
cance in access control. We also discuss the Policy Machine
(PM) and its architecture. Generally, any ABAC model
can be expressed based on logical-formula authorization pol-
icy (LAP) or enumerated authorization policy (EAP) [21].
However, most of the proposed ABAC models [3, 4, 7–9, 24,
25] in literature are based on LAP, with very few EAP-
ABAC models [5, 18,21,26].

A logical-formula based authorization policy comprises of
a boolean expression or a number of sub-expressions con-
nected using logical operators such as and(∧), or(∨), etc.
These expressions consist of user and object attribute val-
ues or constants, specified in an authorization policy, which
are matched with actual attribute values of a requesting
user and a requested object for an access request and re-
turns either true (access granted) or false (access denied).
One of the possible problems in this method of policy spec-
ification is policy update and policy review. It would be
a NP-complete or even undecidable problem if policies are

specified respectively in propositional logic and first-order
logic. Whereas, the other method of defining ABAC poli-
cies by enumeration uses simple structure which makes pol-
icy update and review a polynomial time problem [5] (at the
cost of exponential increase in size). In an enumerated au-
thorization policy, a policy is a set of policy tuples defined
for a specific operation (read, write, etc.) which includes
a user attribute value and an object attribute value. An
example tuple, for read operation, is informally defined as
Policyread = (Manager, Private). It implies that a user
with title as Manager can read any object of type Private.
Here, title is a user attribute and type is an object attribute.

Examples of above discussed methods of specifying ABAC
policies in industry standards are XACML (an OASIS stan-
dard and a LAP) and NGAC (Next Generation Access Con-
trol) [27] (a NIST standard and an EAP). PM has been the
foundation for the NIST NGAC standard. Both standards
have similar goals and objectives and are inherently capable
of expressing and defining different types of ABAC policies
in different environments. While XACML is a well estab-
lished standard and has also been realized in some of the
real-world ABAC systems [28], NGAC remains to be studied
in detail with different types of ABAC models for its adop-
tion in real-world applications. A comparison of these two
standards based on five criteria—(i) separation of access con-
trol functionality from proprietary operating environments,
(ii) operational efficiency, (iii) attribute and policy man-
agement, (iv) scope and type of policy support, and (v)
support for administrative review and resource discovery—
along with their basics is presented and discussed in [27,29].

NGAC, or generally PM, provides almost complete ac-
cess control functionality with its own policy administration
point (PAP), policy decision point (PDP), and policy en-
forcement point (PEP), whereas XACML doesn’t provide a
PEP and is in turn dependent on the operating environment.
A PM deployment could also include a different PEP acces-
sible through an application programming interface (API)
which is capable of recognizing operating-environment spe-
cific operations. We utilize this form of architecture where
PEP is application dependent, hence these applications be-
come PM-agnostic and need not be aware of PM relations
and routines.

While NGAC provides better support for attribute and
policy management, administrative review and resource dis-
covery, XACML is capable of expressing complex and rich
set of access control rules including negative and integer at-
tribute values which is difficult to represent in NGAC with-
out using prohibition and obligation relations [18,27,29].

2.1 Group Attributes and Hierarchies
Groups are collection of entities such as users and objects.

Group attributes are attributes assigned to groups of users
and objects. These groups based on their nature (user or
object) get relevant attributes assigned to them which rep-
resents the group characteristics. This is especially benefi-
cial when there exist many users in a system having com-
mon characteristics. Therefore, instead of assigning same
attribute values to each user, we can group the users into
specific groups and assign appropriate attributes and their
values to these groups. Similar, is the case for objects where
objects having same properties and characteristics can be
grouped into one object group. In addition to directly as-
signed attribute-value pairs, these groups also have hierar-

Figure 1: An Example of User Group Hierarchy Adapted
from [30]

chy among them which results in attribute inheritance. A
group hierarchy is a partial order relation written as �g
where senior groups acquire all attribute values assigned to
the groups junior to them, along with their own directly
assigned attribute values.

A simple user group hierarchy example is shown in Fig-
ure 1. There are three groups Computer Science Group,
Graduate Group and Undergraduate Group. Among these
graduate and undergraduate are senior groups and are repre-
sented higher up whereas computer science is a junior group
and is one level below the senior groups. An attribute and
its values are written as att name : {V al1, V al2, ..., V aln}.
A directly assigned attribute-value is shown in bold font
and an inherited attribute-value is shown as italicized in
normal font. In this example the senior groups, Gradu-
ate Group and Undergraduate Group, inherit attribute de-
partment and its value CS from junior group Computer Sci-
ence Group, and also have directly assigned attributes skills
and stud Type.

Servos and Osborn [4] introduced group attributes and
hierarchies in ABAC and presented a formal hierarchical
group and attribute-based access control model, known as
HGABAC. The main advantage of this model is that it
facilitates the administrative tasks of assigning attributes
and values to user and object groups rather than assignning
them to each user or object. An administrative model for
HGABAC has been developed by Gupta and Sandhu [30].
Note that HGABAC requires attributes to be set-valued so
inheritance can be seamlessly achieved. Atomic-valued at-
tributes, which can have only one value, would require some
kind of conflict resolution in the presence of inheritance.
Therefore, in this paper we follow the HGABAC approach.

