
Attribute Transformation for
Attribute-Based Access Control

Prosunjit Biswas
Dept. of Computer Science &

Institute for Cyber Security
Univ. of Texas at San Antonio
prosun.csedu@gmail.com

Ravi Sandhu
Dept. of Computer Science &

Institute for Cyber Security
Univ. of Texas at San Antonio
ravi.sandhu@utsa.edu

Ram Krishnan
Dept. of Computer Science &

Institute for Cyber Security
Univ. of Texas at San Antonio
ram.krishnan@utsa.edu

ABSTRACT
In this paper, we introduce the concept of transforming
attribute-value assignments from one set to another set. We
specify two types of transformations—attribute reduction
and attribute expansion. We distinguish policy attributes
from non-policy attributes in that policy attributes are used
in authorization policies whereas the latter are not. At-
tribute reduction is a process of contracting a large set of as-
signments of non-policy attributes into a possibly smaller set
of policy attribute-value assignments. This process is useful
for abstracting attributes that are too specific for particular
types of objects or users, designing modular authorization
policies, and modeling hierarchical policies. On the other
hand, attribute expansion is a process of performing a large
set of attribute-value assignments to users or objects from
a possibly smaller set of assignments. We define a language
for specifying mapping for the transformation process. We
also identify and discuss various issues that stem from the
transformation process.

Keywords
Attribute-Based Access Control, ABAC, Attribute Trans-
formation, Attribute Reduction, Attribute Expansion

1. INTRODUCTION
Access control has been a major component in enforc-

ing security and privacy requirements of information and
resources with respect to unauthorized access. While many
access control models have been proposed only three, viz.,
DAC, MAC and RBAC, have received meaningful practical
deployment. DAC (Discretionary Access Control) [22] al-
lows resource owners to retain control on their resources by
specifying who can or cannot access certain resources. To
address inherent limitations of DAC such as Trojan Horses,
MAC (Mandatory Access Control) [22] has been proposed
which mandates access to resources by pre-specified system
policies. These models emphasize the specific policies of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ABAC’17, March 24, 2017, Scottsdale, AZ, USA.
c© 2017 ACM. ISBN 978-1-4503-4910-9/17/03. . . 15.00

owner-based discretion for DAC and one-directional infor-
mation flow in a lattice of security labels for MAC. On the
other hand, RBAC (Role Based Access Control) [21] is a
policy neutral, flexible and administrative-friendly model.
Notably RBAC is capable of enforcing both DAC and MAC.
MAC is also commonly referred to as LBAC (Lattice-Based
Access Control).

Attribute Based Access Control (ABAC) has gained con-
siderable attention from businesses, academia and standard
bodies in recent years [11]. ABAC uses attributes on users,
objects and possibly other entities (e.g. context, environ-
ment, actions) and specifies rules using these attributes to
assert who can have which access permissions (e.g. read,
write) on which objects.

Several attribute based access control models have been
proposed in the literature [5, 15, 23, 27]. These models
have been proposed for different application domains includ-
ing Cloud Infrastructure [6, 3, 14, 20, 25], Grid Computing
[17], Health Care [18], Internet of Things [2] and so on [7].
These domains typically include very large number of mis-
cellaneous objects and many types of users. For example,
a Cloud Infrastructure has many instances of Virtual Ma-
chines, Block Storage resources, Object Storage resources
(eg. objects, containers, accounts), network resources (eg.
firewalls, routers) and so on. All these objects have many
attributes of their own. As a result there would be a large
number of attributes, many of which are specific to particu-
lar types of objects and not meaningful to other object types.
Furthermore, new attributes would be added as we add new
object types in the system. Thus, similar to explosion of
roles [8], there may be an explosion of attributes.

Having a large set of attributes incurs administrative diffi-
culties from different perspectives for ABAC adoption. Firstly,
it takes considerable effort to assign or de-assign these at-
tribute values to users or objects. Secondly, authorization
policies defined with these attributes would be large and
complex in nature with resulting difficulty in specification,
update, modification, review and so on.

