
1

EXTENDING THE BFA WORKFLOW
AUTHORIZATION MODEL TO EXPRESS
WEIGHTED VOTING.

Savith Kandala and Ravi Sandhu

Savith Kandala Ravi Sandhu

CygnaCom Solutions, Inc. Laboratory for Information Security

Suite 100 West Technology (LIST)

7927 Jones Branch Drive Dept. of Information and Software

McLean, Va 22102 Engineering, MS 4A4

e-mail: skandala@cygnacom.com George Mason University, Fairfax, Va 22030

 e-mail: sandhu@isse.gmu.edu
 Home page: www.list.gmu.edu

Abstract: Bertino, Ferrari and Atluri (BFA) have recently presented a model for
specifying and enforcing authorization constraints for Workflow Management
Systems (WFMS). The model is comprehensive and exhibits strong properties
such as (1) a language to express constraints, (2) formal notions of constraint
consistency and (3) algorithms for role-task and user-task assignments. In this
paper, we extend the BFA model to include primitives for weighted voting.
We show that the BFA model cannot express weighted voting in a
straightforward manner, whereas Transaction Control Expressions (TCEs)
proposed by Sandhu [5] incorporates this notion. Since, all other aspects of
TCEs can be easily simulated in BFA, we believe that the notion of weighted
voting is a fundamental operation which is missing in the BFA model.
Although, we do not formally prove that BFA cannot simulate weighted
voting, we make a strong case that this cannot be done easily or directly. We
also show that the extended-BFA model retains all the strong properties of the
BFA model.

1. INTRODUCTION

In recent years, workflow management systems (WFMSs) have gained
popularity both in research and commercial sectors. WFMSs are used to
coordinate and streamline business processes of an enterprise. A workflow
separates the various activities of an enterprise into well-defined tasks. The
tasks in a workflow are usually carried out by users according to
organizational rules relevant to the process represented by the workflow.
The security requirements imposed by these workflow applications calls for
suitable access control mechanisms. An access control mechanism enforces
the security policy of the organization. Typically a set of authorizations
express this security policy. This is carried out by performing a check

against the set of authorizations to determine if a user intending to execute a
given task on a specified object is actually authorized for it.
Quite often, security policies of a given organization are expressed in terms
of roles within the organization rather than individual users. Roles represent
organizational agents intended to perform certain job functions within the
organization. Users in turn are assigned appropriate roles based on their
qualifications and responsibilities. To directly represent such organizational
security policies, an access control mechanism must be capable of supporting
roles. Specifying authorizations on roles is not only convenient but reduces
the complexity of administration of access control as the number of roles in
an organization are significantly smaller than the number of users. Role-
based authorization is particularly beneficial in workflow environments to
facilitate dynamic load balancing when several individuals can perform a
given task. As a matter of fact, many commercial applications support role-
based authorizations.
Bertino, Ferrari and Atluri (BFA) have recently presented a model for
specifying and enforcing authorization constraints for Workflow
Management Systems (WFMS) in [1]. The model is comprehensive and
exhibits strong properties such as (1) a language to express constraints, (2)
formal notions of constraint consistency and (3) algorithms for role-task and
user-task assignments. In this paper, we try to express a much older model
called Transaction Control Expressions (TCEs) in the BFA model. TCEs
were proposed by Sandhu [5], for the purpose of enforcing dynamic
separation of duties constraints. The BFA model has a much wider scope
than TCEs. So it is natural to ask whether or not BFA can simulate TCEs.
In spite, of the generality of BFA we show in this paper that the BFA model
cannot fully express TCEs. In particular, the notion of weighted voting,
which is a component of TCEs, cannot be expressed in the BFA model. Our
paper does not prove this formally, but it does make a compelling case that
there is no straightforward way of expressing weighted voting in BFA. So at
least from a pragmatic viewpoint BFA should be extended to include
weighted voting. We also show that the strong properties of the BFA model
are still preserved in the extended-BFA model, which incorporates weighted
voting.
The rest of the paper is organized as follows. Sections 2 and 3 give an
overview of TCEs and the BFA model respectively. Section 4, shows how
most aspects of TCEs can be easily expressed in the BFA model, except for
weighted voting. Section 5 gives the extended-BFA model and section 6
shows that the properties of the BFA model are still retained in extended-
BFA model. Section 7 gives the conclusion.

