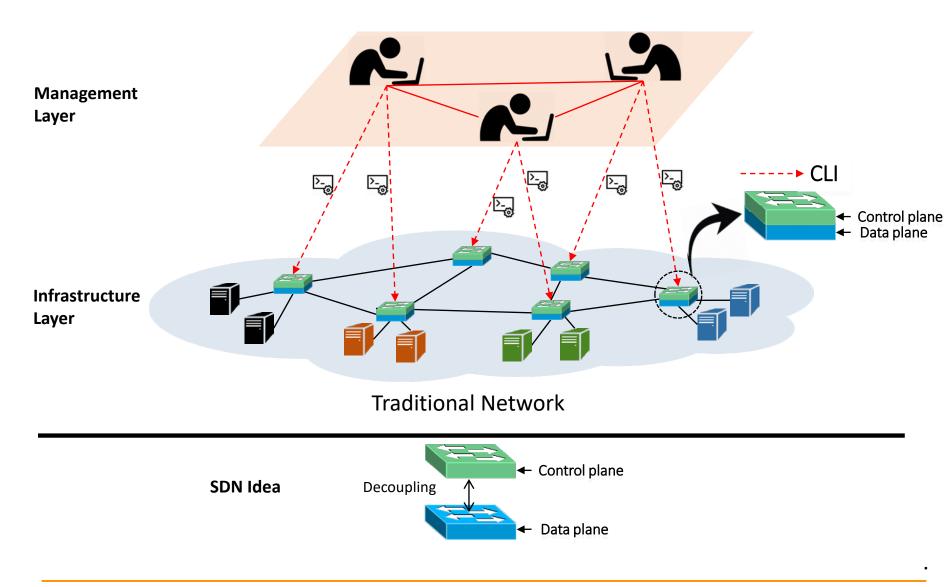


ParaSDN: An Access Control Model for SDN Applications based on Parameterized Roles and Permissions

Abdullah Al-Alaj¹, Ram Krishnan² and Ravi Sandhu¹

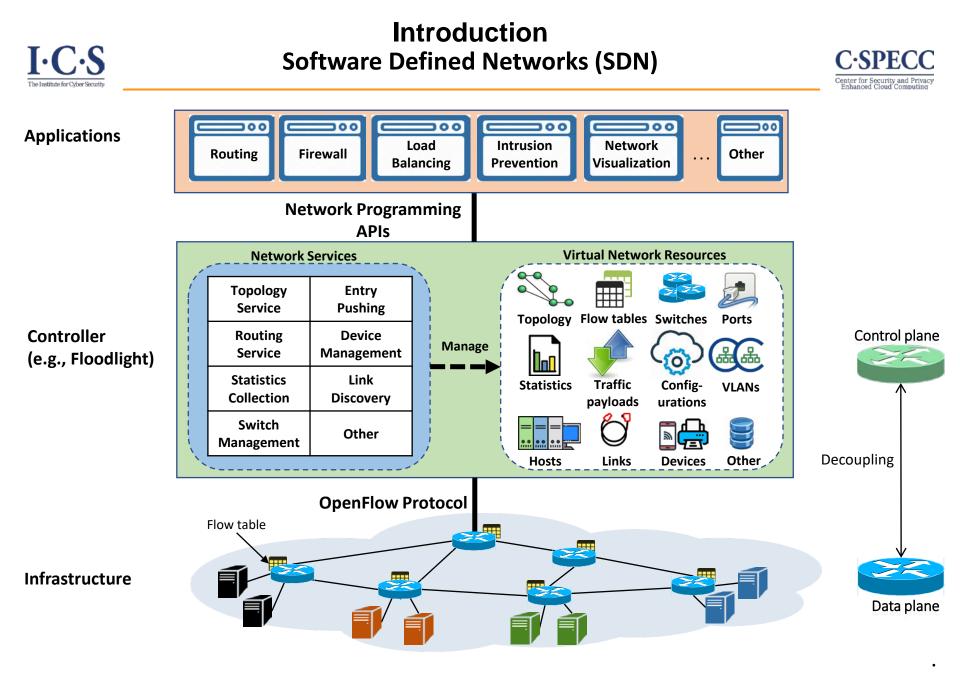
¹Dept. of Computer Science ²Dept. of Electrical and Computer Engineering ^{1,2}Institute for Cyber Security ^{1,2}Center for Security and Privacy Enhanced Cloud Computing (C-SPECC) University of Texas at San Antonio, TX 78249

