
Ruledger: Ensuring Execution Integrity in Trigger-Action IoT Platforms

Jingwen Fan∗§, Yi He†§, Bo Tang∗, Qi Li†, and Ravi Sandhu‡
∗Information Security Laboratory, Sichuan Changhong Electric Co., Ltd.

†Institute for Network Sciences and Cyberspace & Department of Computer Science, Tsinghua University; BNRist
‡Institute for Cyber Security and Department of Computer Science, University of Texas at San Antonio

Email: ∗{jingwen.fan, bo.tang}@changhong.com, †{yihe2020, qli01}@tsinghua.edu.cn, ‡ravi.sandhu@utsa.edu

Abstract—Smart home IoT systems utilize trigger-action plat-
forms, e.g., IFTTT, to manage devices from various vendors.
These platforms allow users to define rules for automatically
triggering operations on devices. However, they may be abused
by triggering malicious rule execution with forged IoT devices
or events violating the execution integrity and the intentions of
the users. To address this issue, we propose a ledger based IoT
platform called Ruledger, which ensures the correct execution
of rules by verifying the authenticity of the corresponding in-
formation. Ruledger utilizes smart contracts to enforce verifying
the information associated with rule executions, e.g., the user
and configuration information from users, device events, and
triggers in the trigger-action platforms. In particular, we develop
three algorithms to enable ledger-wallet based applications for
Ruledger and guarantee that the records used for verification
are stateful and correct. Thus, the execution integrity of rules is
ensured even if devices and platforms in the smart home systems
are compromised. We prototype Ruledger in a real IoT platform,
i.e., IFTTT, and evaluate the performance with various settings.
The experimental results demonstrate Ruledger incurs an average
of 12.53% delay, which is acceptable for smart home systems.

I. INTRODUCTION

Smart Home Systems1 and Internet of Things (IoT) devices
have proliferated recently. Users use various devices, e.g. the
smart lock of Samsung SmartThings [9], the smart watch
of Garmin, as well as bulbs and smoke detectors in their
smart home systems. All these facilities can be managed via
trigger-action platforms, such as IFTTT [3], Microsoft Flow
[5], and Zapier [12], and work together to provide different
functionalities. Meanwhile, users set up rules in these trigger-
action platforms to automate rule executions in their devices.
Thus, these platforms are able to manage various devices from
different vendors to automatically perform physical or virtual
tasks according to the rules.

Meanwhile, smart home systems suffer severe security
threats, such as privacy leakage [24] and violation of rule
execution integrity [21]. In particular, violating rule execution
integrity becomes a major concern of smart home security. For
example, an attacker can generate a fake location [33] to the
trigger-action platform, e.g., IFTTT, so that the platform will
trigger the rule to open the smart lock even though nobody is at
home. Similarly, if OAuth tokens in the smart home system are
leaked or part of the system is compromised, an attacker can

§The first two authors contributed equally to this work.
1In this paper, we focus on studying the security of typical IoT systems,

i.e., smart home systems. We use IoT systems and smart home systems
interchangeably.

easily access user locations and remotely control IoT devices
by invoking APIs [13], [20].

These security risks in smart home systems have been
extensively studied in the literature [20], [32], [33], [37].
Unfortunately, as shown in Table I, none of the existing
approaches can effectively protect the integrity of rule ex-
ecutions in these systems. For example, ESO [32] enforces
situational access control for trigger-action platforms by en-
capsulating IoT remote APIs, which cannot avoid fake triggers
in trigger-action platforms. DTAP [20] only enables secure
token authorization for trigger-action platforms but cannot
prevent malicious rule executions triggered by IoT platforms
themselves. Similarly, Peeves [33] can only prevent event
spoofing attacks by verifying physical events in IoT devices.
Thus, the current trigger-action based smart home systems still
lack protection for the integrity of rule execution.

In this paper, we systematically study vulnerabilities that
enable malicious rule executions in smart home systems. The
root cause of the vulnerabilities is that there does not exist
any mechanism to ensure the authenticity and integrity of the
messages transferred among different components in smart
home systems. To this end, we propose Ruledger, a ledger-
based IoT platform that can be integrated with existing plat-
forms, to ensure the integrity of rule executions by enabling
verification of the information in the smart home systems. In
particular, Ruledger utilizes three ledger wallets to guarantee
stateful records according to real information, and leverages
smart contracts to enable protections for rule configuration and
verification of the trigger events and action requests according
to the stateful ledger records. Ruledger records all the action
requests and events in the ledger as stateful transaction logs so
that it can verify the authenticity of all information associated
with rule executions based on the logs and the execution states
in the ledger. Therefore, Ruledger can effectively prevent faked
event sources of rule triggers and malicious action requests
generated from the trigger-action platforms. The security anal-
ysis proves that Ruledger ensures the rule execution integrity
under various attacks. We prototype Ruledger with the real
IoT devices and the mainstream trigger-action platform, i.e.,
IFTTT, and evaluate the performance of Ruledger. The ex-
perimental results demonstrate that the overhead incurred by
Ruledger is acceptable for real deployment. The increased
delay is about 12.53%, and the throughput overhead decreases
by about 6.5%, comparing to the baseline systems.

Our contributions can be summarized as follows.
• We systematically study the vulnerabilities of violating the

1

TABLE I: Comparison with existing works.

Trigger-Action API Attacks Platform API Attacks Device API Attacks Privacy Violations Event Spoof
Peeves [33] 7 7 7 7 3
DTAP [20] 3 7 3 7 7
ESO [32] 7 7 7 3 7
Ruledger 3 3 3 3 3

Trigger-Action
Platfroms

IoT Edge Devices

Provided by
Device Vendors

Hub-
Connected

Device

Cloud-
Connected

Device IoT
Gateways IoT Platforms

Fig. 1: The main components of smart home systems. The IoT
gateways from device vendors serve as device brokers for IoT
platforms. The trigger-action platforms may be third-party.

integrity of rule executions in trigger-action based smart
home systems.

• We present Ruledger, a ledger based IoT platform, which
verifies the authenticity of the information (events and the
corresponding execution states) and ensures the integrity of
rule executions.

• We develop state generation and verification algorithms built
upon ledgers and wallets to guarantee that the states of the
transactions in a smart home system are properly verified
and submitted.

• We prototype Ruledger and the experiments with real-world
IoT platforms demonstrate its performance.