2.2 Attribute Hierarchies
The concept of attribute hierarchy has been explored in

literature in context of attribute-based encryption by Li et
al [20]. They presented a hierarchical attribute-based en-
cryption (HABE) mechanism where attributes can be clas-
sified in a tree structure based on their access control re-
lationship in a system. An abstract idea of the encryption
mechanism is that attributes being the nodes in a hierar-
chical tree, an ancestral node can derive its descendant’s
key, but converse is not allowed. However, our concept of
attribute hierarchy in ABAC considers hierarchy among at-
tribute values rather than attributes themselves. A similar
concept has been introduced in [5] by Biswas et al where an
ABAC model (LaBACH), with one user attribute and one

Figure 2: An Example of Attribute Hierarchy

object attribute, have hierarchical relationship among at-
tribute values. The hierarchical relationship can be written
as �att and implies if a senior attribute value is assigned
to a user or an object then all the junior attribute values
are automatically acquired by that user or object through
attribute-value inheritance.

An example of attribute hierarchy is shown in Figure 2.
User attribute hierarchy is depicted in Figure 2 (a) where C
and C++ belongs to the range of a user attribute namedskills.
There is a partial order relation between C and C++, repre-
sented as C �skills C++ which implies that value C is senior
to C++. Therefore, if a user attribute value C is assigned to
a user then it also acquires user attribute value C + + and
all its associated access privileges through attribute-value
inheritance. Similarly in Figure 2 (b), an object attribute
hierarchy is shown where type is an object attribute and
there is a hierarchical relation between two of its values De-
ploy and Dev represented as Deploy �type Dev. It implies
that if an object is assigned object attribute value Deploy of
object attribute type, then that object automatically gets its
junior attribute value, Dev, assigned to it. The hierarchy
also implies that the objects assigned to senior object at-
tribute value, say Deploy, gets associated with access rights
imposed on this attribute value as well as access rights im-
posed on all of its junior object attribute values such as
Dev here. Thus, attribute hierarchy facilitates policy man-
agement and attribute management. It also simplifies ad-
ministrative task of assigning attributes and their values to
users and objects, and specifying access control policies in
an ABAC model.

2.3 Policy Machine
Policy Machine (PM) [18, 19] is an access control frame-

work where access control mechanisms are redefined in terms
of a standardized and generic set of relations and functions.
Its main objective is to provide a general and unified frame-
work to support different types of attribute-based policies or
policy combinations through a single mechanism requiring
changes only in its data configuration points. Overall, PM
has eight core elements: users, objects, user attributes, ob-
ject attributes, operations, processes, access rights and pol-
icy classes. The policy classes, user attributes and object
attributes are containers for policies, users and objects re-
spectively. In addition to core elements, it has four types
of relations: assignment, association, prohibition and obli-
gation, and two sets of functions: access control decisions
and policy enforcement. The policies in the PM can be con-
figured in its Administration Tool, via a fixed set of admin-
istrative relations for defining wide range of access control

Figure 3: Architectural Components of the PM Adapted
from [18]

policies and their combinations. PM functions helps in mak-
ing access control decisions, and enforcing these decisions.

PM’s standard architecture comprises one or more PM
servers, one or more PM clients, a PM database, and one or
more resource servers. The architectural components of the
PM are shown in Figure 3. PM server includes a policy deci-
sion point (PDP), a policy administration point (PAP) and
an event processing point (EPP). PM clients comprise of a
policy enforcement point (PEP) and PM aware applications
through which users requests access to protected resources.
For a general application to be PM compliant, the appli-
cation needs to be modified to incorporate and be able to
communicate to the PEP in the PM which talks to the PDP
for access control decisions. A PDP determines whether an
access request made by PEP should be granted or denied as
per the policy defined in PAP. All the information regarding
access control data and relations is stored in a PM database,
a policy information point (PIP).

In PM version 1.5, Active Directory (AD) has been used as
the PM database where all the information about user, user
attributes, object attributes, references to objects, access
control relations and policies are stored. EPP module, in the
PM server, is triggered only if any event occurs as specified
in the obligation relation. We do not consider obligation and
prohibition relations in this paper. After getting the access
control decision from PDP, PEP enforces the decision on
the applications using a resource access point (RAP) to get
the actual location of the resources in order to perform a
requested operation [18].

Here, we utilize a minimized version of the PM, with
only two types of relations: assignment—for specifying poli-
cies, users, user attributes, user groups, objects, object at-
tributes, object groups, and hierarchical relationships among
them, and association— for making association between user
attributes and object attributes or objects through opera-
tions defined in the PM. Association are the relations used
for defining policies in the PM. PM also allows use of multi-
ple policy classes in order to express multi-attributes access
control policies or conjunctive policies. Expressing such poli-

cies require combination of multiple policy classes with same
objects and users which would increase the administrative
overhead. Therefore, in context of this paper, we utilize a
minimized version of the PM with a single policy class to
specify and enforce different types of access control policies.
Using this minimized version of PM enables us to simplify
the policy administration, policy update, and policy review.

From an architectural perspective, we basically include
PM server (excluding EPP) and a PM database (Active
Directory). Applications encapsulates the PEP, RAP, re-
sources and resource repositories. The details of applications
and how they implement these components are outside the
scope of this paper.