The 6th IEEE International Conference on Collaboration and Internet Computing (CIC 2020) December 1 - 3, 2020



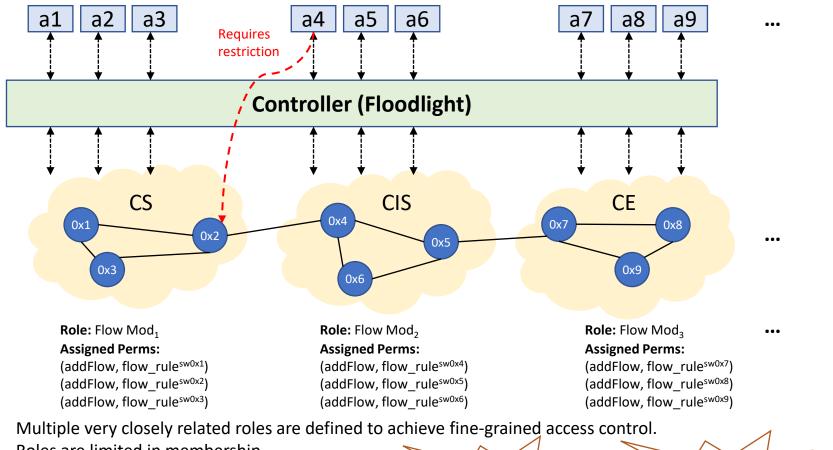
- Introduction to Software Defined Networking (SDN)
- Parameterized Roles and Permissions in SDN
- ParaSDN main components
- ParaSDN Parameter Engine
- ParaSDN Conceptual Model and Definitions
- Use-Case Security Configuration in SDN-RBAC
- ParaSDN Implementation & Evaluation
- Conclusion and Future Work

Introduction Traditional Networks



I·C·S

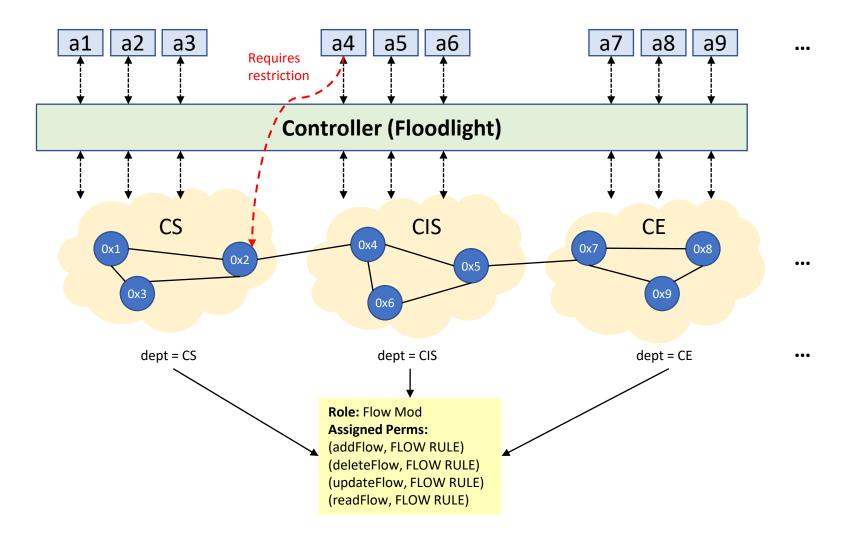
The Institute for Cyber



Apps are authorized on object types (e.g., (addFlow, FLOW RULE)) ightarrow Fine grained access control is required.

• Roles are limited in membership.

Permission


explosion

Role

explosion

I.C.S

Introducing Parameterized Roles and Permissions in SDN

C-SPECC

- Formal Access control model for SDN enhanced with role and permission parameters
- Authorization Framework extended with parameter engine and enforcement in SDN controller.