II. BACKGROUND

A. Smart Home Systems

Typically, smart home systems leverage trigger-action plat-
forms to achieve inter-device automation by means of prede-
fined rules. Such a trigger-action platform is operated either
by a third party, e.g., IFTTT, or as part of a comprehensive
IoT platform, e.g., Apple Homekit [1]. A user may configure
the automation rules on the trigger-action platform specifying
triggering conditions and actions of the corresponding devices.
The data flow in a typical smart home system is illustrated in
Fig. 1 which contains three components i.e., IoT edge devices,
the IoT platform, and the trigger-action platform. The devices
in a home may be from various vendors and connected to
IoT platforms through the designated IoT gateways which are
usually from different vendors. The IoT gateways interact with
each other through trigger-action platforms as specified by user
needs via OAuth APIs [7].
IoT Edge Devices and IoT Gateways. The IoT edge devices,
including the corresponding IoT hubs providing wireless con-
nection services, are the physical devices deployed in users’
houses, and IoT gateways are deployed on the Clouds which
provide remote APIs for device control. Some cloud-connected
IoT devices with Internet access can directly connect to their
online gateways, while some hub-connected devices that only

have local wireless access (such as Zigbee, Z-Wave, and
Bluetooth) need to connect to their IoT hubs. To remotely
control these devices, IoT gateways provided by device ven-
dors usually export APIs that are implemented via HTTP,
WebSocket, or MQTT [6] for device access, and then the smart
home systems can automate rule executions in the devices via
these APIs.
IoT Platforms. IoT Platforms provide a programmable frame-
work that wraps all the functionalities and APIs enabled in
an IoT device. For example, SmartThings can set Device
Handlers and SmartApps for IoT devices and leverage the
Groovy scripts to define properties, e.g., event sending and
event subscribing interfaces, for a specific device. Usually, IoT
platforms, such as SmartThings and HomeKit, can manage
both their own IoT devices and third-party devices. Particu-
larly, the third-party devices first need to connect to their own
gateways provided by the vendors and then communicate with
the IoT platforms through the OAuth protocol [7].
Trigger-Action Platforms. Smart home systems allow users to
set trigger-action rules to automate rule executions in devices.
Some IoT platforms allow direct configuration of trigger-
action rules (e.g. HomeKit), and many widely-used third-party
trigger-action platforms, such as IFTTT [3], Zapier [12], and
Microsoft Flow [5] can configure the rules as well. In this
paper, for simplicity, we take the most popular trigger-action
platform, i.e., IFTTT, as an example, which receives an HTTP
request as a trigger event and then generates HTTP requests
to trigger one or more actions.

Unlike IFTTT web apps [36], the IoT trigger-action rules
are triggered and executed in IoT devices, and they are defined
in forms of conditional expressions, i.e., if the trigger event
happens then the actions will be executed in IoT devices. A
trigger event can be a specific event or a status from the IoT
device’s operation, e.g. the door is opened or a user arrives
home, and actions are a serial of operations on IoT devices.
To set a trigger-action rule, users first need to choose an
IoT operation to generate the trigger event and then set some
operations as actions.

B. Distributed Ledgers

Distributed ledgers, such as blockchain systems, have been
widely used to record various transactions across independent
systems. A transaction is only ever stored when consensus
has been reached by the involved parties. The light-weighted
consensus algorithms, such as practical Byzantine Fault Toler-
ance (pBFT) [15] and raft [28], are extensively used to achieve
data synchronization in distributed ledgers. In this paper,
we leverage pBFT to achieve consensus among smart home
systems, which is efficient in asynchronous environments.

2

Distributed ledgers utilize client-side agents (called wallets)
to publish data in a decentralized database. The published
data can also be user-defined executable codes called smart
contracts [10] that can specify ledger functionalities with
automatic execution on the records. Note that, a smart contract
can be applied to various distributed ledgers that use different
consensus algorithms.

III. UNCOVERING VULNERABILITIES IN RULE EXECUTION

In this section, we systematically study the attacks that
trigger malicious rule executions and violate the integrity of
rule execution in smart home systems.

A. Threat Model

In this paper, we consider two types of typical attacks, i.e.,
API level attacks and platform/device compromise attacks, that
trigger malicious rule execution on benign devices and incur
the overprivilege problem in these devices. API level attacks
access and manipulate the remote APIs of the systems, e.g.,
devices APIs, trigger-action API, or configuration APIs, by
exploiting leaked OAuth tokens or vulnerable APIs, while
platform or device compromise attacks directly compromise
and control platforms or devices. Note that, we only consider a
small part of devices and platforms being compromised, which
can ensure correct rule execution in benign devices.

Particularly, we consider that trigger-action platforms are
untrusted, which means attackers can construct API level at-
tacks to arbitrarily create and trigger rules that will be triggered
in benign devices. Moreover, attackers can leverage API level
attacks [30] or compromise platforms to set malicious rules
for benign devices in IoT platforms. Similarly, attackers can
compromise edge devices or launch API attacks to trigger rule
executions on benign devices. Note that, we focus on attacks
that violate the integrity of rule execution, and thus do not
consider other types of attacks such as denial of service (DoS).

B. Violating Integrity of Rule Execution

Unlike traditional client-server applications, IoT systems
include diversified IoT services and heterogeneous devices.
This makes the systems extremely complicated and vulnerable
to the violation of rule execution integrity and abnormal rule
executions, which therefore incurs the overprivilege problem in
benign IoT devices. For simplicity, we use the example shown
in Fig. 2 to illustrate how each component of IoT systems may
be attacked. The corresponding example rule is “when the user
arrives home, enter home mode and turn on the lamps and
open the yard’s backdoor”.

Now we identify various attacks in different components
of smart home systems that can lead to violations of rule
execution, i.e., malicious rule execution on benign devices.
Attacks against IoT Devices and IoT Gateways. IoT devices
and IoT gateways may be compromised by attackers who
can launch fake events attacks. As shown in Fig. 2, a rule
is triggered by a fake event generated from a compromised
device or a compromised IoT gateway that brokers messages

IoT Gateway

IoT Platform
Trigger
-Action

PlatfromIoT Gateway

presence
sensor

backdoor
lock

lights

Event Spoof1

Device API
Attacks4 Trigger-Action API

Attacks3

"somebody is
home"

"enter Home Mode"

Platform API Attacks2

IoT Edge
Devices

Fig. 2: Typical attacks against the smart home systems.

to and from the devices2. It is difficult to prevent attackers from
compromising devices and arbitrary abuse of compromised
devices. An attacker can easily conduct event spoofing attacks
in devices (or gateways) to generate fake events, which trigger
malicious rule executions in various benign IoT devices. Let us
follow the example shown in Fig. 2. An event spoofing attack
can easily spoof a state of the presence sensor which tricks the
smart home IoT systems and the corresponding collaborative
devices, such as lights, backdoor locks, etc., to activate the
Home Mode when everyone is away.