In this paper, we introduce the concept of attribute trans-
formation for converting one set of attribute-value assign-
ments into another set of assignments. We specify two types
of transformation—attribute reduction and attribute expan-
sion. In the reduction process, we transform a large set of
assignments into possibly a smaller set of assignments. This
is useful for abstracting attributes that are too specific for
particular type of objects or users, designing modular autho-
rization policies, and modeling hierarchical policies. On the
other hand, attribute expansion is the process of assigning

DOI: http://dx.doi.org/10.1145/3041048.3041052

1

larger set of attributes to users or objects from possibly a
smaller set of assignments.

The motivation for attribute transformation is there in
the literature. For example, attribute-based user-role as-
signment [1] reduces a set of user-attributes into user roles.
Similarly, Kuhn, Coyne and Weil [1, 16] propose the concept
of dynamic roles that uses attribute-based rules to derive
user roles. These models only consider reduction of user
attributes with respect to RBAC. We generalize this con-
cept for both user and object attributes and present this no-
tion for ABAC. On the other hand, HGABAC [23] presents
an approach where users and objects may obtain multiple
attribute-value assignments by respectively joining hierar-
chically related user and object groups.

We make the following contributions in the paper.

• We define a concept for transforming one set of attribute-
value assignments into another set of assignments. We
discuss two interesting transformation cases namely
reduction and expansion. We delineate usefulness of
these approaches for specification of authorization poli-
cies and larger set of attribute-value assignments.

• We define a language for specifying transformations.

• We discuss related issues emerging from reduction and
expansion of attributes.

Rest of the paper is organized as follows. Section 2 presents
related works. In Section 3, we define attribute transforma-
tion. Section 4 presents the concept of attribute reduction,
its motivation, language for specifying reduction mapping
along with issues emerging from the reduction process. Sec-
tion 5 is about expansion of attributes including issues re-
sulting from it. We conclude the paper in Section 6.

2. RELATED WORK
ABACα[15] is among the first few models to formally de-

fine an ABAC model. It is designed to demonstrate flexibili-
ties of an ABAC system to configure DAC, MAC and RBAC
models. ABACα uses subset of subject attributes and object
attributes to define an authorization policy for a particular
permission p. It describes a constraint language to specify
subject attributes from user attributes. Furthermore, it also
presents a constraint language for changing object attributes
at creation or modification time.

HGABAC [23] is another notable work in designing a for-
mal model for an ABAC system. Besides designing a flexi-
ble policy language capable of configuring DAC, MAC and
RBAC, it also addresses the problem of assigning attributes
to a large set of users and objects. It specifies hierarchical
groups and provides a mechanism for inheriting attributes
from a group by joining to the group.

ABAC-for-web-services [27] is among very few earlier works
to outline authorization architecture and policy formulation
for an ABAC system. The authors propose a distributed ar-
chitecture for authoring, administering, implementing and
enforcing an ABAC system, albeit in a semi-formal formal
language, including composing hierarchical policies from in-
dividual policies.

Wang et al [26] present a stratified logic programming
based framework to specify ABAC policies. Even though,
they only consider user attributes, they focus on providing
a consistent, high performance and workable solution for
ABAC system.

Figure 1: Example of attribute transformation

In its ABAC guide [11] and other publications [12], NIST
defines common terminologies, and concepts for an ABAC
system. The guide discusses required components, consid-
erations and architecture for designing an enterprise ABAC
system. It acknowledges the fact that ABAC rules can be
quite complex in boolean combination of attributes or in
simple relations involving attributes. Additionally, it dis-
cusses more advanced features like attribute and policy en-
gineering, federation of attributes and so on. Nonetheless,
these documents are focused towards establishing general
definitions and considerations of an ABAC system without
providing a concrete model definition.

Policy Machine [9] is another example of general pur-
pose ABAC model. Instead of following the conventional
approach of modeling attributes as functions, they model
attributes as groups (eg. user groups, object groups etc).
They also present the concept of Policy Class which provides
the expressive power and flexibility for combining multiple
security-policies easily [19].

There are other works that design an ABAC system from
a particular application context. For example, WS-ABAC
[24] is motivated by requirements in web services, ABAC-
in-grid [17] is motivated by needs in the grid computing.

Another interesting line of work combines attributes with
Role Based Access Control. Kuhn et. al [16] provides a
framework for combining roles and attributes. In the frame-
work, they briefly outline three different approaches—(i) dy-
namic roles which retain basic structure or RBAC and uses
attribute based rules to derive user roles, (ii) attribute cen-
tric, which treat role as another ordinary attribute, and (iii)
role centric, which uses roles to grant permissions and at-
tributes to reduce permissions to be available to the user.
Various other earlier or subsequent works involving roles and
attributes can also be cast in Kuhn’s framework.