Fine-Grained and Scalable Access Control for SDN

• Parameters

- name:value pairs.
- Add restrictions on access to network resources.

• Parameterized Roles:

 $(r_i, \{(par_1, val_1), (par_2, val_2), ...\})$

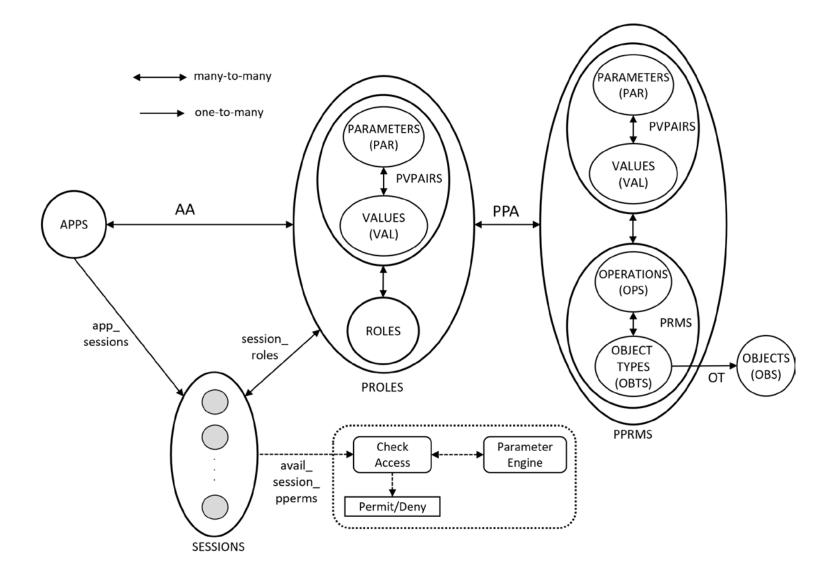
Example:

(Flow Mod, {(dept, \perp), (traffic, \perp)})

• Parameterized Permissions:

 $((op_i, ot_i), \{(par_1, val_1), (par_2, val_2), ...\})$

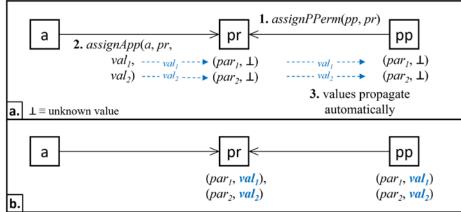
Example:

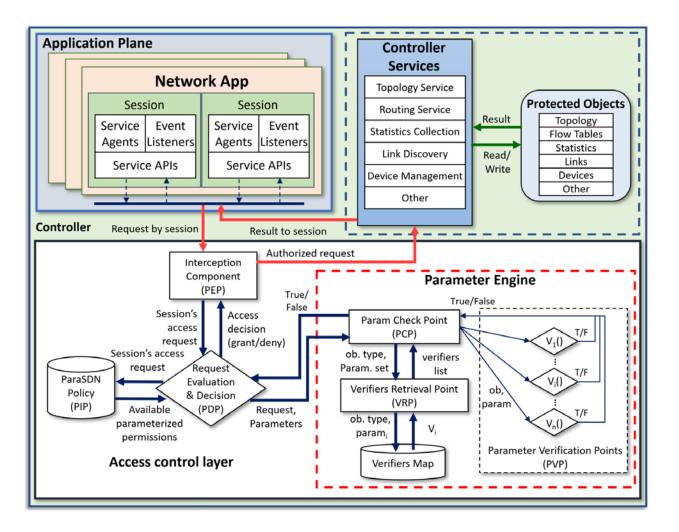

((addFlow, FLOW-RULE), {(dept, \perp), (traffic, \perp)})