In order to prevent the malicious devices from triggering
automation rules for other devices, Peeves [33] utilizes an off-
line event verification mechanism to ensure the authenticity
of events, which uses the data of other sensors to check if
their status have really changed after the event. However, this
approach cannot be applied in trigger-action IoT systems that
require instant rule execution after an event occurs.
Attacks against Trigger-Action Platforms. Third-party
trigger-action platforms allow users to use trigger-action rules
to automate IoT devices and usually, a token can be used
by several APIs and involves multiple rules and devices. The
token is often overprivileged and can be used for controlling
all devices from a user. When the OAuth token is misused due
to the platform or token being compromised, the attackers can
abuse the rules to perform risky operations [14]. As is shown
in Fig. 2, the untrusted trigger-action platforms may directly
exploit the home mode actions without the trigger event of the
user arriving home.

DTAP [20] aims to throttle the attacks by enabling a fine-
grained short-lived token for each operation specified in a rule
to ensure secure rule usage. In this setting, IoT platforms can
issue new tokens to block malicious trigger requests.
Attacks against IoT Platforms. As IoT platforms are used
to configure and execute rules, they need to interact with IoT
devices and the trigger-action platforms. The IoT platforms
should ensure the security of configuration APIs, which are
used to set rules and manage user accounts and gateway APIs,
as well as detecting event spoof attacks generated from the
devices and preventing malicious requests from the trigger-
action platforms. If attackers exploit the configuration APIs
or the devices APIs, they can either trigger the malicious

2For simplicity, in this paper, we do not distinguish attacks against IoT
devices and IoT gateways since the results have the same effect, i.e., spoofing
events.

3

IoT Edge
Devices

smart
watch

Execution
Agent

IoT Platform

smart
lock

Task
Agent

Trigger
-Action

Platfrom
(IFTTT)

Rule
Settings

Triggering
Events

Action
Execution

user

IoT Gateway

Execution
Agent

IoT Gateway

User Agent

Smart Home
App

Rule Commits

Triggering Event
Verification

Action Verification

Ledger

Device
Messages

Wallet-Based SDK Smart Contract

Ruledger Service

Fig. 3: The architecture of Ruledger

behaviors by modifying the trigger condition or trigger rule
executions in the devices directly. Typically, rule execution
is performed in the IoT platform, which invokes the Gateway
APIs to control devices via the OAuth protocol, and all tokens
of various devices are stored in the same place in the IoT
platform. When the IoT platform is under the API level
attacks (i.e., by using leaked tokens or vulnerable APIs) or is
compromised, the attacker can easily abuse the device APIs.

In order to prevent API abuse, DTAP [20] develops an
OAuth token protection mechanism for the trigger-action plat-
form. However, it does not protect the IoT platform itself and
cannot prevent rule tampering attacks that leverage vulnerable
configuration APIs, e.g., manipulating user account settings,
rule configurations, or the scripts that implement rules. Thus,
DTAP is unable to prevent platform API exploitation that
triggers malicious rule execution.

IV. OVERVIEW OF RULEDGER

In this section, we present an overview of Ruledger, which
ensures execution integrity in smart home systems by estab-
lishing ledger based event and rule verification, and discuss
the challenges in the design.

A. Overview

In this paper, we propose Ruledger, a distributed ledger-
based IoT platform, which aims to ensure the integrity of rule
execution by verifying the authenticity and consistency of the
generated information in smart home systems. In particular,
Ruledger utilizes wallet agents to enforce configurations and
interactions among IoT Apps, IoT gateways, IoT platforms,
and trigger-action platforms via transactions on the ledger.
Different platforms can use APIs provided in the SDK of the
wallet agent to realize interactions among different platforms.
Ruledger can be integrated with existing third-party trigger-
action platforms, which prevents various attacks of violating
the rule execution integrity in smart home systems with
trigger-action features. Note that, in Ruledger, we do not
consider the API level attacks compromising the private keys
in the wallets, which have been addressed by existing tech-
nologies [4], [8]. Fig. 3 shows the architecture of Ruledger.
It consists of the rule commits module, the triggering event
verification module, and the action verification module.

(i) The rule commits module guarantees all configurations
are authentic. It consists of a rule commits smart contract in
the IoT platform and wallet agents called user agents on the
user side. This smart contract is used to set up device infor-
mation and rule configurations in the ledger according to the
information collected from the user agents that are integrated
with users’ IoT management apps. To configure a specific
rule, users need to bind the device and set up the OAuth
credential for connecting the corresponding gateway, and then
set up trigger-action rules by choosing trigger operations and
action operations in the app. All trigger-action rules will be
committed to the ledger and exported to the third-party trigger-
action platforms by the user agent.

(ii) The triggering event verification module verifies if
the triggering event actually happens. It includes an event
verification smart contract and wallet agents called execution
agents in the IoT gateway. The smart contract verifies if
triggering events are authentic by checking if the result of
the trigger operation meets the trigger conditions according to
the information reported from the execution agents. When a
rule is triggered, each operation in the rule is associated with
a standalone program, e.g., each operation in SmartThings
devices is implemented as a device handler, in a groovy
sandbox. The rule execution is performed by our execution
agent if it meets the trigger condition. All triggering results are
submitted to the ledger via transactions, and the execution logs
that bind to a one-time key are recorded. The event records
will be committed to the ledger if and only if the trigger
transactions and the event logs are consistent, which prevents
event spoofing attacks using fake execution logs.

(iii) The action verification module includes an action veri-
fication smart contract and task agents. The action verification
smart contract verifies if the action should be executed by
checking whether the action requests from the trigger-action
platform are valid according to the ledger record and the
transaction detail from the task agent. After the ledger receives
an action request from the trigger-action platform, the action
verification module checks if the condition of the rule is met
based on the triggering event records on the ledger. Note
that, when a new event record (discussed in ii) is committed
to the ledger, the task agent reads the trigger record from
the ledger and sends a trigger request to the trigger-action
platform. The corresponding rule is triggered and the trigger-
action platform sends action requests to trigger the action
operations. These requests are converted to transactions by
the task agent and the action verification module verifies if
the previous corresponding trigger records are authentic. If
the previous triggering event records are real and the trigger
condition in the rule is met, the action operations will be
executed. Meanwhile, these action operation transactions will
be committed to the ledger and the execution agent updates
with the records of these operations to verify subsequent rules.