There have been few works in administration of ABAC
models. Most of them consider the problem of assigning
attributes to users or objects. Examples include [10, 13].

3. ATTRIBUTE TRANSFORMATION
Attribute transformation is the process of transforming

one set of attribute-value assignments into another set of
assignments. For example, there might be attributes inher-
ent to objects that we want to convert into different set of
attributes that we can use in our authorization system. Fig-
ure 1 shows an example of attribute transformation. In the
figure, the set of attributes used to derive the transforma-
tion are size(), creation-date(), owner() and shared(). These
attributes are intrinsic to file objects in a system. On the

2

Figure 2: Attribute types

Figure 3: Attribute transformation (reduction)

other hand, the set of attributes that we derive through the
transformation process are label() and sensitivity() which are
security-related attributes and can be used to derive autho-
rization decisions. We call the former set of attribute-value
assignments that derives the transformation deriving assign-
ments and the later set of assignments derived assignments.
They are highlighted in Figure 1.

The motivation for attribute transformation includes the
following.

Derive Policy Attributes. There are lots of attributes
associated with users or objects. Examples include size(),
creation-date(), is-shared() etc for files stored in a file sys-
tem, title(), author(),publisher() etc for books, age(), sex(),
location(), role() etc for users and so on. Many of these
attributes are not useful for defining authorization policies.
Many of the attributes that are useful are only meaningful to
certain types of users or objects. For example, the attribute
publisher() may be useful for books but not for files. As a
result, defining authorization policies with these attributes
is not practical because they would become unmanageable
very soon. We envision, there would be a smaller and man-
ageable set of attributes that we can use in defining autho-
rization policies. This manageable set of attributes is called
Policy Attributes. Figure 2 shows classification of all at-
tributes into these two broad classes—Policy Attributes and
Non-policy Attributes. To state informally Policy Attributes
are the set of attributes that we use in defining authoriza-
tion policies. We consider all other attributes as Non-policy
Attributes.

Derive Attribute-value assignments. Even so there
could be a large number of Policy Attributes. As a result,
it would be difficult to manually assign values of all these

Figure 4: Attribute transformation (expansion)

Figure 5: Transformation types

attributes. Moreover, assignment to some attribute-values
naturally implies assignments to some other attribute-values.
For example, someone having an assignment is-veteran(u)=
true, may also imply following assignments—leadership(u)=
true and skill(u) = {adaptive, communicative}.

We consider two examples of attribute transformation given
in Figure 3 and Figure 4. In Figure 3, we transform Non-
policy attributes into Policy attributes. As we only consider
Policy Attributes to be used further, in this case, the result-
ing assignments are equivalent to the derived assignments.
On the other hand, in Figure 4, we derive Policy Attribute
from other Policy Attributes. As both deriving and derived
assignments include Policy Attributes, we include both de-
riving and derived assignments in the resulting assignments.

Based on how to transform attributes, we classify At-
tribute Transformation into Attribute Reduction and Attribute
Expansion. In Attribute Reduction, we transform Non-policy
Attribute-value assignments into Policy Attribute-value as-
signments. In attribute-expansion, we transform assign-
ments from Policy Attribute-values to Policy Attribute-values.
Figure 5 shows this classification.

4. ATTRIBUTE REDUCTION
Attribute reduction is the process of transforming Non-

policy Attributes into Policy Attributes. The motivation for
reduction lies in the fact that there are lots of Non-policy
Attributes that are hard to manage. For example, defin-
ing authorization policies with Non-policy Attributes is not
pragmatic because it would soon inflate the size and com-
plexity of authorization policies beyond manageable limit.
For an example of attribute reduction, consider the mapping
sensitive-vm-mapping ≡resource-type(o)=VM ∧ image-type(o)
= corporate → security-label(o) = sensitive. It maps values
from Non-policy Attributes named resource-type and image-
type into a value of a single Policy Attribute named security-
label. Benefits of attribute reduction includes the following.