2. TRANSACTION CONTROL EXPRESSIONS
(TCE’S)

In this section we describe the Transaction Control Expressions as proposed
by Sandhu in [5]. The mechanism is very natural and intuitive, being close in
spirit and letter to controls typically encountered in paper-based systems. In

fact, it reflects the world of forms and books in the electronic media of
databases.

Example 2.1
Consider a situation in which payment in the form of a check is prepared and
issued by the following sequence of events.
1. A clerk prepares the check.
2. A supervisor approves the check.
3. A clerk issues the check.

We can specify some separation of duties constraints so that the users
cannot perpetrate fraud in the system. One such constraint can be explicitly
stated as, the users performing prepare, approve and issue transactions should
all be different. So it will take collusion of two clerks and a supervisor to
perpetrate fraud. This is called dynamic separation of duties since a clerk
can perform steps 1 and 3 on different vouchers, but not on the same one.
Static separation of duty would identify two kinds of clerk roles, say
preparation_clerk and issue_clerk, where the former can only do step 1 and
the latter only do step 3. Clearly dynamic separation of duties is more
efficient.
The above example is expressed in TCEs as follows:

prepare • clerk;
approve • supervisor;
issue • clerk;

Each term of a transaction control expression has two parts. The first part
names a transaction. A user assigned (explicitly or implicitly1) to the role
specified in the second part can execute the transaction.
The term “prepare • clerk;” specifies that the prepare transaction can be
executed on a check object only by a clerk. The semi-colon signifies
sequential application of the terms. That is a supervisor can execute the
approve transaction on a check only after a clerk has successfully executed
the proceeding prepare transaction. Finally, separation of duties is further
enforced by requiring that the users who execute different transactions in the
transaction control expression all be distinct. As individual transactions are
executed the expression gets incrementally converted to a history, for
instance as follows.

prepare • Alice; prepare • Alice; prepare • Alice;
approve•supervisor; approve•Bob; approve•Bob;
issue•clerk; issue•clerk; issue•Chris;

(a) (b) (c)

1 Descriptions of role hierarchies and implicit versus explicit role assignments are presented in
[6].

The identity of the user who executes each transaction is recorded to enforce
the requirement that these users be distinct. So if Alice attempts to issue that
check after point (b) in this sequence the system rejects the attempt.
A transaction control expression thus contains a history of transactions
executed on the object in the past and a potential history, which authorizes
transactions that can be executed in the future. The expression begins as a
constraint and ends as a complete history of the object. In a manual system
identification of the users executing each transaction is achieved by
signatures. In automated systems user identities must be recorded with
guaranteed correctness.
Sometimes, different transactions in an object history must be executed by
the same user.

Example 2.2
Consider the following scenario, a project leader initiates a requisition, a
purchase order is prepared for the requisition by a clerk and approved by a
purchasing manager. The purchase order then needs agreement of the same
project leader, who was involved in requisition. Finally, the clerk places the
order.
The following syntax was proposed to identify steps must be executed by the
same user.

requisition •project_leader ↓ x;
prepare_order •clerk;
approve_order •purchasing_manager;
agree • project_leader ↓ x;
order•clerk;

The anchor symbol “↓” identifies which steps must be executed by the same
individual. The “x” following it is a token for relating multiple anchors. For
instance, in the above TCE if the same clerk had to prepare the purchase
order and place the order then we can use the anchor symbol “↓” with a
token “y” for the second and fifth terms in the above TCE.
In some cases, any authorized user can execute a transaction in an object
history. We modify Example 2.1. Any authorized user assigned to the
supervisor role can perform step 2. It would still take a collusion of a
supervisor and a clerk to perpetrate fraud in the system. If the role hierarchy
is such that the supervisor is senior to the clerk, then the supervisor can
perform prepare and approve or he/she can perform approve and issue. But,
the supervisor cannot perform all the three steps.
The following syntax identifies steps, which can be performed by any
authorized user.