B. Challenges

It is challenging to develop Ruledger since the interac-
tions among IoT platforms, trigger-action platforms, and edge

4

范静雯�

devices may suffer various attacks exploiting rules, events
or devices. We cannot simply rely on ledger transactions to
achieve rule execution integrity.
• Authenticity of Rule Configurations. Trigger-action plat-

forms and IoT platforms usually contain rules generated by
various users and a user may also have multiple devices. It is
difficult to prevent attackers or malicious users from gener-
ating malicious configurations. Ruledger should ensure rule
executions on correct devices and prevent overprivileged
operations, especially when the platform is compromised.

• Preventing Fake Triggering Events. The IoT platform
should be able to verify if an event actually happens in the
device and the rule execution condition is met after an event
is triggered. However, it is difficult to achieve this because
attackers can exploit devices with fake events by using the
devices’ cloud APIs. Moreover, the gateway’s OAuth tokens
should be protected and the event should be verified when
a trigger operation occurs.

• Preventing Malicious Transactions. Ruledger should pre-
vent malicious transactions generated by unauthorized rule
administration in trigger-action platforms, which is difficult
to achieve. Since the same OAuth tokens are always shared
by multiple rules and devices, malicious transactions can be
generated by sending action requests to the task agent with
rewind attacks using reused or leaked tokens.

V. DESIGN DETAILS

In this section, we describe the design details of Ruledger
and address the design challenges.

A. Rule Commits

We should prevent vertical privilege escalation [23] dur-
ing committing rule configurations. Otherwise, attackers can
abuse multiple users’ rules and devices when the platform
is compromised. To address this issue, we utilize a wallet
based user agent, which ensures that users correctly configure
devices and rules and manage their accounts. In particular,
Ruledger adopts the role-based access control model for users
to configure rules via the smart contract, which allows users
with different permissions to correctly record all configurations
in the ledger via the user agents. A sample smart contract
for verification can be found in Appendix A-A. Similarly,
all changes of configurations will be committed via ledger
transactions, which are triggered by the user agent as well.
To achieve this, different user agents with corresponding roles
use their private keys indicating different permission levels,
e.g., administrator’s or normal user’s private key. Finally, each
transaction operation is verified by the smart contract, which
checks the access control list based on the transaction signature
signed by the corresponding private key of the user agent.
Rather than traditional ways of setting rules in the trigger-
action platform directly, users need to set up rules in our IoT
platform and then the rules can be correctly committed to the
ledger and exported to third-party trigger-action platforms such
as IFTTT after the transaction is confirmed.

The ledger based IoT platform uses the pBFT [15] algorithm
to perform the consensus process of recording updates, which
ensures that the platform is secure unless more than one-third
of nodes committing the records are compromised. Note that,
when the user account leaks, attackers can only exploit the
devices under the single account but cannot perform vertical
privilege escalation. In particular, all rules and settings are
committed to the ledger, which makes the rules and devices
configuration tamper-proof.

B. Triggering Event verification

Ruledger prevents fake triggering events by verifying the
execution logs of IoT devices and the event states recorded in
the ledger. We utilize a ledger wallet called an execution agent
to ensure that events recorded on the ledger are correct, which
is used to protect device APIs and prevent privacy violation
by verifying these records.

Various execution agents in the IoT gateway execute differ-
ent operations for the devices and commit the corresponding
information to the ledger, which can be used to verify that
all operations are correctly executed and APIs are invoked
with correct OAuth tokens. According to our key observation
that operations specified in IoT rules are executed in separated
procedures that run in different processes or machines. Our
execution agent can be integrated into the corresponding IoT
gateway of the devices, and then the OAuth tokens of the
device HTTP APIs can be stored in the agent. Thus, the
private data delivered by HTTP APIs will not leak into the
IoT platforms and the trigger-action platforms, and these
platforms only obtain the execution results, instead of the user
information, e.g., user locations in the plain text. Similar to
the situational access control [32], for a specific device, we
develop prefab scripts (see Appendix A-B), that are similar to
the code of SmartThings device handlers, which encapsulate
the original HTTP APIs to implement operations for the de-
vice. Note that, if a rule includes multiple operations, we need
to split the rule such that each script is associated with one
operation. Before an operation is executed, an execution agent
associated with the device needs to pull the corresponding
scripts from the ledger to perform the executions.

All trigger operations specified in rules are registered after
the rules are set up. They keep running in the execution
agents that poll the trigger state by executing the operation
and check the trigger conditions in a fixed interval (shown in
Algorithm 1). When the trigger condition in a rule is met, the
execution agent generates an event transaction that contains
the rule information, the execution log’s query key, and the
corresponding checksum to the ledger. Upon receiving the
information, the smart contract verifies the transaction and the
corresponding execution log. If the verification succeeds, the
event transaction is committed to the ledger and the task agent
will generate a trigger request3 to the trigger-action platform
to trigger this rule (shown in Algorithm 2). LedgerVerify in

3Note that most IoT platforms, such as IFTTT, support push mode and does
not poll the trigger state. After the rule is triggered, the IoT platform pushs
the triggering event to IFTTT.

5

Algorithm 1: Check Trigger Condition
Result: Submit event transactions
// check the trigger conditions in execution agents
foreach Ri ← Rules do

trigger← Ri

(eid, log key)← GenLogKey(Ri)
result← ExecOperation(eid, trigger, log key)
if CheckTriggerCondition(result, Ri) then

// submit the event transaction
log sum← CheckSum(result)
event log← (eid, log key, log sum)
event info← GenEventId(Ri)
SubmitTransaction(event info, event log)

Algorithm 2: Triggering Event Verification
Input : An event transaction, Ti

Result: Gen trigger requests
// verify the event transaction and send trigger requests
(event info, event log)← Ti

if LedgerVerify(event info, event log) then
CommitTransaction(Ti)
Cid← GenRandomness(event info)
// notify the task agent to send trigger requests
TaskAgentSendRequest(event info, Cid)

Algorithm 2 uses the event verification smart contract to verify
the correctness of the transaction and stores it in the ledger if
the transaction is authentic.