3. A RESTRICTED HGABAC MODEL
Servos and Osborn [4] proposed a hierarchical ABAC model

known as hierarchical group and attribute-based access con-
trol (HGABAC) model. In addition to basic ABAC com-
ponents, this model includes user and object groups and
introduces attribute inheritance through hierarchy among
these groups. It also includes environment, connection, and
administrative attributes in access control policies. A group-
based hierarchical assignment of user and object attributes
is a novel part of this model.

As discussed earlier, HGABAC is a logical-formula based
authorization policy model. However, here we present a re-
stricted HGABAC model, named rHGABAC, and formalize
this model as a single-value enumerated authorization pol-
icy. The main motivation behind this model is to include
features such as groups, groups attributes, hierarchies in an
ABAC model and show its implementation as enumerated
policy utilizing an enumerated policy tool, the PM. In pro-
cess of developing an administrative model for HGABAC,
named GURAG, Gupta and Sandhu presented a conceptual
model of HGABAC with an alternate formalization for it
based on ABACα [30]. Our rHGABAC model has been
adapted from their model, however, formalized as a single-
value enumerated authorization policy. The model is shown
in Figure 4 with its formalization presented in Table 1.

The major components of this model are users, user groups,
user attributes, objects, object groups, object attributes, oper-
ations, policy, and authorization. There is hierarchical rela-
tionship (i.e., a partial order) among groups—user group hi-
erarchy (UGH) and object group hierarchy (OGH) through
which attribute inheritance is achieved. For simplicity we
have removed subjects from the model and thus consider
that users and subjects are equivalent. We have also modi-
fied the operations (OP) component of the conceptual model
with policy—a collection of policies defined for each opera-
tion in OP. In context of this paper, we ignore all the as-
signment relations from the conceptual model of HGABAC,
since we focus only on the operational model rather than
the administrative part of the model.

Users (U) is a set of individuals or automated entities (a
system or a process) which make requests to access objects,
where objects (O) is a set of resources such as files, directo-
ries, applications, etc. Users and objects are associated with
specific set of attributes (Att) respectively. These attributes
reflects the properties and characteristics of users and ob-
jects. Each attribute is a function that takes an entity—a
user, an object, a user group, or an object group, and re-
turns one or more values from its range. The range of an
attribute consists of a finite set of atomic values.

Figure 4: rHGABAC Model Adapted from [4], [30]

Table 1: rHGABAC Model with single-value EAP

I. Core Components
- U, O and OP are finite sets of users, objects, and operations respectively
- UG and OG are finite set of user and object groups respectively
- UAtt and OAtt are finite set of user attributes and object attributes functions respectively
- For each att in UAtt ∪OAtt, Range(att) is a finite set of atomic values, where Range(atti) ∩Range(attj) = φ for i 6= j

- For each uatt in UAtt, uatt : U ∪UG→ 2Range(uatt), mapping each user and user group to a set of values in
Range(uatt)

- For each oatt in OAtt, oatt : O ∪OG→ 2Range(oatt), mapping each object and object group to a set of values in
Range(oatt)
- directUg : U → 2UG, mapping each user to a set of user groups
- directOg : O → 2OG, mapping each object to a set of object groups
- UGH ⊆ UG×UG, a partial order relation �ug on UG
- OGH ⊆ OG×OG, a partial order relation �og on OG
II. Derived Components (Effective Attributes)
- For each uatt in UAtt,

i) effectiveUGuatt : UG→ 2Range(uatt), defined as
effectiveUGuatt(ugi) = uatt(ugi) ∪ (

⋃
∀g∈{ugj |ugi�ugugj} effectiveUGuatt(g))

ii) effectiveuatt : U → 2Range(uatt), defined as
effectiveuatt(u) = uatt(u) ∪ (

⋃
∀g∈directUg(u) effectiveUGuatt(g))

- For each oatt in OAtt,

i) effectiveOGoatt : OG→ 2Range(oatt), defined as
effectiveOGoatt(ogi) = oatt(ogi) ∪ (

⋃
∀g∈{ogj |ogi�ogogj} effectiveOGoatt(g))

ii) effectiveoatt : O → 2Range(oatt), defined as
effectiveoatt(o) = oatt(o) ∪ (

⋃
∀g∈directOg(o) effectiveOGoatt(g))

III. Policy Components
- Policyop ⊆ {(uai, oaj)|uai ∈ Range(uattk), oaj ∈ Range(oattl)}, for uattk ∈ UAtt, oattl ∈ OAtt, and op ∈ OP
- Policy = {Policyop|op ∈ OP}
IV. Authorization Function
- is authorized(u : U, op : OP, o : O) = (∃vu ∈ effectiveuatti(u)|uatti ∈ UAtt) and (∃vo ∈ effectiveoattj (o)|oattj ∈ OAtt),

[(vu, vo) ∈ Policyop]

Table 2: rHGABAC with Attribute Hierarchy (AH) as single-value EAP

I. Additional Core Components
- UAHi ⊆ Range(uatti)×Range(uatti), a partial order relation �uatti on Range(uatti)|uatti ∈ UAtt
- OAHj ⊆ Range(oattj)×Range(oattj), a partial order relation �oattj on Range(oattj)|oattj ∈ OAtt
II. Modified Authorization Function
- is authorized(u : U, op : OP, o : O) = (∃vu ∈ effectiveuatti(u)|uatti ∈ UAtt) and (∃vo ∈ effectiveoattj (o)|oattj ∈ OAtt),

and (∃vu �uatti vu′) and (∃vo �oattj vo′),[(vu′, vo′) ∈ Policyop]

Figure 5: rHGABAC Model with Attribute Hierarchy

There are two types of attributes—atomic valued where
only one value can be assigned to a attribute from its range,
and set valued where a subset of values is assigned from the
range of an attribute. All the attributes are set valued in this
model. User attributes (UAtt) is a set of user attributes for
users and user groups. Similarly, object attributes (OAtt)
is a set of object attributes for object and object groups.
Operations (OP) is a set of access rights such as read, write,
etc. that can be performed on objects by users.