 $\perp = Unknown.$

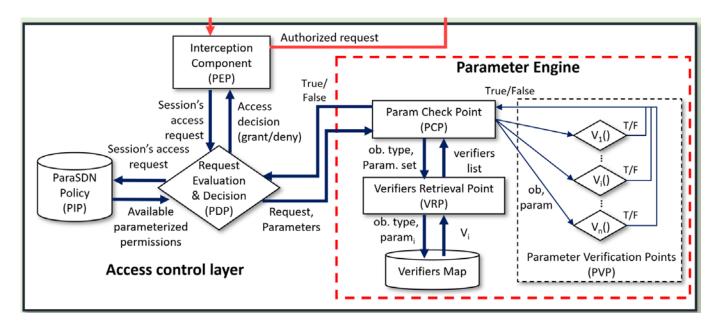
ParaSDN Conceptual Model

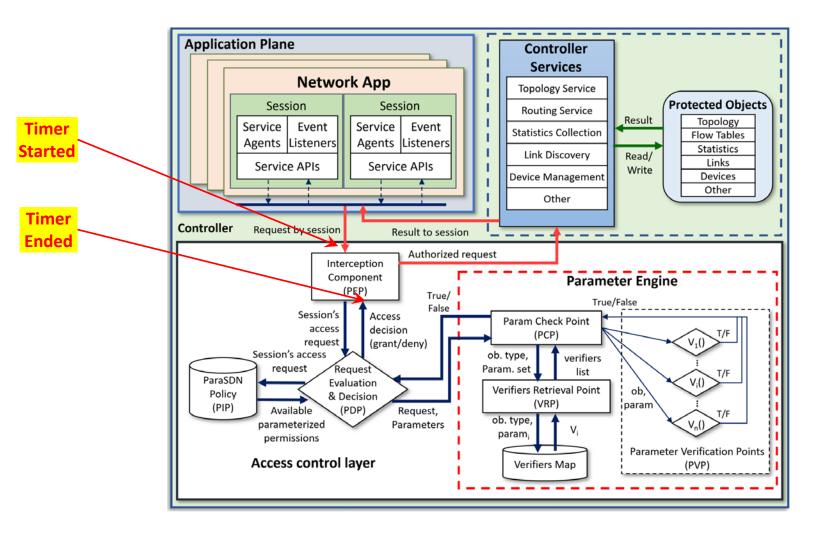
C-SPECC

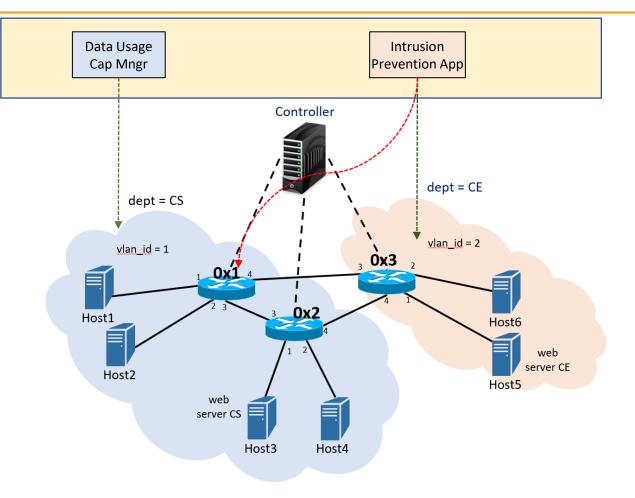

1.Basic Sets: APPS, ROLES, OPS, OBS, OBTS, PAR, and VAL: set of apps, roles, operations, objects, object types, parameters, and parameter values. For each $par \in PAR$, Range(par) represents the parameter's range, a finite set of atomic values. We assume VAL includes a special value " \perp " to indicate that the value of a parameter is unknown. parType: PAR \rightarrow {set, atomic} specifies parameter type as set of atomic valued. PRMS \subseteq OPS \times OBTS, set of ordinary permissions. SESSIONS, set of sessions. 2.Assignment Relations: $OT \subseteq OBS \times OBTS$, a many-to-one relation mapping an object to its type, where $(o, ot_1) \in OT \land (o, ot_2) \in OT \Rightarrow ot_1 = ot_2.$ **PVPAIRS** \subseteq **PAR** \times **VAL**, a many-to-many mapping parameter to value assignment relation. For convenience, for every pypair = $(par_i, val_i) \in PVPAIRS$, let pypair.par = par_i and pypair.val = val_i . PPRMS \subseteq PRMS $\times 2^{PVPAIRS}$, a relation mapping a permission role to subset of (parameters, value) combinations. For convenience, for every $pp = ((op_i, ot_i), PVPAIRS_i) \in PPRMS$, let $pp.op = op_i$, $pp.ot = ot_i$, and $pp.PVPAIRS = PVPAIRS_i$. PROLES \subseteq ROLES $\times 2^{PVPAIRS}$, a relation mapping a role to subset of combinations of parameters and their values. For convenience, for every $pr = (r_i, PVPAIRS_i) \in PROLES$, let $pr.r = r_i$ and $pr.PVPAIRS = PVPAIRS_i$. $PPA \subseteq PPRMS \times PROLES$, a many-to-many mapping parameterized permission to parameterized role assignment relation. $AA \subseteq APPS \times PROLES$, a many-to-many mapping app to parameterized role assignment relation. **3.Derived Functions:** assigned_pperms: PROLES $\rightarrow 2^{PPRMS}$, the mapping of parameterized role into a set of parameterized permissions. Formally, assigned_pperms(pr) = { $pp \in PPRMS - (pp, pr) \in PPA$ }. app sessions: APPS $\rightarrow 2^{SESSIONS}$, the mapping of an app into a set of sessions. session_app : SESSIONS $\rightarrow 2^{APPS}$, the mapping of session into the corresponding app. session_roles: SESSIONS $\rightarrow 2^{PROLES}$, the mapping of session into a set of parameterized roles. Formally, session_roles(s) = { $pr \in PROLES - (session_app(s), pr) \in AA$ }. type: OBS \rightarrow OBTS, a function specifying the type of an object defined as type(o) = { $t \in OBTS - (o, t) \in OT$ }. avail_session_pperms; SESSIONS $\rightarrow 2^{PPRMS}$, the parameterized permissions available to an app in a session. Formally, avail_session_pperms(s) = $\bigcup_{pr \in session_roles(s)}$ assigned_pperms(pr) **4.**Parameter Verification Functions: VERIFIERS = $\{V_1, V_2, ..., V_n\}$ a finite set of Boolean functions. For each $V_i \in VERIFIERS V_i$: SESSIONS × OPS × OBS × PVPAIRS \rightarrow {True, False}. param_verifier: OBTS \times PAR \rightarrow VERIFIERS, a function that maps a combination of object type and parameter to the corresponding verification function needs to be evaluated.


 Parameter values assigned via assignApp administrative action propagate automatically from role parameters to permission parameters

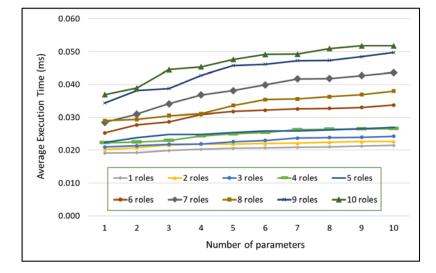
Function	Authorization	Update
	Condition	
assignPPerm(pp,	$pp \in PPRMS \land pr \in$	$PPA' = PPA \bigcup \{(pp, pr)\}$
pr)	PROLES \bigwedge (pp, pr) \notin	
	PPA	
assignApp(a, pr,	$a \in APPS \land pr \in$	//Assign values to role parameters.
valset)	PROLES \wedge	For each pr_pvpair _i \in pr.PVPAIRS, v _i \in valset, $1 \le i \le \text{pr.PVPAIRS} $ do
	valset \in VAL \bigwedge (a, pr)	$pr_pvpair_i.val = v_i$
	∉ AA	//Pass parameter values from pr to its member parameterized permissions.
		For each $pp \in PPRMS$: $(pp, pr) \in PPA$ do
		For each $pr_pvpair_i \in pr.PVPAIRS$, $pp_pvpair_i \in pp.PVPAIRS$, $1 \le i \le pr.PVPAIRS $ do
		$pp_pvpair_i.val = pr_pvpair_i.val$
		$AA' = AA \bigcup \{(a, pr)\}$



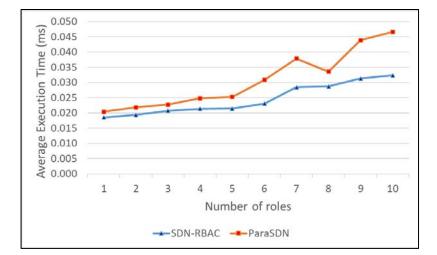

- The General functionality of the Parameter Engine is distributed among multiple components:
 - Parameter Check Point (PCP),
 - Verifiers Retrieval Point (VRP), and
 - multiple Parameter Verification Points (PVPs).