In order to defend against the event spoofing attacks on the
devices, we utilize an execution log based event verification
mechanism. Before a record transaction is accepted by the
ledger, the ledger will verify the authenticity of the record
by querying the execution log associated with the event. We
leverage the existing logs generated by the device’s cloud
service and include a random key for each entry of the
execution log, which ensures that only real devices can write
the log. For a specific operation, the execution agent generates
an execution id and a random key as the log query key pair
(eid, log key). As is shown in Fig. 4, this log query key
pair is also sent to the device through the gateway (steps Ê,
Ë). If the operation is successfully executed by the device, a
new event log that contains the log query key pair and the
checksum of execution result is included in the log (step Í).
Also, the execution agent can obtain the same checksum (step
Ì) with the execution results and submit the event log as a
transaction (step Î (see Algorithm 1). Finally, the triggering
event verification smart contract in the ledger checks if the
event log associated with the transaction is the same as the
record in the IoT log (step Ï). As all valid device operations
are initiated by the execution agent with the unique log query
key and the IoT gateway cannot directly access the log,
Ruledger can easily identify malicious executions triggered by
the gateway or devices by checking the verifiable event log.

Therefore, the authenticity of triggering events can be en-
sured. Particularly, it is difficult for attackers to generate a fake
event, which requires compromising both the device and the
gateway, or both the log server and the gateway. Note that, we
do not consider collusion attacks among several parts, which

IoT Gateway
Execution

Agent

Triggering Event
Verification

 eid, log_keyeid, log_key

result_checksum

verify
event_log

write
event_log submit

event_log

Device Vendor Cloud Service

No
Access

IoT Log Service

12

3

4
5

6

Smart
Watch

Wallet-Based SDK

Smart Contract on Ledger

Data Flow

Fig. 4: The procedure of triggering event log verification

means the attacker can bypass the whole verification system.
However, if APIs are manipulated or devices are compromised,
the valid execution log associated with the operation execution
will not be generated since the attacker does not have the key
to generate the records, which is generated by the execution
agents in the gateway.

C. Verifiable Action Execution in Ruledger

Now we describe how Ruledger realizes action requests
verification, which aims to detect fake triggers and overprivi-
leged transactions in the untrusted trigger-action platform. In
the current trigger-action platforms, all rules and devices of a
user share the same OAuth token, which makes a malicious
trigger-action platform arbitrarily generates action requests. To
address this issue, Ruledger utilizes fine-grained rule control
on the trigger generation. A triggering event is sent to the
trigger-action platform only when the rule trigger condition is
satisfied. To distinguish different requests, we deliver the event
identity eid and a random coin Cid that is generated by a pseu-
dorandom function according to the event information. Note
that, here we cannot use the existing token based solution [20]
that leverages per-rule token for each triggering event, which
cannot ensure the authenticity of triggers generated from the
trigger-action platforms. To trigger a rule, the trigger-action
platforms need to pass the correct eid and Cid to the task
agent. Thus, attackers cannot forge the corresponding eid and
Cid but only rewind the existing requests. However, after the
actions are triggered, the execution records associated with
the actions are also committed to the ledger by the execution
agent. The rewinding requests will be rejected by the task
agent and the ledger. Thus the malicious transactions are
prevented and the attackers cannot exploit rules generated by
the trigger-action platforms.

The pseudo-code of action verification is shown in Al-
gorithm 3. After the ledger receives a request of an ac-
tion transaction, the action verification smart contract (i.e.,
LedgerVerify, see Appendix A-A) decides if the transaction
should be committed and executed. Unlike the existing smart
home systems where the rule execution condition is only
checked by the trigger-action platforms, in Ruledger, the
execution of an action operation is confirmed according to the
event record in the ledger. Thus, attackers cannot arbitrarily

6

Algorithm 3: Action Verification
Input : A action transaction from the task agent, Ti

Result: Submit action transactions
(event info, Cid)← Ti

if VerifyRandom(event info, Cid) then
event record← LedgerQueryEvent(event info)
if LedgerVerify(event record) then

rule← LedgerQueryRule(event info)
// submit action operations as transactions
SubmitTransactions(rule.actions)
// the execution agent execute the actions and record the

execution log
NotifyExecutionAgent(rule.actions)

trigger rules unless the trigger condition is met and the event
transaction has been committed to the ledger. Moreover, with
the tamper-proof event records in the ledger, we can ensure
that such rules can only run once according to the matched
triggering event in the ledger.

D. Discussion

Ruledger ensures the integrity of rule execution in the
trigger-action based smart home systems that use conditions
as triggers to execute operations specified in rules. Ruledger
can validate all these conditions according to the state records
in the ledger. Thus, it does not aim to ensure the execution
integrity directly triggered by SmartApps that are implemented
in Groovy scripts. Moreover, the wallet based agents in
Ruledger use different private keys that should be protected
by the existing key protection solutions [4], [11] or the trusted
execution environments.

VI. SECURITY ANALYSIS

In this section, we analyze the security of Ruledger against
the attacks.
API Level Attacks. Ruledger prevents API level attacks by
ensuring the authenticity of users, rules, events, and triggers,
and thus guarantees the execution integrity of smart home
systems. All functionalities are performed via transactions that
are executed and verified by smart contracts, and all execution
records are stored in the ledgers. Thus, all fake events and fake
actions triggered by APIs can be detected by Ruledger.

First, user accounts and rule configuration cannot be faked
and manipulated. Ruledger utilizes a wallet private key to
sign user accounts and rule configuration in the configuration
synchronization phase, and records these information into the
ledger via a consensus process. Any attacker cannot abuse API
to inject fake users or rule configurations due to the lack of
the key. Thus, all users and rule information cannot be faked
and manipulated by API level attacks.

Second, Ruledger ensures that any events in smart home
devices actually occur. Particularly, the execution of the oper-
ations can only be triggered by the trigger transactions on
the ledger via the execution agents of Ruledger and each
operation associated with event changes can only be triggered
once through the execution agent. Thus, all execution logs
associated with events are recorded in Ruledger. The attacks
constructed by any malicious users, e.g., via a compromised

user agent, cannot abuse any rule or trigger malicious execu-
tion of an operation specified in a rule because they cannot
generate fake triggers that can be verified by Ruledger.