The set of user groups is UG and the set of object groups
is OG. These groups have a many to many hierarchical re-
lationship (a partial order relation �g) among them, rep-
resented as UGH and OGH respectively. Thus, any senior
group inherits all the attributes and values from the groups
junior to it. For example, g1 � g2 implies that g1 is senior
and inherits all the attributes and values assigned to junior
group g2, in addition to its own directly assigned attributes
and values. Users and objects can be assigned to zero or
more user groups and object groups respectively. The func-
tion directUg takes a user and returns the set of user groups
to which the user has been assigned, and directOg takes an
object and returns the set of object groups to which the ob-
ject belongs. A user assigned to a user group gets all the
attributes and values assigned to the group as well as in-
herited attributes and their values from junior groups. The
effective attribute values of a user group ug is defined as
effectiveUGuatt(ug) and comprises of directly assigned at-
tribute values to the user group uatt(ug) and inherited at-
tribute values from all the groups junior to it, i.e. effec-
tive attribute values of all the groups which are junior to
ug. Hence, effective attribute values of a user u, defined
as effectiveuatt(u), consists of attribute values directly as-
signed to the user uatt(u) and effective attribute values of
all the groups directly assigned to the user. Similarly, ef-
fective values of object and object group attributes can be
obtained [30]. These derived components and their formulas
are shown in section II of Table 1.

In section III of Table 1, Policy is set of policies where
each policy is defined for a specific operation and is repre-
sented as Policyread. A policy for a specific operation is
set of policy tuples defined for a single-value of user at-
tribute and a single-value of object attribute. The func-
tion, is authorized(u, op, o), authorizes a user u to perform

an operation op on object o, if there exists a policy tuple
in Policyread, which includes a user attribute value that be-
longs to the effective attribute values of user u and an object
attribute value that belongs to the effective attribute values
of object o.

3.1 Extending HGABAC with Attribute Hier-
archies

Now, we extend rHGABAC model by adding attribute
hierarchies as discussed earlier in Section 2. An attribute
hierarchy, represented as (�att), is a partial order relation
among attribute values, i.e., range of an attributeRange(att).
For example, if there exists a partial order relation vi �uatt
vj for a user attribute uatt in UAtt, then a user or a user
group having vi value assigned directly will also get vj value
through attribute-value hierarchy.

The HGABAC model extended with partial order hier-
archies among user attribute-values and object attribute-
values is shown in Figure 5. The addition of attribute hier-
archies requires modification of the authorization function.

The additional core components and modified authoriza-
tion function are defined in Table 2. The authorization func-
tion is modified as it considers the effective attribute values
of a user requesting access and a protected object through
direct or group assignment along with attribute hierarchies,
if any, among attribute-values of that user and object.

4. IMPLEMENTATION
In this section, we discuss the implementation details of

our authorization framework utilizing the PM. It allows to
configure and implement different types of enumerated and
logical-formula (with some restrictions) authorization poli-
cies. First we present a generalized authorization architec-
ture independent of any application or system, and second
we discuss how two variations of rHGABAC model can be
defined and implemented in the Policy Machine (PM).

The goal is to develop a general authorization framework
which can be readily used by any application or system sup-
porting RESTful service that are interested in implementing
attribute-based access control policies. The architecture in-
cludes a PM Server as policy administration point (PAP)
and policy decision point (PDP), and a PM Database used

Figure 6: Authorization Architecture Utilizing PM and AE

Figure 7: Example Authorization Request and Response

as policy information point (PIP) where all the access con-
trol data related to users, objects, their attributes, relations,
etc. is stored.

4.1 Authorization Architecture
A generalized authorization architecture is shown in Fig-

ure 6. As compare to Figure 3, our authorization framework
consists of a PM Server including PAP and PDP. Since we ig-
nored obligation and prohibition relations for now, the archi-
tecture does not include an EPP. The PM Client is our au-
thorization engine (AE), which actually communicates with
PM Server on one side and acts as a HTTP server for the
applications on the other. Therefore, it also can be thought
of as an interface between PM Server and applications. Ap-
plications do not need to be modified to make them PM
aware, and instead can readily use PM for their security
policy requirements. However, the applications need to sup-
port RESTful service to make HTTP requests to AE. These
applications are responsible for policy enforcement once the
authorization decisions are made by the PM. The PEP in the
application would enforce the decisions on specific resources
residing in the resource repository of these applications. In
this architecture, we assume both PM and applications use
the same identity management system such as Active Di-
rectory (AD) here, to store information about users, user
groups, their attributes, etc.