Use-Case & Security Configuration in ParaSDN Model



1. Model Basic Sets:	3. Derived Functions:
 APPS = {Data Usage Cap Mngr, Intrusion Prevention App}. 	- assigned pperms((Device Handler, {(vlan id, \perp)})) = {((queryDevice, DEVICE),
- ROLES = {Device Handler, Bandwidth Monitoring, Flow Mod, Packet-In Handler}.	
- OPS = {queryDevice, getBandwidthConsumption, addFlow, readPacketInPayload}.	$\{(vlan_id, \perp)\})\}.$
- OBS = $D \cup PS \cup FR \cup PIP$, where D = set of all network devices, PS = set of all port	$assigned_pperms((Bandwidth Monitoring, \{(attachment_point, \perp)\})) =$
statistics in all switches, $FR = set$ of all flow rules, and $PIP = set$ of all packet-in messages.	$\{(getBandwidthConsumption, PORT-STATS), \{(attachment_point, \bot)\})\}.$
 OBTS = {DEVICE, PORT-STATS, FLOW-RULE, PI-PAYLOAD}. 	assigned _pperms((Flow Mod, {(dept, \perp), (traffic, \perp)})) = {((addFlow, FLOW-RULE),
$-$ PAR = {vlan_id, attachment_point, dept, traffic}.	$\{(\text{dept}, \bot), (\text{traffic}, \bot)\}\}.$
- Range(vlan id) = $\{1, 2\}$. Range(attachment point) = $\{0x1:1, 0x1:2, 0x2:1, 0x2:2, 0x3:1\}$.	assigned_pperms((Packet-In Handler, {(attachment_point, \perp)})) =
$Range(dept) = \{CS, CE\}. Range(traffic) = \{web\}.$	$\{(\text{readPacketInPayload, PI-PAYLOAD}), \{(\text{attachment_point, } \perp)\})\}.$
- $parType(vlan id) = atomic. parType(attachment point) = set. parType(dept) = set.$	
parType(traffic) = atomic.	app_bebblons(bata ebage cap hingr) = (bataebagerinarybiobebblon,
- PRMS = {(queryDevice, DEVICE), (getBandwidthConsumption, PORT-STATS),	DataCapEnforcingSession}.
(addFlow, FLOW-RULE), (readPacketInPayload, PI-PAYLOAD)}.	$app_sessions(Intrusion Prevention App) = {IntrusionPreventionSession}.$
 SESSIONS = {DataUsageAnalysisSession, DataCapEnforcingSession, 	$- session_roles(DataUsageAnalysisSession) = \{(Device Handler, \{(vlan_id, 1)\}),\$
IntrusionPreventionSession}.	(Bandwidth Monitoring, $\{(attachment point, \{0x1:1, 0x1:2, 0x2:1\})\}$).
2. Assignment Relations:	session roles(DataCapEnforcingSession) = { [Flow Mod, { (dept, { $CS}$ }, (traffic, web) }).
- OT = {(d, DEVICE) : $d \in D$ } \bigcup {(ps, PORT-STATS) : ps \in PS} \bigcup {(fr, FLOW-RULE) :	session roles(IntrusionPreventionSession) = {(Device Handler, {(vlan id, 2)}), (Packet-In
$fr \in FR \bigcup \{(pip, PI-PAYLOAD) : pip \in PIP \}\}.$	Handler, { $(attachment point, {0x3:1})$ }, (Flow Mod, { $(dept, {CE})$, (traffic, web)})}.
- PPRMS = {((queryDevice, DEVICE), {(vlan_id, \perp)}), ((getBandwidthConsumption,	 avail_session_pperms(DataUsageAnalysisSession) = {((queryDevice, DEVICE),
PORT-STATS), {(attachment_point, \perp)}),	
$((addFlow, FLOW-RULE), \{(dept, \perp), (traffic, \perp)\}), ((readPacketInPayload, (addFlow, FLOW-RULE)), \{(dept, \perp), (traffic, \perp)\})$	$\{(vlan_id, 1)\},$
$PI-PAYLOAD), \{(attachment_point, \bot)\})\}$	((getBandwidthConsumption, PORT-STATS), {(attachment_point, {0x1:1, 0x1:2,