Abstraction. Attribute reduction abstracts Non-policy
Attributes and translates them to Policy Attributes mean-
ingful to the security administrators. Consider the mapping
sensitive-firewall-mapping ≡ resource-type(o) = Firewall ∧
protocol(o) = UDP ∧ network(o) = Internal → security-
label(o) = sensitive. In this case, resource specific Non-
policy Attributes like resource-type, protocol, network are
mapped to the Policy Attribute security-label. A security
architect may define authorization policies using security-
label attribute values without having in depth knowledge
of Virtual Machines or Firewalls. The mapping-rules like
sensitive-vm-mapping or sensitive-firewall-mapping can be
defined independently by security experts having proper do-
main knowledge.

Modular design. Let us consider the authorization pol-
icy read-policy1 ≡ security-label(o) = sensitive ∧ role(u)=
manager as shown in Figure 6. It authorizes managers to

3

Figure 6: Example of an authorization policy fitting in reduction mappings

Figure 7: Reduction from m attributes to n
attributes

read sensitive objects without explicitly specifying sensitive
objects. Now read-policy1 can easily be extended for Virtual
Machine and Firewall resources by including the mappings
sensitive-vm-mapping and sensitive-firewall-mapping. This
facilitates modular as well as extendable designs.

Hierarchical policy. Attribute reduction results in
hierarchies between authorization policies and mappings.
For example, in Figure 6, read-policy1 subsumes both sub-
policies represented by mappings sensitive-vm-mapping and
sensitive-firewall-mapping. An implication of hierarchical
policies is that policies may be defined and enforced for
or from multiple administrative scopes. For example, read-
policy1 can be defined for the whole organization whereas
sensitive-vm-mapping and sensitive-firewall-mapping can be
defined for and from the cloud infrastructure.

In the rest of this section, we first discuss some types and
properties of mapping-based reduction. We then present a
language for specifying reductions. Finally, we discuss some
issues and complexities regarding attribute reduction.

4.1 Scopes and types of reduction
Attribute reduction can be applied to both users and ob-

jects. The motivation for user attribute reduction is there
in the literature. For example, Mohammad and Sandhu [1]
and Kuhn et. al [16] derive user roles from user attributes.

We believe, there is even greater motivation for reducing
object attributes. This is because, today’s large protection
system manages millions of resources/objects having hun-
dreds or even thousands of resource-types. These resource-
types have many low-level Non-policy Attributes meaningful
to particular types. Moreover, new resource types may be
added in the system which further increases the number of
attributes.

Based on cardinality, we categorize reduction into three
types—many-to-many, many-to-one and one-to-one. In many-
to-many reduction, m number of attributes (m > 1) are
reduced to n number of attributes (1 < n < m). These
types of reduction are depicted in Figure 7. In many-to-
one reduction, m attributes (m > 1) are reduced to a single
attribute (n = 1). The sensitive-vm-mapping or sensitive-
firewall-mapping shown in Figure 6 are examples of many-
to-one reductions. In one-to-one reduction, one attribute
is transformed into another attribute (m = n = 1) of dif-
ferent attribute-value ranges. A mapping from age : U →
{1, 2,100} to age group : U → {junior, adult, senior} is
an example of one-to-one mapping.

4.2 Mapping rules
The mapping rules for transforming attribute-value as-

signments are specified in Table 1. The rules are presented
in BNF notation. Item I, II and III in Table 1 specify the
terminal symbols, the non-terminal symbols and the start
symbol respectively for the production rules.

The production rules are described in Item IV of the table.
We specify two different production rules—one for trans-
forming object attribute-value assignments and the other
for transforming user attribute-value assignments. The rule
ObjAttrValAssgn→ ObjAttrValAssgn is interpreted in a way
that existing object attribute-value assignments that satisfy
the left-hand side of the rule implies assignments that are
specified in the right-hand side of the rule. In the grammar,
the symbol ObjAttrValAssgn is reduced to object attribute-
value expression which is further reduced to combinations
of object attribute-value pairs. We specify following set of
object attributes {oa1, oa2,..., oak} and attribute-values are
specified from the set {oav1, oav2,..., oavl}. For an example,
the following rule resource-type()=VM ∧ image-type() =
corporate → security-label() = sensitive implies that the ob-
jects that are assigned resource-type(o) = VM and image-
type(o) = corporate, are automatically assigned security-
label(o) = sensitive. The other rule UsrAttrValAssgn →
UsrAttrValAssgn is also interpreted in a similar way with

4

Figure 8: Example showing a conflict in deriving security-label values for mappings — mapping1 and mapping2 and assign-
ments — resource-type(o) = VM, image-type(o) = corporate and encryption(o) = plain.