Applications act as a PEP and are responsible for enforc-
ing the authorization decisions returned by PM through AE.
They manage their objects and resources themselves includ-
ing PAP and resources repository components as shown in
PM architecture. PM Server stores references to these ob-
jects in the PM database and policies are defined based on

these objects and their attributes. When a user requests ac-
cess to resources in an application, the application issues a
HTTP request to AE for evaluating the policy and gets the
authorization decision from PM. The HTTP request would
originate from a machine where the application is hosted.

An authorization request comprises of a user requesting
access, an operation (e.g. read, write, execute), and the
requested object. The request is implemented as a HTTP
GET. An example of the authorization request and its re-
sponse is shown in Figure 7. The request includes the au-
thorization data in JSON format and gets a HTTP response
with authorization decision returned in JSON format as well.

4.2 Policy Configuration and Setup
Policy Machine (PM) provides a powerful and near com-

plete access control framework with PDP, PAP, PIP, and
PEP components included in one tool. Existing access con-
trol models such as DAC, MAC, and RBAC can be config-
ured and implemented in PM [18,19]. PMmini, a bare min-
imimum version of PM with all the core elements and only
two PM relations—assignment, and association—has been
shown to be capable of representing attribute-based access
control policies such as LaBACH [5]. In LaBACH model,
there is only one user and one object attribute and this sce-
nario maps exactly with PM’s inherent way of configuring
access control policies.

The attributes in PM are containers for users and objects,
whereas the attributes in ABAC policies are attribute-value
pairs and the values of these attributes are used in policy
specification which determines allowed accesses for a user on
an object. Using rich set of PM’s capabilities and freedom to
express access control policies in different ways, we identified
an intuitive way of configuring attribute-based access control
policies in the PM.

PM uses its user attributes and object attributes in policy
definitions. Different aspects of rHGABAC model have to
be mapped within this territory to configure and implement
it in the PM. Therefore, we represent user groups, user at-
tributes, and user attribute-values of rHGABAC model as
PM’s user attributes and object groups, object attributes,
and object attribute-values as PM’s object attributes. To
incorporate values and hierarchical relations, we use assign-

Figure 8: User and Object Groups with Associated Attributes

ment relation of the PM, taking advantage of the contain-
ment property of the attributes in PM. The policies for each
operation are defined using association relation as defined
for PMmini [5]. We present use cases in following section to
provide a better understanding of this mechanism.

5. USE CASES
In this section we discuss two variations of a use case, one

with groups and group hierarchy, and the other with addi-
tional attribute-value hierarchies which is a modified version
of the former. We believe our use cases closely resembles a
real enterprise scenario and are capable of representing dif-
ferent features of our rHGABAC model. We have config-
ured and implemented these use cases in the PM using our
authorization architecture.

Enumerated and logical-formula policies are, in general,
equally expressive. However, it is difficult to include neg-
ative attribute values in PM, such as not a Manager in a
policy. For example defining a policy such as—a user with
title IT Manager and not with a title CTO is allowed to read
objects with type Networking—is a complicated task in PM
and requires use of prohibition relations, constraints, and
combination of policies. However, a restricted HGABAC
policy can be easily defined in PM using core elements and
assignment and association relations.

5.1 Group Attribute and Group Hierarchy
This use case includes user groups, object groups, and

hierarchy among groups besides other ABAC components.
A set of user groups, their attributes and hierarchy among
these groups is shown in Figure 8(a). Similarly, a set ob-
jects groups, their attributes and hierarchy among object
groups is shown in Figure 8(b). There are four user groups
DevOps, IT, Development and Deployment where there is
group hierarchy among DevOps, Development and Deploy-
ment. Development and Deployment are senior to DevOps
and inherit attributes and their values from it such as depart
and its value. They also have their own directly assigned at-
tribute, skills, with specific values. IT group does not have
hierarchical relationship to any other group and has only
one directly assigned attribute, depart, with value IT.

A similar object group hierarchy is shown in Figure 8(b)
between four object groups, Projects, Networking Project,
Dev Project and Depl Project. Projects is junior to all the
other groups and has one object attribute type with one
value General assigned to it. The senior groups inherits
this object attribute and its value along with other values

directly assigned to them. For example, Networking Project
inherits object attribute type and its value General, and also
has another value assigned to it as Networking. Thus, the
effective attribute values of Networking Project for attribute
type is a set of all the values, directly assigned and inherited
through the hierarchy, written as {General, Networking}.

In addition to two user attributes, namely depart and
skills, there is one more user attribute, title, with range
{CTO, IT Manager, DevOps Manager}. We consider this
user attribute to be directly assigned to the users since titles
are individually assigned to user rather than being assigned
to a group of users. There is only one object attribute, type
assigned to the object groups. Any object in an object group
automatically gets all the attributes and its values assigned
to it through that group. Similarly, users gets user attributes
and values assigned directly or through user groups.

A graph similar to a PM graph [18] is shown in Figure
9 for this use case. A policy named GHP (Group Hierar-
chy Policy) is shown at level 0, user attributes and object
attributes are shown at level 1. User attributes, their val-
ues, and user groups are on the left-hand side of the policy
and object attributes, their values, and object groups on
the right-hand side of the policy. User and object attribute
values are placed at level 2 and theses entities are assigned
to each other using assignment relation. Assignments in
the graph are represented as directed edge, for example x
ASSIGN y is represented as a directed edge from x to y.