prepare • clerk;
approve • supervisor ↑;
issue • clerk;

Since it is a free step a token to identify multiple anchors is not needed.
(Free steps are an extension to the TCE mechanism proposed in [5].)
We now turn the focus on a voting scheme scenario. In some cases, any
authorized user can execute a transaction in an object history. We modify
Example 2.1. The second step now requires that three different supervisor
approve the check. The following syntax is used to express the voting
scheme.

prepare • clerk;
3: approve • supervisor=1;
issue • clerk;

The colon is a voting constraint specifying 3 votes from 3 different
supervisors. This notion is further extended to include weights of different
role as follows:

prepare • clerk;
3: approve • manager = 2, supervisor = 1;
issue • clerk;

In this case, approve transactions with sufficient votes are required before
proceeding to the next term. The number of votes required is interpreted as a
lower bound. The moment 3 or more votes are obtained the next step is
enabled.

3. THE BFA WORKFLOW AUTHORIZATION
MODEL

In this section we describe the workflow authorization model proposed by
Bertino, Ferrari and Atluri in [1], which for convenience we call the BFA
model. The BFA model gives a language for defining constraints on role
assignment and user assignment to tasks in a workflow. By using this
language, we can express conditions constraining the users or roles that can
execute a task. The constraint language supports, among other functions,
both static and dynamic separation of duties. Because, the number of tasks
and constraints can be very large, the BFA model provides formal notions of
constraint consistency and has algorithms for consistency checking.
Constraints are formally expressed as clauses in a logic program. The BFA
model also gives algorithms for planning role and user assignments to
various tasks. The goal of these role-task and user-task planners is to
generate a set of possible assignments, so that all constraints stated as part of
authorization specification are satisfied. The planner is activated before the
workflow execution starts to perform an initial plan. This plan can be

dynamically modified during the workflow execution, to take into account
specific situations, such as the unsuccessful execution (abort) of a task.
In the BFA model, as in most WFMSs, there is an assumption that a
workflow consists several tasks to be executed sequentially. A task can be
executed several times within the same workflow. Such an occurrence of a
given task T is called an activation of T. All activations of a task must be
complete before the next task in the workflow can begin. Each task is
associated with one or more roles. These roles are the only ones authorized to
execute the task. In the remainder of this section U, R, T respectively denote
the set of users, the set of roles and the set of tasks in a given workflow.
In the BFA model the workflow role specification is formally defined as
follows.
Definition 3.1 (BFA Workflow Role Specification) A workflow role
specification W is a list of task role specifications [TRS1, TRS2,…,TRSn],
where each TRSi is a 3-tuple (Ti, (RSi,>i), acti) where Ti∈ T is a task, RSi∈ R
is the set of roles authorized to execute Ti , >i, is a local role order
relationship, and acti∈ N is the number of possible activations of task Ti. The
workflow tasks are sequentially executed according to the order in which
they appear in the workflow role specification.
In order to provide a semantic foundation for the BFA model and to formally
prove consistency, the constraints are represented as clauses in a normal
logic program. The clauses in a logic program can contain negative literals in
their body.
Definition 3.2 (Constraint Specification Language) The constraint
specification language was specified by defining the set of constants,
variables and predicate symbols.
Appendix A has the table of all the predicates used in this paper, a complete
list of all the predicates and their descriptions is given in [1].
A rule is an expression of the form:
H ← A1,……An, not B1,……not Bm, n,m>= 0
Where H, A1,…..An and B1……..Bm are atoms and not denotes negation by
failure. H is the head of the rule and whereas A1,…..An, not B1…….not Bm
is the rule body. Rules can be expressed in the constraint specification
language can be classified into a set of categories according to the predicate
symbols they contain. Namely, explicit rules, assignment rules, static
checking rules and integrity rules. Appendix B has the table of all the rules
mentioned above and their descriptions. The definitions of these rules and
their description are given in [1].
Definition 3.3 (Constraint-Base) Let W be a workflow. The Constraint-
Base associated with W (written CB (W)) consists of a set of explicit,
assignment and integrity rules.
Intuitively, a CB is consistent if and only if the constraints it encodes are
satisfiable. The consistency of a CB is determined by computing and
analyzing its model. Details on CB consistency, consistency analysis and
role-task / user-task assignment algorithms are presented in [1].