Third, triggers in Ruledger based smart home systems
cannot be faked so that requests generated from the trigger-
action platforms are authentic. In order to execute a rule in
Ruledger, different parameters, e.g., event info and a tempo-
rary key Cid), are submitted to the trigger-action platform, and
then the platform generates trigger requests that carry these
parameters to trigger specific actions for IoT devices. As rule
configurations and new rule execution tasks under execution
are triggered by the execution agent of Ruledger in the devices,
an attack against the trigger-action platforms can only exploit a
single operation by generating and submitting fake parameters.
Even if the attacker can inject the correct parameters to trigger
the execution of an operation, the ledger in Ruledger can
ensure that the operations of a task with correct parameters
can only be executed once and the action operations are really
executed based on the trigger records in the ledger. Note that,
the trigger-action platform can only trigger an operation with
valid parameters once when the trigger event is authentic and
the operation is not overprivileged.
Platform Compromise Attacks. Ruledger can prevent the
platform compromise attacks that may be constructed in each
component. We will show how the execution integrity is
ensured even under different platform compromise attacks.

If the trigger-action platform is compromised, attackers still
cannot abuse the rules of various users to generate malicious
requests because Ruledger will filter out such requests that
are not recorded in the ledger of Ruledger. If the ledger based
IoT platform is compromised, Ruledger can still ensure the
rule execution integrity. Since rules and the corresponding op-
eration records are triggered by smart contracts and generated
via ledger transactions, the ledger nodes verify and execute the
transactions by using the pBFT consensus algorithm [15] that
can tolerate at most one-third of nodes being compromised.
In the worst case, one-third of nodes are malicious, and
they could prevent the committing of transactions or submit
malicious transactions. The ledger in Ruledger can still reach
consensus and commit the transactions successfully. Note that,
if devices or the corresponding gateway are compromised, we
cannot prevent the abuse of compromised devices. However,
Ruledger can still prevent the attack of event spoofing since
the attacker cannot inject fake logs of operation execution.
The reason is that any fake events cannot produce fake logs
in the log service of Ruledger as they are not invoked by
the execution agent and cannot obtain the random log key to
record the events.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

We prototype Ruledger by using an open-source blockchain
system [2]. The task agent, execution agent and user agent
are implemented as web services with the Python Django
framework invoking the wallet SDK to commit transactions
and rules onto the ledger.

7

We evaluate the performance of each Ruledger module
and the end-to-end system performance. In particular, we
measure the latency and throughput of Ruledger modules and
the integration of Ruledger with SmartThings and IFTTT.
The prototype system is deployed in seven elastic cloud
servers and each is configured with 4 core Intel Xeon CPU
(3.10 GHz), 8G memory, and Ubuntu 20.04 OS. There are 4
blockchain nodes deployed on 4 servers. Note that in order
to measure the throughput, we need to send multiple requests
concurrently, which is constrained by the rate-limit mechanism
in the SmartThings Device Handler and the IFTTT. Thus, we
implement a skeleton device simulator and a trigger-action
service similar to IFTTT Maker to measure the throughput of
the system with and without Ruledger.

B. The Performance of Ruledger Modules

The main overhead of Ruledger is incurred by verifying rule
triggers and rule execution, which are performed via smart
contracts and the corresponding requests are converted to
transactions. In this experiment, we measure the performance
of the two modules and their impacts on the platforms. To
accurately measure the performance, we use the task agent and
execution agent to perform mock tests for transaction commit,
and these agents do not interact with devices and trigger-action
platforms but directly commit the mock transactions to the
ledger. Note that, the delay of the task agent and the execution
agent includes the delay incurred by other modules, such as
request parsing and operation executions, which could have
various delays corresponding to the detailed rules.
The Latency Incurred by Modules. To measure the latency
of the transaction commit which is incurred by the trigger
event verification smart contract module and the action verifi-
cation smart contract module, we use an execution agent and
a task agent to submit test transactions to the ledger directly.
These transactions do not need to be triggered by requests from
device gateways or trigger-action platforms so that we can get
the real transaction commit time without the network latency.
The average latency of the trigger event verification module is
32.45ms which includes all the procedures from a transaction
being submitted by the execution agent to the verification of
the smart contract and the transaction finally being committed
to the ledger. And this time for the action verification module
is 32.83ms. As the execution of a rule needs to commit the two
transactions, the total latency of the smart contract modules is
less than 70 ms which is acceptable as it is only 4.36% of the
whole rule execution latency.
Throughput of Smart Contract Modules. Since a transaction
is committed only when all the ledger nodes reach consensus
via pBFT [15], the number of transactions that can be commit-
ted by the ledger in one second is limited. We submit transac-
tions concurrently to test the ledger’s transaction throughput
threshold and check if it is the performance bottleneck of
rule executions. We use the task agent and execution agent to
submit different numbers of concurrent transactions and check
how many transactions can be committed in a limited time.

(a) Triggering Event Verification (b) Action Verification

Fig. 5: The throughput of Ruledger verification modules

TABLE II: Comparison of average execution latency.

SmartThings Ruledger Delay
End-to-end execution latency

in average of 30 trials 1.403 s 1.604 s 12.53%

The throughput is plotted in Fig. 5. The concurrent trans-
actions are submitted to the modules with valid test data for
verification. By recording the start time and finish time of
the transactions, we can measure the number of transactions
processed per second. The throughput of the triggering event
verification module is 43 TPS (transactions per second) and
that of the action verification module is 55 TPS. Also, we
evaluate how ledger nodes affect the throughput. The results
show that the throughput is not significantly impacted by
Ruledger. The results demonstrate the feasibility of Ruledger.

C. Performance of The Entire System

We measure Ruledger’s overhead of rule execution in real-
world deployments by integrating it with SmartThings and
IFTTT and then testing the rule execution latency as well as
the throughput of the whole system. We use the IFTTT Maker
channel to trigger the ”heart rate alert” rule and set simulated
devices for a smart watch and a smart lock in the SmartThings
WebIDE [9].
End-to-End Latency. To measure the latency of a round-trip
from rule triggering to action execution, we deploy Ruledger
as a middleware between the SmartThings platform and IFTTT
and then execute rules under the protection of this middleware.
And the baseline is implemented using the default usages of
IFTTT that IFTTT directly controls the device handlers of
SmartThings and do not use Ruledger as a middleware. We
record the whole time of triggering and execution of the ”heart
rate alert” rule that is required by our ledger based version
and the baseline.

The result is shown in Table II. The execution latency of the
baseline includes time for two requests, the event request from
a smart watch simulator of SmartThings to the IFTTT Maker
channel, and the action request from the IFTTT to a smart lock
device. By using logs in the SmartThings WebIDE, we can
record the event request’s sending time as the start time and the
action request’s receiving time as the end time to get the round
trip time. However, it is impossible for users to filter out the
network latency and the IFTTT’s processing time since we can
not get any log with an accurate time of the processing from
the IFTTT. In the baseline system, the execution of the whole

8

TABLE III: The throughput of Ruledger and SmartThings with
2000 concurrent requests

Baseline Ruledger Decrease
Throughput (req/s) 43.37 40.57 6.5%

rule finished in 1.403 s and in the system based on Ruledger,
this time is 1.604s which includes time for interactions with
the ledger and the time of sending requests. The overall latency
of rule execution shows a 12.5% increase in the Ruledger
version which is about 200 ms, comparing with the baseline.