User and Object groups are present at level 3 in this use
case. If there is hierarchy among groups then senior groups
are shown one level above their junior groups, with consec-
utive increments in level for each level of hierarchy among
groups. DevOps Group is a junior group and is shown one
level below the senior groups, Dev Group and Depl Group.
The same applies on the object side where Projects Group
is shown one level below other senior object groups. The hi-
erarchical relations among groups are achieved through the
containment property of PM attributes.

User and objects are the leaves of the graph and could
appear at any level in the graph based on their assignment
to user groups, user attribute values and object groups, ob-
ject attribute values respectively. A policy in the PM is de-
fined using associations which comprise of a user attribute
value, an operation and an object attribute value written
as (uai, op, oaj). To keep the graph simple in Figure 9, we
show only one association between IT Manager (a user at-
tribute value for title) and Networking (an object attribute
value for type) labeled as read using a dashed line. This
association allows user IT1 to read obj Net1. Therefore, all

Figure 9: Group Hierarchy Policy Graph (Based on PM Graph Structure)

Table 3: Policy for Read Operation with Group Hierarchy

Policyread
User Attribute Values Object Attribute Values
IT Manager Networking
IT Networking
DevOps Manager Dev
Java Dev
DevOps Manager Deploy
Java Deploy
C Deploy
C++ Deploy
CTO General

the users having title IT Manager can read all the objects
of type Networking.

In this use case, we define an access control policy for read
operation. Policies are defined based only on user attribute
values and object attribute values. For each policy tuple in
Policyread, only a single value of user attribute and a single
value of object attribute is allowed to be used in a single-
value EAP. A policy for read operation, based on Figure 9,
is specified as follows.

i. A user who is an IT Manager or works in the IT de-
partment can read objects of type Networking.

ii. A user who is a DevOps Manager or has Java skill can
read objects of type Dev.

iii. A user who is a DevOps Manager or has Java or C or
C++ skill can read objects of type Deploy.

iv. A user who is a CTO can read objects of type General.

The fourth policy statement incorporates powerful policy,
where a CTO can actually read all the objects in the above
scenario due to the attribute inheritance achieved through
object group hierarchy. All the groups have type General
assigned to them through object group hierarchy and at-
tribute inheritance, thus any object assigned to any one of
these groups can be read by CTO. Therefore, many implied
policies can be derived via one policy tuple.

Figure 10: Sample Authorization Request and Response

A set of policy tuples for Policyread as per above specifi-
cations is presented in Table 3. Each row of the table rep-
resents an association defined in the PM. An authorization
request involving user user IT2, operation read and object
obj Net1, along with its response is shown in Figure 10. This
request is granted based on second row of Table 3.

The importance and benefits of group attributes and hier-
archy can be realized when there are numerous users and ob-
jects in the system and attributes need to be assigned to each
one of them. In this use case, for simplicity, we presented a
limited number of users and objects, however in a real-world
scenario there are hundreds, thousands, or even millions of
users and objects. In such a scenario, rHGABAC could
be an effective solution for access control requirements with
better policy administration and attribute management.

5.2 Attribute Hierarchies
In enumerated policies, an inherent problem is the ex-

ponential size of a complex policy and its associated space
requirements. The number of policy tuples in a policy, for
an operation, would increase exponentially with large ranges
of user attributes and object attributes. A policy consists of
policies defined for different operations (read, write, execute,
etc.) in a system which further worsens the problem. An
interesting solution to this problem could be to realize hi-
erarchical relations among the values of user attributes and
object attributes.

With attribute hierarchy, a single policy tuple defined in
the policy can imply many policy tuples through partial or-
der relations among user and object attribute values. In this
subsection, we introduce attribute hierarchies among ranges
of one user attribute (skills) and one object attribute (type)

Figure 11: Attribute Hierarchy

Table 4: Policy for Read Operation with Group and At-
tribute Hierarchy

Policyread
User Attribute Values Object Attribute Values
IT Manager Networking
IT Networking
DevOps Manager Dev
Java Dev
C++ Deploy
CTO General

from above use case. The subgraph for each skills and type
are shown in Figure 11(a) and 11(b) respectively. In the use
case graph of Figure 9, skills has all three values assigned to
it at the same level. However, in subgraph of Figure 11(a)
C is assigned to C++ and C �skills C + +. This means
that attribute value C is senior to C++ and gets all the
properties and capabilities of C++. Therefore, any accesses
allowed for C++ would be allowed for C as well.

In Figure 11(b), the type attribute is shown with a partial
order hierarchy between its values Deploy and Dev, written
as Deploy �type Dev where Deploy is senior to Dev. Any
association involving junior attribute value will also be im-
plied on senior attribute value. In other words, Deploy will
inherit all the associations applied on Dev.

Based on attribute hierarchies introduced in skills and
type, the associations defined in PM are changed. The
updated policy tuples forPolicyread are shown in Table 4.
Three policy tuples were removed since they were implied
through attribute hierarchy. Two tuples (DevOps Manager,
Deploy) and (Java, Deploy) were removed since they were
implied through hierarchy between Deploy and Dev. Sim-
ilarly, (C, Deploy) is removed as its implied through hier-
archy between C and C++. This clearly shows how hier-
archical attributes can be exploited in reducing the size of
enumerated policies. It also contributes in facilitating ad-
ministrative tasks by reducing the number of direct policy
tuples to be defined in a policy.