4. EXPRESSING TCE’S IN BFA

In this section we show how the separation of duties constraints of TCEs can
be expressed in the BFA model. We illustrate this by expressing all the TCEs
mentioned in section 2 in BFA. In this section we also argue that the
weighted voting scenario which was expressed in section 2 cannot be
expressed in BFA. Although, this is not formally proved, we make a
compelling case that there is no straightforward way of expressing weighted
voting in BFA. So at least from a pragmatic viewpoint BFA should be
extended to include weighted voting.

Basic TCE
Consider the Basic TCE presented in section 2 and the global role hierarchy
where the supervisor dominates clerk:

prepare • clerk;
approve • supervisor;
issue • clerk;

The separation of duties constraints can be enumerated as follows:
C1: A user cannot execute approve, if he/she had successfully executed

prepare.
C2: A user cannot execute issue, if he/she had successfully executed

prepare or approve.
These can be expressed in BFA as follows:

Workflow W = [(prepare,({clerk, supervisor}, {}), 1),
(approve,({supervisor}, {}), 1),
(issue,({clerk, supervisor}, {}), 1)]

Constraint Base CB (W):
R1,1: cannot_dou(U, approve) ← executeu(U, prepare,1);
R2,1: cannot_dou(U, issue) ← executeu(U, approve,1);
R2,2: cannot_dou(U, issue) ← executeu(U, prepare,1);

TCE with Anchors
Consider the TCE with Anchors presented in section 2 and the global role
hierarchy in Figure2:

requisition •project_leader ↓ x;
prepare_order •clerk;
approve_order •purchasing_manager;
agree • project_leader ↓ x;
order•clerk;

purchasing_
manager

clerk

project_
 leader

Figure 1. Role Hierarchy

The separation of duties constraints can be enumerated as follows:
C1: A user cannot execute prepare_order, if he/she had successfully

executed requisition.
C2: A user cannot execute approve_order, if he/she had successfully

executed requisition or prepare_order.
C3: A user executing agree must be the same user who had successfully

executed requisition.
C4: A user cannot execute order, if he/she had successfully executed

requisition, prepare_order, approve_order or agree.

These can be expressed in BFA as follows:
Workflow W = [(requisition,({project_leader}, {}), 1),
(prepare_order,({clerk, purchasing_manager}, {}), 1),
(approve_order,({purchasing_manager}, {}), 1),
(agree,({project_leader}, {}), 1),
(order,({clerk, purchasing_manager}, {}), 1)]

Constraint Base CB (W):
R1,1: cannot_dou(U, prepare_order) ← executeu(U, requisition,1);
R2,1: cannot_dou(U, approve_order) ← executeu(U, prepare_order,1);
R2,2: cannot_dou(U, approve_order) ← executeu(U, requisition,1);
R3,1: must_executeu(U, agree) ← executeu(U, requisition,1);
R4,1: cannot_dou(U, order) ← executeu(U, agree,1);
R4,2: cannot_dou(U, order) ← executeu(U, approve_order,1);
R4,3: cannot_dou(U, order) ← executeu(U, prepare_order,1);
R4,4: cannot_dou(U, order) ← executeu(U, requsition,1);

TCE with Free Steps
Consider the following TCE presented in section 2 and the global role
hierarchy in Figure1:

prepare • clerk;
approve • supervisor ↑;
submit • clerk;

The separation of duties constraints can be enumerated as follows:

C1: A user cannot execute issue, if he/she had successfully executed
prepare or approve.