Table 1: Mapping rules
I. The terminal symbols
∧, =, →,
oa1, oa2, ..., oak,
oav1, oav2, ..., oavl,
ua1, ua2, ..., uam,
uav1, uav2, ..., uavn

II. The non-terminal symbols
ObjAttrValAssgn, UsrAttrValAssgn,
ObjAttrValExpr, UsrAttrValExpr,
ObjAttrValPair, UsrAttrValPair,
ObjAttr, UsrAttr,
UsrAttrValue, ObjAttrValue

III. The start symbol
MappingRule

IV. The production rules (in BNF notation)
MappingRule::=

ObjAttrValAssgn → ObjAttrValAssgn |
UsrAttrValAssgn → UsrAttrValAssgn

ObjAttrValAssgn :: = ObjAttrValExpr
UsrAttrValAssgn :: = UsrAttrValExpr
ObjAttrValExpr ::= ObjAttrValPair |

ObjAttrValExpr ∧ ObjAttrValExpr
UsrAttrValExpr ::= UsrAttrValPair |

UsrAttrValExpr ∧ UsrAttrValExpr
ObjAttrValPair ::= ObjAttr = ObjAttrValue
UsrAttrValPair ::= UsrAttr = UsrAttrValue
ObjAttr ::= oa1| oa2|...| oak
ObjAttrValue ::= oav1| oav2|...|oavl
UsrAttr ::= ua1| ua2|...| uam
UsrAttrValue ::= uav1| uav2|...|uavn

user attributes {ua1, ua2,..., uam} and user attribute-values
{uav1, uav2,..., uavn}.

The rules presented above for attribute transformation
are representative. We keep it simple to convey the idea suc-
cinctly. In attribute-value expression (eg. ObjAttrValAssgn),
we use only conjunction operator (∧). Disjunction of assign-
ments can be captured by defining multiple mapping rules.
While comparing attribute values, we only match for equal-
ity. More generally, we could allow comparisons such as >
or ≥.

4.3 Issues in reduction
In this section, we discuss some issues arising from at-

tribute reduction.

4.3.1 Conflicts resulting from multiple mappings
Here we discuss conflicts that might occur in presence

of multiple mappings and given assignments. For exam-
ple, consider mapping1 and mapping2 and attribute-value
assignments—resource-type(o) = VM, image-type(o) = cor-
porate and encryption(o) = plain as shown in Figure 8.
Given these assignments, mapping1 derives security-label
value as regular and mapping2 derives security-label value
as sensitive. This might be undesirable and/or conflicting
in a protection system. We specify some approaches to be
used altogether or exclusively to mitigate these conflicts.

Resolve conflicts. There are different ways to resolve
conflicts. We can set distinct priority with each derived
attribute values. For example, we can set a priority such that
the attribute-value sensitive overrides all other attribute-
values for the attribute security-label. Another approach
can be to accept both values for a set-valued attribute.

Avoid conflicts. As opposed to resolving conflicts, we
might try safe assignments such that no conflict might occur.
In the context of Figure 8, we may regulate assignments so
that a virtual machine that uses corporate images never re-
main unencrypted. Constraint free assignments of attributes
are treated in detail by Bijon, Krishnan and Sandhu [4].

4.3.2 Assigned vs derived attribute-value
Values of a Policy Attribute can be explicitly assigned

by administrators or be derived using reduction mappings.
Figure 9 presents such a scenario. In Figure 9, the assigned
value for security-label attribute is sensitive whereas the de-

5

Figure 9: Conflict in derived and assigned attribute-value

Figure 10: Example of attribute expansion

rived value is regular. Different strategies may be applied
for resolving this type of conflict. One simple strategy is
that assigned values override derived values (or vice versa).
Another strategy can be attributes whose values are derived
are never assigned (or vice versa).