- PROLES = {(Device Handler, {(vlan_id, \perp)}), (Bandwidth Monitoring,	0x2:1)))).
$\{(attachment_point, \perp)\}),$	avail session pperms (DataCapEnforcingSession) =
(Flow Mod, {(dept, \perp), (traffic, \perp)}), (Packet-In Handler, {(attachment_point, \perp)})}	{(addFlow, FLOW-RULE), {(dept, {CS}), (traffic, web)})}.
$- PPA = \{(((queryDevice, DEVICE), \{(vlan_id, \bot)\}), (Device Handler, \{(vlan_id, \bot)\})), (Device Handler, \{(vlan_id, \bot)\})))$	$avail_session_pperms(IntrusionPreventionSession) = {((queryDevice, DEVICE),)}$
$(((getBandwidthConsumption, PORT-STATS), \{(attachment_point, \perp)\}), (BandwidthConsumption, PORT-STATS), (attachment_point, \perp)\})$	{(vlan id, 2)}), ((readPacketInPayload, PI-PAYLOAD), {(attachment point, {0x3:1})}).
Monitoring, {(attachment_point, \perp)})),	((addFlow, FLOW-RULE), {(dept, {CE}), (traffic, web)})}.
(((addFlow, FLOW-RULE), {(dept, \perp), (traffic, \perp)}), (Flow Mod, {(dept, \perp), (traffic,	4. Parameter Verification Functions:
$\perp)))),$	
(((readPacketInPayload, PI-PAYLOAD), {(attachment_point, \perp)}), (Packet-In Handler,	- VERIFIERS = {VDeviceVlan, VStatsAttachpoint, VRuleSwitch, VRuleTraffic,
$\{(attachment_point, \bot)\})\}.$	VPInAttchpoint}.
 AA = {(Data Usage Cap Mngr, (Device Handler, {(vlan_id, 1)})), (Data Usage Cap Mngr, (Bandwidth Monitoring, {(attachment_point, {0x1:1, 0x1:2, 0x2:1, 0x2:2})})), (Data 	$-$ param_verifier((DEVICE, vlan_id)) = VDeviceVlan.
Usage Cap Mngr, [Flow Mod, {(dept, {CS}), (traffic, web)})), (Intrusion Prevention App,	$\underline{param} \underline{verifier((PORT-STATS, attachment \underline{point}))} = VStatsAttachpoint.$
(Device Handler, {(vlan id, 2)}), (Intrusion Prevention App, (Packet-In Handler,	$param_verifier((FLOW-RULE, dept)) = VRuleSwitch.$
{(attachment_point, {0x3:1})}, (Intrusion Prevention App, (Flow Mod, {(dept, {CE}),	param verifier((FLOW-RULE, traffic)) = VRuleTraffic.
$\{(attachment_point, \{0x3.1\}\}\}, (intrusion revention App, (riow wood, \{(dept, \{0.1\}\}\}, (traffic, web)\})\}.$	param_verifier((PI-PAYLOAD, attachment_point)) = VPInAttchpoint.
(uume, woo/j)//j.	



- Test app with 50 ops covered by 10 different roles.
- Report authorization time for all 50 requests.
- Different security policies (parameters and roles).
- Test repeated 100 times for each security policy.
- Average authorization time is calculated.
- Floodlight's boot-up time is ignored.

On average: ParaSDN adds 0.031 ms overhead compared to 0.025 for SDN-RBAC.

In this work:

- We proposed ParaSDN, a formal access control model that provides fine grained capabilities for SDN using the concept of parameterized roles and permissions.
- We implemented a proof of concept prototype in an SDN controller.

Future research

• Extend the model to suit the needs for multi-controller environments in SDN-Enabled technologies like IoT and Cloud infrastructures.