These can be expressed in BFA as follows:

Workflow W = [(prepare,({clerk, supervisor}, {}), 1),
(approve,({supervisor}, {}), 1),
(issue,({clerk, supervisor}, {}), 1)]

Constraint Base CB (W):
R1,1: cannot_dou(U, issue) ← executeu(U, approve,1);
R1,2: cannot_dou(U, issue) ← executeu(U, prepare,1);

TCE with Simple Voting
Consider the TCE with Simple Voting presented in section 2 and the global
role hierarchy in Figure1. In this TCE, equal weights are assigned to the role
supervisor.

prepare • clerk;
3: approve • supervisor=1;
issue • clerk;

The separation of duties constraints can be enumerated as follows:
C1: A user cannot execute approve, if he/she had successfully executed

prepare.
C2: A user cannot execute approve, more than once. (Three different

users have to execute approve).
C3: A user cannot execute issue, if he/she had successfully executed

prepare or approve.
These can be expressed in BFA as follows:
Workflow W = [(prepare,({clerk, supervisor}, {}), 1),
(approve,({supervisor}, {}), 3),
(issue,({clerk, supervisor}, {}), 1)]
Constraint Base CB(W) :
R1,1: cannot_dou(U, approve) ← executeu(U, prepare,1);
R2,1: cannot_dou(U, approve) ← executeu(U, approve,1);
R2,2: cannot_dou(U, approve) ← executeu(U, approve,2);
R3,1: cannot_dou(U, issue) ← executeu(U, approve,1);
R3,2: cannot_dou(U, issue) ← executeu(U, approve,2);
R3,3: cannot_dou(U, issue) ← executeu(U, approve,3);
R3,4: cannot_dou(U, issue) ← executeu(U, prepare,1);
R3,5: cannot_dou (U, issue) ← count(success(approve, k), n), n < 3;

TCE with Weighted Voting
Consider the TCE with Weighted Voting presented in section 2 and the role
hierarchy in Figure 2.
In this, TCE the notion of voting was further extended to include different
weights to different roles as follows:

prepare • clerk;
3: approve • manager = 2, supervisor = 1;
issue • clerk;

manager

supervisor

clerk

Figure 2. Role Hierarchy

In this case, the manager has a weight of 2 and the supervisor has a weight of
1 for the approve transactions. The number of votes required for approve
transaction to be successful is 3. As soon as 3 or more votes are obtained the
next step is enabled.
We know that the BFA model does not support assigning weights to roles (by
definition 3.1). So we enumerate the various possible role assignments to
approve and try to capture all the possible assignments as constraints in CB
(W). Table 1 below, gives the various possible assignments for approve.

Table 1. Possible role assignments for approve

Possibility No. Activation 1 Activation 2 Activation 3

1 Supervisor Supervisor Supervisor

2 Supervisor Supervisor Manager

3 Supervisor Manager -

4 Manger Supervisor -

5 Manger Manager -

Recall that, a CB for a workflow consists of a set of explicit, assignment and
integrity rules (definition3.3). We now try to express all the possible role
assignments for approve with these rules.

Expressing the possible role assignments as constraints using Explicit
rules:
Explicit rules contain an execution or a specification atom in the head and an
empty body. The various possibilities of table 1 cannot be expressed using
executer as each activation of approve can be executed by the supervisor or
the manager. We cannot use the constraints expressed as

executer (supervisor, approve, 1) ←
or
executer (manager, approve, 1) ←

to capture the role assignments of table 1 since, activation 1 of approve can
be executed by the supervisor or manager. So we cannot express the possible
role assignments for approve in table 1 using explicit rules.

Expressing the possible role assignments as constraints using
Assignment rules:
Assignment rules contain a must_executeu, must_executer, cannot_dou or
cannot_dor atom in the head and specification atoms, execution atoms,
comparison literals, or aggregate atoms in the body. The must_executer or
cannot_dor atoms can be used in the head of the rules to express the role
assignment constraints. As each activation of approve can be assigned to a
manager or a supervisor we cannot use the constraints expressed as
cannot_dor(supervisor, approve) ← executer(supervisor, approve, 1),
executer(supervisor, approve, 2) ;
or
must_executer(supervisor, approve) ← executer(supervisor, approve, 1),
executer(supervisor, approve, 2) ;
to capture the role assignments of table 1. This is because, activation 3 of
approve can be executed by the supervisor or manager, even if the activation
1 and activation 2 are successfully executed by the supervisor role. So we
cannot express the possible role assignments for approve in table 1 using
assignment rules.