5. ATTRIBUTE EXPANSION
Attribute expansion is the process of assigning a large set

of Policy Attribute values from a given, possibly smaller set
of Policy Attribute-value assignments. For example, con-
sider the scenario given in Figure 10 where as part of re-
ceiving an annual award dean-award, a student automat-
ically receives following assignments—benefit(u)=B1, sta-
tus(u)=distinguished, and role(u)=mentor. The advantage
of this form of assignments is that it derives additional as-
signments saving manual administrative efforts for the same
purpose. As long as the award does not expire, the stu-
dent needs all the assignments to fulfill his responsibilities
properly but after expiration the student is required to be
de-assigned appropriately. In the context of this example,
we assume all these attributes are Policy Attributes, so that
both deriving and derived assignments remain as resulting
assignments.

The motivation of attribute expansion is there in the lit-
erature. For example, HGABAC [23] presents an approach
where users/objects may obtain multiple attribute-value as-
signments as part of joining user/object groups. HGABAC
also uses the concept of hierarchical groups to obtain mul-
tiple/cascading assignments. We generalize these concepts
using attributes and avoiding non-attribute entities in an
ABAC system.

Figure 11: Attribute expansion in presence of (a). one
mapping-rule, (b). multiple non-conflicting rules, and (c).
multiple conflicting rules

6

Figure 12: Resolving conflicting assignments for multiple
mapping-rules (for cases in Figure 11(c))

5.1 Mapping rules
As both expansion and reduction are transformation of

attributes, we use reduction rules as described in Section
4.2 for expansion mappings.

5.2 Issues in expansion
We identify three different cases for expanding attributes

based on how multiple mappings interact. We illustrate both
valid and invalid cases with examples in Figure 11. In Fig-
ure 11(a), there is only one mapping from membership(u)
= platinum to benefit(u) = B1, return-policy(u) = prime
and discount(u) = prime. This case is inherently conflict
free. Figure 11(b) presents a case where there are multiple
mappings for membership(u)=platinum. As we see, these
mappings assign values to disjoint set of attributes. As a
result, these mapping are conflict free as well. In Figure
11(c), mapping1 sets dept(u)=toys-r-us where as mapping2
sets dept(u)=babies-r-us which is a conflict. We can adopt
mitigation approaches similar to that of attribute reduction
presented in Section 4.3.1. Another approach can be to re-
move the conflicting assignments from the right-hand side
of the mapping-rules and add them to the left-hand side of
the same rule. For example, for the conflicting assignment
of Figure 11(c), we can remove the assignment dept(u) from
the right-hand side and add it to the left-hand side as shown
in Figure 12.

6. CONCLUSION & LIMITATION
We introduce the concept of attribute transformation for

Attribute-Based Access Control. We describe two different
types of transformation—Attribute Reduction and Attribute
Expansion. Attribute reduction is a process of converting a
large set of attribute-value assignments into possibly smaller
set of assignments. Advantages of attribute reduction in-
clude abstraction of attributes, modular policy design, hi-
erarchical policy etc. Attribute expansion, which converts
a smaller set of assignments into a larger set, is useful for
assigning large number of attribute-values to users or ob-

jects. We describe a mapping-language for the transforma-
tion process. For each type of transformation, we identify
cases which result conflicts and provides alternates to resolve
them.

The reduction process we specify here is useful for defin-
ing new authorization policies. It would be interesting to
investigate how to redesign existing authorization policies
using given reduction rules. Moreover, we do not provide
any guideline to evaluate reduction mapping as there might
be more than one such equivalent mappings. We briefly de-
scribe how reduction mapping may result hierarchy between
policies. Further investigation in this direction is required.

Acknowledgments
This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481, and DoD ARL Grant W911NF-
15-1-0518.

7. REFERENCES
[1] M. Al-Kahtani and R. Sandhu. A model for

attribute-based user-role assignment. In 18th Annual
Proceedings of Computer Security Applications
Conference, pages 353–362. IEEE, 2002.

[2] A. Alshehri and R. Sandhu. Access control models for
cloud-enabled internet of things: A proposed
architecture and research agenda. In Proceedings of
the Workshop on Privacy in Collaborative & Social
Computing, 2016.

[3] S. Bhatt, F. Patwa, and R. Sandhu. An
attribute-based access control extension for openstack
and its enforcement utilizing the policy machine. In
International Conference on Network and System
Security, 2016.