The IFTTT’s rule trigger [36] is not generated in real time
as the default polling mode has a delay of seconds or minutes
and the pushing mode incurs a delay of less than 1s. The
latency of Ruledger does not affect the rule execution as the
IoT rules do not need to be triggered immediately, which can
tolerate a delay of several hundreds of milliseconds.
Throughput. As the SmartThings device simulators and the
IFTTT have rate limit and cannot be triggered in a high
frequency, we implement two simulated devices for smart
watch and smart lock which can return the heart rate data or
execute the unlock operation via HTTP requests, and we also
implement a custom trigger-action service which works the
same as IFTTT Maker to process unlimited requests. The rule
could be triggered by sending requests with an abnormal heart
rate, and we adjust the request number and frequency to test
the throughput. For the Ruledger version, we use the execution
agent and the task agent to convert requests to transactions
and verify these transactions via ledger and smart contracts.
In the baseline system, we just let the execution agent send
origin requests to the task agent and do not interact with the
ledger, as well as letting the task agent directly send the action
requests to the execution agent to execute actions without the
ledger’s verification. In this way, we ensure that the network
and machine status are the same in the two deploy versions.

To measure the throughput of rule processing, we construct
2,000 concurrent requests in the experiment. As shown in
Table III, the system without ledger processes 43.37 requests
of rule execution per second, and Ruledger handles 40.57
requests per second. The throughput is reduced by 6.5%,
which is negligible.

VIII. RELATED WORK

Trigger-action Platform Security. DTAP [20] aims to provide
action integrity for rule execution, which is most related to our
work. It can prevent arbitrary rule executions from exploiting
leaked OAuth tokens. In particular, it leverages coarse-grained
XTokens in devices to protect rule-specific tokens, and verifies
rule executions for action services. Unfortunately, it is unable
to prevent attacks that use vulnerable APIs to generate fake
events. Besides, DTAP can only constrain the ability of an
attacker to steal a rule-specific token rather than preventing
the attacker from exploiting rule execution. Ruledger well
addresses this issue. Ruledger utilizes the tamper-proof feature
of the ledger to verify the authenticity of the information and
the integrity of rule execution. Moreover, The event spoofing

attack[19] and active attacks[31], [22], [39], [38], [16] against
trigger-action platforms is not well addressed in the literature.
Our Ruledger well addresses these issues by automatically
recording verifiable operation execution records in ledger with
smart contracts.
Access Control for IoT System. IoT applications in IoT
framework, e.g., SmartThings [9], use OAuth tokens to execute
rules in target IoT cloud services, which suffers from the
overprivileged issue due to the coarse-grained access control
and lack of functionality isolation. Moreover, the exposure of
original device APIs may incur privacy leakage. A number
of studies focus on developing fine-grained access control
mechanisms for IoT. For instance, FlowFence [18] utilizes
a secure flow control mechanism to control sensitive data
used by apps by executing device functions in sandboxes.
FACT [34] uses access control list (ACL) registered by user
to examine the privileges of applications. Situational access
control [32] provides function wrapping for device APIs and
uses unified IoT events, instead of revealing privacy data to IoT
framework platforms or trigger-action platforms. These ap-
proaches can prevent overprivileged rule executions. Although
these mechanisms heavily rely on OAuth tokens, device APIs
can be easily abused if OAuth tokens are leaked. In order to
prevent violation of execution integrity, Ruledger utilizes the
device scripts in the ledger to verify the authenticity of the
information, instead of using a token to execute rules.
Blockchain for IoT Security. Blockchain has been leveraged
to protect IoT [26] [27] [17] [29] [25]. For example, a
blockchain based smart home framework [26] records device
management and device communication history as time or-
dered transactions and enforce these transactions according to
embedded policies. Moreover, several blockchain based access
control approaches [35], [27], [17], [29], [40], [25] have been
proposed. Our Ruledger is orthogonal to these approaches.
We can leverage these approaches to implement fine-grained
access control in the ledger.

IX. CONCLUSION

In this paper, we propose Ruledger, a ledger based IoT
platform, which is used to ensure the integrity of rule execu-
tions in trigger-action based smart home systems. Particularly,
Ruledger utilizes applications built upon ledger wallets to
honestly record information generated by smart home systems
in the ledgers via ledger transactions, and smart contracts auto-
matically verify the authenticity of the information associated
with rule executions according to ledger transaction records.
We prototype Ruledger with a real trigger-action platform and
the experiment results with the prototype demonstrate that
Ruledger incurs acceptable overhead for real deployment.

ACKNOWLEDGEMENT

The work is supported in part by the National Key R&D
Program of China under Grant 2018YFB1800304 and BNRist
under Grant BNR2020RC01013. Bo Tang and Qi Li are the
corresponding authors of this paper.

9

REFERENCES

[1] Apple Homekit. https://www.apple.com/ios/home/.
[2] FISCO-BCOS. https://github.com/FISCO-BCOS/FISCO-BCOS.
[3] IFTTT. https://ifttt.com/.
[4] Intel. https://www.intel.com/content/dam/www/public/us/en/documents/

white-papers/key-protection-technology-paper.pdf.
[5] Microsoft Flow. https://flow.microsoft.com/en-us/.
[6] MQTT. https://mosquitto.org/.
[7] OAuth website. https://oauth.net/2/.
[8] Secure Wallet. https://www.ecomi.com/.
[9] SmartThings WebIDE. https://graph.api.smartthings.com/.

[10] The Ethereum Project. https://www.ethereum.org.
[11] Unbound Tech. https://www.unboundtech.com/solutions/

blockchain-key-management/.
[12] Zapier. https://zapier.com/.
[13] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: Security

evaluation of home-based iot deployments. In IEEE S&P, pages 1362–
1380, 2019.

[14] L. Xing D. Zhao XF Wang D. Zou H. Jin B. Yuan, Y. Jia and Y. Zhang.
Shattered chain of trust: Understanding security risks in cross-cloud iot
access delegation. In USENIX Security, 2020.

[15] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,
page 173–186, 1999.