Expressing the possible role assignments as constraints using Integrity
rules:
Integrity rules contain a panic atom in the head and specification atoms,
execution atoms, comparison literals, or aggregate atoms in the body. The
same argument presented for assignment rules holds here. So we can say,
that we cannot express the possible role assignments for approve in table 1
using integrity rules.
We have already argued above, that the possible role assignments for
weighted voting scenario cannot be expressed by the explicit, assignment and
integrity rules of the CB. Also, the definition for a Workflow (definition 3.1)
does not support assigning weights to each role. So, we conjecture there are
no straightforward ways to express weighted voting schemes in BFA.
Conjecture 1: There are no straightforward ways to express weighted voting
in BFA.
A stronger conjecture would assert that there are no ways, straightforward or
convoluted, to express weighted voting in BFA. A formal proof of this
stronger conjecture would be of theoretical interest but is outside the scope of
this paper.
From a practical perspective it is quite simple to add the weighted voting
feature to BFA. Weighted voting has been previously proposed in the
literature and is intuitively a simple and natural concept. This is
accomplished in the next section.

5. THE EXTENDED-BFA MODEL

In this section we describe the extended-BFA model, to accommodate the
scenarios of weighted voting. We modify the definition of the BFA
workflow-role specification (Definition 3.1) as follows.
Definition 5.1 (Extended-BFA Workflow Role Specification) A workflow
role specification W is a list where each element in the list is either a task-
role specification or a vote-role specification [TRS1/ VRS1, TRS2/ VRS2

……,TRSn /VRSn],
where each
TRSi is a 3-tuple (Ti, (RSi,>i), acti) where Ti∈ T is a task, RSi.∈ R is the set of
roles authorized to execute Ti, >i, is a local role order relationship, and acti∈
N is the number of possible activations of task Ti.

and each,
VRSi is a 4-tuple (Ti, (RSi,>i),VotesRequired, RoleWeight) where Ti.∈ T is a
task, RSi.∈ R is the set of roles authorized to execute Ti. , >i., is a local role
order relationship, and VotesRequired ∈ N is the number of votes required to
make of task Ti and RoleWeight is a function that maps each role in the set
RSi to a weight ∈ N for a given Ti.
RoleWeight: RSi. → N
The workflow tasks are sequentially executed according to the order in which
they appear in the workflow role specification.
We propose two possible solutions for expressing the weighted voting
constraints in extended-BFA model.
Solution 1 for expressing the weighted voting constraint in extended-
BFA:
The weighted voting constraint could be expressed as in terms of the number
of successful activations of the task approve as follows:
cannot_dou(U, issue) ← count(success(approve, k), executer(Ri, approve, k
),Ri = manager, n1),
count(success(approve,k), executer(Rj, approve, k),Rj = supervisor, n2),
(2* n1 + n2) < 3;
Here, we count the number of successful executions of the task approve by
the role manager (returned as n1), the number of successful executions of the
task approve by the role supervisor (returned as n2) and compute the votes
registered as (2* n1 + n2). Since the manager has a weight of 2 and the
supervisor has a weight of 1. If the votes registered are less than 3, then users
cannot perform the task issue.
This solution is inefficient if there are a number of different roles assigned
different weights for the task. Therefore, we propose a second solution to
express weighted voting efficiently in the extended-BFA model.
Solution 2 for expressing the weighted voting constraint in extended-
BFA:
We add the following weighted voting predicates and the weighted voting
rule to efficiently express weighted voting in the extended BFA model.

Table 2. Weighted Voting Predicates
Predicate Arity Arguments’

Type
Meaning

role_weight 3 RT,TT,NT role_weight(Ri, Tj, n) gets the weight of the role Ri

assigned to the Task Tj and returns this value as n.

votes_required 2 TT,NT votes_required(Ti, n) gets the minimum number of
votes required for the task Ti to be successful and
returns this value as n.

count_votes 2 TT,NT count_votes(Ti, n) computes the following:
for each Ri∈ RSi.

begin
 sum:=0
 count(success(Ti, k), executer(Ri, Ti,, k), n1)
 role_weight(Ri, Ti, n2)
 sum := sum + (n1 * n2)
 end;
and returns the value of sum as n.