[4] K. Bijon, R. Krishnan, and R. Sandhu. Mitigating
multi-tenancy risks in IaaS cloud through
constraints-driven virtual resource scheduling. In Proc.
of the 20th Symposium on Access Control Models and
Technologies, pages 63–74. ACM, 2015.

[5] P. Biswas, R. Krishnan, and R. Sandhu. Label-based
access control: an ABAC model with enumerated
authorization policy. In Proc. of ABAC, pages 1–12.
ACM, 2016.

[6] P. Biswas, F. Patwa, and R. Sandhu. Content level
access control for Openstack Swift storage. In
Proceedings of the 5th Conference on Data and
Application Security and Privacy, pages 123–126.
ACM, 2015.

[7] P. Biswas, R. Sandhu, and R. Krishnan. An
attribute-based protection model for JSON
documents. In International Conference on Network
and System Security, pages 303–317. Springer, 2016.

[8] A. Elliott and S. Knight. Role explosion:
Acknowledging the problem. In Software Engineering
Research and Practice, pages 349–355, 2010.

[9] D. Ferraiolo, V. Atluri, and S. Gavrila. The Policy
Machine: A novel architecture and framework for
access control policy specification and enforcement.
Journal of Systems Architecture, 57(4):412–424, 2011.

[10] M. Gupta and R. Sandhu. The GURAG

administrative model for user and group attribute
assignment. In Int. Conference on Network and Sys.
Security, pages 318–332. Springer, 2016.

7

[11] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer,
K. Sandlin, R. Miller, and K. Scarfone. Guide to
attribute based access control (ABAC) definition and
considerations. NIST Special Publication, 800:162,
2014.

[12] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo.
Attribute-based access control. IEEE Computer,
(2):85–88, 2015.

[13] X. Jin, R. Krishnan, and R. Sandhu. A role-based
administration model for attributes. In Proceedings of
the 1st International Workshop on Secure and
Resilient Architectures and Systems, pages 7–12.
ACM, 2012.

[14] X. Jin, R. Krishnan, and R. Sandhu. Role and
attribute based collaborative administration of
intra-tenant cloud iaas. In International Conference
on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom), pages 261–274.
IEEE, 2014.

[15] X. Jin, R. Krishnan, and R. S. Sandhu. A unified
attribute-based access control model covering DAC,
MAC and RBAC. DBSec, 12:41–55, 2012.

[16] D. R. Kuhn, E. J. Coyne, and T. R. Weil. Adding
attributes to role-based access control. IEEE
Computer, (6):79–81, 2010.

[17] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan,
and T. Freeman. A flexible attribute based access
control method for grid computing. Journal of Grid
Computing, 7(2):169–180, 2009.

[18] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. Scalable
and secure sharing of personal health records in cloud
computing using attribute-based encryption. IEEE
Transactions on Parallel and Distributed Systems,
24(1):131–143, 2013.

[19] P. Mell, J. M. Shook, and S. Gavrila. Restricting
insider access through efficient implementation of
multi-policy access control systems. In Proceedings of
the International Workshop on Managing Insider
Security Threats, pages 13–22. ACM, 2016.

[20] C. Ngo, Y. Demchenko, and C. de Laat. Multi-tenant
attribute-based access control for cloud infrastructure
services. Journal of Information Security and
Applications, 27:65–84, 2016.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, (2):38–47, 1996.

[22] R. S. Sandhu and P. Samarati. Access control:
principle and practice. IEEE Communications
Magazine, 32(9):40–48, 1994.

[23] D. Servos and S. L. Osborn. HGABAC: Towards a
formal model of hierarchical attribute-based access
control. In Foundations and Practice of Security,
pages 187–204. Springer, 2014.

[24] H.-b. Shen and F. Hong. An attribute-based access
control model for web services. In PDCAT’06., pages
74–79. IEEE, 2006.

[25] Z. Wan, J. Liu, and R. H. Deng. HASBE: A
hierarchical attribute-based solution for flexible and
scalable access control in cloud computing. IEEE
Transactions on Information Forensics and Security,
7(2):743–754, 2012.

[26] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In
Proceedings of FMSE ’04, pages 45–55. ACM, 2004.

[27] E. Yuan and J. Tong. Attributed based access control
(ABAC) for web services. In Proceedings of IEEE
International Conference on Web Service. IEEE, 2005.

8