An authorization request for user user C1 (assigned to
C), operation read and object obj Depl1 (assigned to De-
ploy), along with its response is shown in Figure 12. Though,

Figure 12: Sample Authorization Request and Response

there is no direct policy tuple defined between C and Deploy
attribute values, this request is granted through an implied
policy tuple based on effective user attribute values of the
user and effective object attribute values of the object.

The partial order relations among groups and attributes
depend on how they are realized while defining security poli-
cies. Some hierarchical ordering are intuitive, whereas oth-
ers may not be so evident. It is for security architects and
administrators to design these hierarchies to define access
control policies in most efficient way.

6. POLICY EVALUATIONS IN PM
In this section, we compare the policy evaluation times

for different types of attribute-based access control policies
in AE and PM. When a user requests access to an object
in an application, an authorization request is received by
AE which in turn communicates to the PM to get autho-
rization decisions. For each type of policy, the time taken
to communicate to the PM and evaluate authorization de-
cisions was measured. The average policy evaluation time
for a Role-Centric ABAC, and two variations of rHGABAC
without and with attribute hierarchy is presented in Table
5. The average policy evaluation time using AE and the
PM is shown in second column, while the type of policies
are shown in the first column.

For the experiments, we first setup each type of policy in
the PM and then execute multiple authorization requests for
each one of them to obtain averages of their policy evalu-
ation times. The average policy evaluation time for above
policies are very close to each other with a maximum differ-
ence of 1 ms. The results were in compliance with our initial
hypothesis, since we expected the average policy evaluation

Table 5: Average Policy Evaluation Time for ABAC Policies

Policy Avg. Time (ms)

Role-Centric ABAC 26.04
rHGABAC 27.04
rHGABAC with AH 26.57

times to be similar, mainly due to the way ABAC policies
are implemented in the PM.

The average policy evaluation time for rHGABAC with
AH is slightly less than rHGABAC. In rHGABAC with AH,
we can represent complex and large policies in a concise way
realizing hierarchies among attribute values. It is evident in
our use case discussed in previous section as well. A con-
cise policy in the PM implies a compact PM policy graph
with less associations between entities or elements. Both
rHGABAC and rHGABAC with AH policy defined in the
PM has same set of users, user groups, user attributes, ob-
jects, object groups, object attributes, however the number
of association relations (policy tuples) varies which results
in a disperse policy tree for rHGABAC compared to a con-
cise or small policy tree for rHGABAC with AH. We believe
this is one of the possible reasons for faster policy evaluation
time in rHGABAC with AH policy, since small number of
association relations defined in the PM would involve less
internal evaluations to get a policy decision.

A role-centric ABAC is a special type of attribute-based
access control policy which includes roles and attributes in
the policy specifications and policy decisions. Although, this
policy had the lowest average of policy evaluation time in our
experiment, the time would increase exponentially if there
are numerous roles that a user can be assigned. It is a
combination of role-based and attribute-based access con-
trol policy and would require a more detailed investigation
with similar types of combinational access control models.
However, our main focus in this paper are ABAC policies.

Overall, our initial investigation shows that the average
policy evaluation times are comparable across different types
of ABAC models, and rHGABAC model can be easily im-
plemented utilizing the PM and can be applied in real-world
applications and systems. However, the enforcement frame-
work in the applications utilizing the PM need to be designed
accordingly in order to optimize policy evaluation and policy
enforcement times.

7. CONCLUSION
In this paper, we presented and formalized a restricted

HGABAC model as single-value EAP, named as rHGABAC,
with group attributes and group hierarchies. We then ex-
tended this model with attribute hierarchies, i.e. partial
order relations among values of user and object attributes.
We implemented use cases of these models utilizing the PM,
and presented an initial investigation of the policy evalua-
tion times for different types of attribute-based access con-
trol policies in the PM using AE. We also presented a general
authorization architecture that can be conveniently adapted
by any application or system in order to implement different
types of ABAC policies utilizing the PM.

Our approach of employing containment property of PM
attributes via assignment relations gracefully incorporates
groups attributes and group and attribute hierarchies in
rHGABAC model. Further exploration of newer version of

PM tool and its interfaces might be beneficial to find more
efficient ways to represent ABAC models for its wide adop-
tion in the industry.

8. ACKNOWLEDGMENTS
The authors would like to thank NIST and the Policy Ma-

chine team, especially Dr.David Ferraiolo, Serban I. Gavrila,
and Gopi Katwala for their guidance and support. This re-
search is partially supported by NSF Grants CNS-1111925
and CNS-1423481, and DoD ARL Grant W911NF-15-1-0518.

9. REFERENCES
[1] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo,

“Attribute-based access control.” IEEE Computer,
vol. 48, no. 2, pp. 85–88, 2015.

[2] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer,
K. Sandlin, R. Miller, and K. Scarfone, “Guide to
attribute based access control (ABAC) definition and
considerations,” NIST Special Publication 800-162,
2014.