Definition 5.2 (Extended-BFA Constraint Specification Language)
The extended-BFA Constraint Specification Language is unchanged from
definition 3.2 except for the addition of the weighted voting predicates
described in table 2.

Table 3. Weighted Voting Rule
Rule Head Body
Weighted
Voting

cannot_dou conjunction of comparison literals and weighted voting
predicates

Definition 5.3 (Constraint-Base) The extended-BFA Constraint-Base is
unchanged from definition 3.3 except for the addition of the weighted voting
rule described in table 3.
With the help of above weighted voting predicates and weighted voting rule
we can now express a TCE with a voting scheme in Extended-BFA. Consider
the TCE with Weighted Voting presented in section 2 and the global role
hierarchy in Figure 2.
The separation of duties constraints can be enumerated as follows:
C1: A user cannot execute approve, if he/she had successfully executed

prepare.
C2: A user cannot execute approve, more than once. (Three different

users have to execute approve).
C3: A user cannot execute issue until approve transaction registers the

required number of votes.
C4: A user cannot execute issue, if he/she had successfully executed

prepare or approve.
These can be expressed in Extended-BFA as follows:

Workflow W = [(prepare,({clerk, supervisor, manager}, {}), 1),
(approve,({supervisor,manger},{}),3,{(supervisor,1),(manager,2)}),
(issue,({clerk, supervisor, manager}, {}), 1)]

Constraint Base CB(W) :

R1,1: cannot_dou(U, approve) ← executeu(U, prepare,1);
R2,1: cannot_dou(U, approve) ← executeu(U, approve, 1);
R2,2: cannot_dou(U, approve) ← executeu(U, approve, 2);
R3,1: cannot_dou(U, issue) ← count_votes(TI, n1),votes_required(Ti, n2),
n1<n2;
R4,1: cannot_dou(U, issue) ← executeu(U, approve, 1);
R4,2: cannot_dou(U, issue) ← executeu(U, approve, 2);
R4,3: cannot_dou(U, issue) ← executeu(U, approve, 3);
R4,4: cannot_dou(U, issue) ← executeu(U, prepare,1);
The rule R4,3 will only be effective if the approve task had three activations
(the maximum number of possible activations). If the number of activations
for the approve task was less then three, then this rule will be ineffective as
executeu(U, approve, 3) will always be false.

6. PROPERTIES OF THE EXTENDED BFA MODEL

We now focus the attention on showing that the properties of the BFA model
are still preserved in the extended-BFA model.
The properties of the BFA model as mentioned earlier are:
(1) a language to express constraints
(2) formal notions of constraint consistency and
(3) algorithms for role-task and user-task assignments.
In the extended-BFA model, we have not changed the language to express
constraints, so property (1) is preserved. The formal proof for the following
proposition as presented in [1] still holds.
Proposition 6.1 Any CB is a stratified normal program. Hence, it has a
unique stable model.
Since we have not changed the definitions of explicit, assignment and
integrity rules. The formal proof presented for this proposition in [1] still
holds for these rules. We now extend the argument presented in [1] to
include the weighted voting rule. A program P is stratified if its extended
dependency graph does not contain any cycle involving an edge labeled with
“not” [10], where the extended dependency graph of a program P is a graph
whose nodes are the predicates that appear in the heads of the rules of P.
Given two nodes p1 and p2 there is a direct edge from p1 to p2 if and only if
predicate p2 occurs positively or negatively in the body of a rule whose head
predicate is p1. The edge (p1, p2) is marked with a “not” sign if and only if
there exists at least one rule r with head predicate p1 such that p2 occurs
negatively in the body of r. By Definition 5.3, the CB associated with a given
workflow consist of a set of explicit, assignment, integrity and weighted
voting rules. The explicit, assignment and integrity rules cannot form a cycle
in the extended dependency graph [1]. By definition the weighted voting rule
has a planning predicate (cannot_dou) as head and a conjunction of weighted
voting predicates and comparison literals as body. Since, the predicates that
appear in the head are disjoint from the predicates that can appear in the
body, they cannot form any cycle in the extended dependency graph. Hence,