[16] H. Chi, Q. Zeng, X. Du, and J. Yu. Cross-app interference threats in
smart homes: Categorization, detection and handling. In DSN, pages
411–423, 2020.

[17] D. Derler, K. Samelin, D. Slamanig, and C. Striecks. Fine-grained and
controlled rewriting in blockchains: Chameleon-hashing gone attribute-
based. IACR Cryptology ePrint Archive, 2019.

[18] A. Rahmati D. Simionato M. Conti E. Fernandes, J. Paupore and
A. Prakash. Flowfence: Practical data protection for emerging iot
application frameworks. In USENIX Security, pages 531–548, 2016.

[19] J. Jung E. Fernandes and A. Prakash. Security analysis of emerging
smart home applications. In IEEE S&P, pages 636–654. IEEE, 2016.

[20] J. Jung E. Fernandes, A. Rahmati and A. Prakash. Decentralized action
integrity for trigger-action iot platforms. In NDSS, 2018.

[21] M. Balliu I. Bastys and A. Sabelfeld. If this then what? controlling
flows in iot apps. In CCS, page 1102–1119, 2018.

[22] J. Martinez N. Brackenbury S. Lu L. Zhang, W. He and B. Ur. Autotap:
synthesizing and repairing trigger-action programs using ltl properties.
In ICSE, pages 281–291, 2019.

[23] P. Naldurg M. Monshizadeh and V. N. Venkatakrishnan. Mace: Detecting
privilege escalation vulnerabilities in web applications. In CCS, page
690–701, 2014.

[24] L. Bauer A. Das M. Surbatovich, J. Aljuraidan and L. Jia. Some recipes
can do more than spoil your appetite: Analyzing the security and privacy
risks of ifttt recipes. In WWW, page 1501–1510, 2017.

[25] D. Maesa and L. Mori, P.and Ricci. A blockchain based approach for the
definition of auditable access control systems. Computers & Security,
84:93–119, 2019.

[26] D. Minoli and B. Occhiogrosso. Blockchain mechanisms for iot security.
Internet of Things, 1:1–13, 2018.

[27] Os. Novo. Blockchain meets iot: An architecture for scalable access
management in iot. IEEE Internet of Things, 5(2):1184–1195, 2018.

[28] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In {USENIX} ATC, pages 305–319, 2014.

[29] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman. Fairaccess: a new
blockchain-based access control framework for the internet of things.
SCN, 9(18):5943–5964, 2016.

[30] A. Bates Q. Wang, WU. H and C. Gunter. Fear and logging in the
internet of things. In NDSS.

[31] W. Yang S. Liu A. Bates Q. Wang, P. Datta and Carl A. Gunter. Charting
the attack surface of trigger-action iot platforms. In CCS, pages 1439–
1453, 2019.

[32] V. Shmatikov R. Schuster and E. Tromer. Situational access control in
the internet of things. In CCS, page 1056–1073, 2018.

[33] S. Eberz S. Birnbach and I. Martinovic. Peeves: Physical event
verification in smart homes. In CCS, page 1455–1467, 2019.

[34] J. Kim B. Cho S. Lee H. Kim S. Lee, J. Choi and J. Kim. Fact:
Functionality-centric access control system for iot programming frame-
works. In SACMAT, pages 43–54, 2017.

[35] B. Tang, H. Kang, J. Fan, Q. Li, and R. Sandhu. Iot passport: A
blockchain-based trust framework for collaborative internet-of-things.
In SACMAT, pages 83–92, 2019.

[36] Y. Zhang X. Mi, F. Qian and XF. Wang. An empirical characterization
of ifttt: Ecosystem, usage, and performance. In IMC, page 398–404,
2017.

[37] YH. Lin XF. Wang B. Ur XZ. Guo Y. Tian, N. Zhang and P. Tague.
Smartauth: User-centered authorization for the internet of things. In
USENIX Security, pages 361–378, 2017.

[38] G. Tan Z. Celik and P. McDaniel. Iotguard: Dynamic enforcement of
security and safety policy in commodity iot. In NDSS, 2019.

[39] P. McDaniel Z. Celik and G. Tan. Soteria: Automated iot safety and
security analysis. In USENIX ATC, pages 147–158, 2018.

[40] G. Zyskind and O. Nathan. Decentralizing privacy: Using blockchain to
protect personal data. In IEEE S&P Workshops, pages 180–184, 2015.

APPENDIX A
RULE AND SMART CONTRACT SAMPLES IN RULEDGER

A. A Sample Smart Contract for Information Verification

pragma solidity ˆ0.4.24;

contract Executor is LibUtils, ORM{
function ledgerVerifyTrigger(int usr_rule_id, int
usr_id, int rule_id, string rule_name, int step_id

) public returns(int) {
// check rule execution access
int memory usrItem = verifyUsrRule(usr_rule_id,
usr_id, rule_id, rule_name);
if (usrItem == RES_ERR) {

return ERR_USER_VERIFY_FAILED;
}
// triggering event verification
string[] memory conKeys = new string[](2);
int[] memory conVals = new int[](2);
conKeys[0] = "tRule_id";conKeys[1] = "tStep_id";
conVals[0] = usrItem; conVals[1] = step_id - 1;
string[] memory trEvts = new string[](3);
trEvts[0] = "tTask_id"; trEvts[1] = "tStep_id";
trEvts[2] = "tResult";
int[] memory rets = selectEntry(trEvtTblName,
conKeys, conVals, trEvts);
// check if the trigger record exist
if (rets.length <= 0 || rets[1] != step_id - 1
|| rets[2] != RES_OK) {
return ERR_TRIGER_VERIFY_FAILED;

}
return RES_OK;

}
}

B. Defined Rules in Ruledger

def alert_on_heart_rate(device_id, token):
data = RPC_CALL(HEAR_RATE_API, device_id, token)
if data.success:

heart_rate = data.get("heart_rate")
return heart_rate <= MIN_RATE or

heart_rate >= MAX_RATE
return False

def open_door_operation(device_id, token):
res = RPC_CALL(SMARTLOCK_UNLOCK, device_id, token)
return res.success

title = "alert on heart rate"
TRIGGER_OPERATIONS = [(alert_on_heart_rate,

device_info1, OP_AND)]
CONDITION = IF_TRUE # lambda v: v is True
ACTION_OPERATIONS = [(open_door_operation,

device_info2, OP_AND)]
RULE_DEFINE(title, TRIGGER_OPERATIONS, CONDITION,

ACTION_OPERATIONS)

10