[3] X. Jin, R. Krishnan, and R. Sandhu, “A unified
attribute-based access control model covering DAC,
MAC and RBAC,” in IFIP Annual Conference on
Data and Applications Security and Privacy.
Springer, 2012, pp. 41–55.

[4] D. Servos and S. L. Osborn, “HGABAC: Towards a
formal model of hierarchical attribute-based access
control,” in International Symposium on Foundations
and Practice of Security. Springer, 2014, pp. 187–204.

[5] P. Biswas, R. Sandhu, and R. Krishnan, “Label-based
access control: An ABAC model with enumerated
authorization policy,” in Proceedings of the 2016 ACM
International Workshop on Attribute Based Access
Control. ACM, 2016, pp. 1–12.

[6] J. Hur and D. K. Noh, “Attribute-based access control
with efficient revocation in data outsourcing systems,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 7, pp. 1214–1221, 2011.

[7] T. Priebe, W. Dobmeier, and N. Kamprath,
“Supporting attribute-based access control with
ontologies,” in First International Conference on
Availability, Reliability and Security (ARES’06).
IEEE, 2006, pp. 8–pp.

[8] H.-b. Shen and F. Hong, “An attribute-based access
control model for web services,” in 2006 Seventh
International Conference on Parallel and Distributed
Computing, Applications and Technologies
(PDCAT’06). IEEE, 2006, pp. 74–79.

[9] E. Yuan and J. Tong, “Attributed based access control
(ABAC) for web services,” in IEEE International
Conference on Web Services (ICWS’05). IEEE, 2005.

[10] S. Bhatt, F. Patwa, and R. Sandhu, “An
attribute-based access control extension for openstack
and its enforcement utilizing the policy machine,” in
IEEE 2nd International Conference on Collaboration
and Internet Computing (CIC). IEEE, 2016, pp.
37–45.

[11] R. S. Sandhu and P. Samarati, “Access control:
principle and practice,” IEEE Communications
Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[12] R. Sandhu, “Role-based access control,” Advances in
Computers, vol. 46, pp. 237–286, 1998.

[13] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli, “Proposed NIST standard for
role-based access control,” ACM Transactions on
Information and System Security (TISSEC), vol. 4,
no. 3, pp. 224–274, 2001.

[14] R. Sandhu, E. J. Coyne, H. Feinstein, and C. Youman,
“Role-based access control models,” IEEE Computer,
vol. 29, no. 2, pp. 38–47, 1996.

[15] Q. M. Rajpoot, C. D. Jensen, and R. Krishnan,
“Integrating attributes into role-based access control,”
in IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 2015, pp. 242–249.

[16] “XACML.” [Online]. Available:
https://en.wikipedia.org/wiki/XACML

[17] “Policy Machine.” [Online]. Available:
http://csrc.nist.gov/pm/

[18] D. Ferraiolo, S. Gavrila, and W. Jansen, “Policy
Machine: Features, architecture, and specification,”
National Institute of Standards and Technology
Internal Report 7987, 2014.

[19] D. Ferraiolo, V. Atluri, and S. Gavrila, “The Policy
Machine: A novel architecture and framework for
access control policy specification and enforcement,” J.
of Sys. Architecture, vol. 57, no. 4, pp. 412–424, 2011.

[20] J. Li, Q. Wang, C. Wang, and K. Ren, “Enhancing
attribute-based encryption with attribute hierarchy,”
Mobile Networks and Applications, vol. 16, no. 5, pp.
553–561, 2011.

[21] P. Biswas, R. Sandhu, and R. Krishnan, “A
comparison of logical-formula and enumerated
authorization policy abac models,” in IFIP Annual
Conference on Data and Applications Security and
Privacy. Springer, 2016, pp. 122–129.

[22] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding
attributes to role-based access control,” IEEE
Computer, vol. 43, no. 6, pp. 79–81, 2010.

[23] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack:
toward an open-source solution for cloud computing,”
International Journal of Computer Applications,
vol. 55, no. 3, 2012.

[24] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan,
and T. Freeman, “A flexible attribute based access
control method for grid computing,” Journal of Grid
Computing, vol. 7, no. 2, pp. 169–180, 2009.

[25] L. Wang, D. Wijesekera, and S. Jajodia, “A
logic-based framework for attribute based access
control,” in Proceedings of the 2004 ACM Workshop
on Formal Methods in Security Engineering. ACM,
2004, pp. 45–55.

[26] W. Kuijper and V. Ermolaev, “Sorting out role based
access control,” in Proceedings of the 19th ACM
Symposium on Access Control Models and
Technologies. ACM, 2014, pp. 63–74.

[27] D. Ferraiolo, R. Chandramouli, V. Hu, and R. Kuhn,
“A comparison of attribute based access control
(ABAC) standards for data service applications,”
NIST Special Publication 800-178, 2016.

[28] “Axiomatics - XACML.” [Online]. Available:
https://www.axiomatics.com/
attribute-based-access-control.html

[29] “Exploring the next generation of access control
methodologies.” [Online]. Available: http://ws680.nist.
gov/publication/get pdf.cfm?pub id=922332

[30] M. Gupta and R. Sandhu, “The GURA G
administrative model for user and group attribute
assignment,” in International Conference on Network
and System Security. Springer, 2016, pp. 318–332.