the extended dependency graph associated with a CB does not contain any
cycle. Thus, the CB is stratified.
The static analysis algorithm and the pruning algorithm need some
modifications to accommodate the VRSis in addition to the TRSis. These
modifications are simple to make in order to preserve property (2).
The role-task and user-task assignment algorithms also need modification, to
accommodate the VRSis. Instead, of looping through the number of
activations in each TRSi. they have to also consider, that each element of the
workflow can be a VRSi. In case, an element is a VRSi. they need to keep
track of the number of votes required after each assignment and the weights
assigned to each role. With these modifications, property (3) of the BFA
model can also be preserved.
Thus, we argue that with some modifications to the static analysis algorithm,
pruning algorithm, role-task assignment algorithm and user-task assignment
algorithm the extended-BFA model preserves the strong properties of the
BFA model.

7. CONCLUSION

In this paper, we have shown that the BFA model cannot be used to express
the weighted voting scenario. We have extended the BFA model so that this
feature can be accommodated in the BFA model. We have also argued that
the extended-BFA model does preserve all the properties of the BFA model.
It should also be noted that the constraint specification language of BFA is
not intended for end-users to express constraints, it is rather used internally
by the system to analyze and enforce constraints. The TCEs on the other
hand are very natural and intuitive, so we can use TCEs as a language in
which users can specify their separation of duties constraints. The constraints
in TCEs can be translated to BFA. This reduction to extended BFA also
provides a formal semantics, which has so far not been given.
Future directions of our research could involve developing an automated
system to translate TCEs into the BFA model, this could be helpful as the
BFA model has formal semantics for expressing constraints at the system
level. The BFA model and the TCEs follow a strict sequence of execution.
We would also like to introduce some parallelisms in the task execution.

BIBLIOGRAPHY

[1] Bertino. E, Ferrari. E, Atluri. V “A Flexible Model for the Specification
and Enforcement of Authorization Constraints in Workflow Management
System”, Proceedings of the Second ACM Workshop on Role-Based Access
Control, November 1997.
[2] Clark D.D, Wilson D.R “A Comparison of Commercial and Military
Security Policies” Proceedings of IEEE Symposium on Security and Privacy,
1987, pg 184-194.

[3] Das S.K. “Deductive Databases and Logic Programming” Addison-
Wesley, 1992.
[4] Nash M.J, Poland K. R “ Some Conundrums Concerning Separation of
Duty”, Proceedings of IEEE Symposium on Security and Privacy, 1987, pg
201-207.
[5] Sandhu, R “Transaction Control Expressions for Separation of Duties”
Proc. 4th Aerospace Computer Security Applications Conference December
1988, pages 282-286
[6] Sandhu R, Coyne E.J, Feinstein H.L, Youman C.E “Role-based Access
Control Models”. IEEE Computer 29(2) pg:38-47, February 1996.
[7] Sandhu R “Separation of Duties in Computerized Information Systems”
Proceedings of the IFIP WG 11.3 Workshop on Database Security,
September 1990.
[8] Simon R.T and Zurko M.E “Separation of Duty in Role-Based
Environments” Proceedings of Computer Foundations Workshop X, June
1997.
[9] Thomas R.K, Sandhu R, “Task-based Authorization Controls (TBAC): A
Family of Models for Active and Enterprise-oriented Authorization
Management” Proceedings of the IFIP WG 11.3 Workshop on Database
Security, August 1997.
[10] Ullman J. “Principles of Database and Knowledge-Base Systems” (2nd

Volume). Computer Science Press New York 1989

17

APPENDIX A (PREDICATES USED IN THIS PAPER)

Predicate Arity Arguments’ Type Meaning
executeu 3 UT, TT, NT If executeu (ui, Tj, k) is true is

true, then the k-th activation of
task Tj is executed by user ui.

executer 3 RT, TT, NT If executeu (Ri, Tj, k) is true is
true, then the k-th activation of
task Tj is executed by role Ri.

success 2 TT, NT success(Ti, K) is true if the k-
th activation of task Ti within
a workflow successfully
executes

must_executeu 2 UT, TT If must_executeu(ui,Tj) is true
then task Tj must be executed
by user ui.

must_executer 2 RT, TT If must_executer(Ri,Tj) is true
then task Tj must be executed
by role Ri.

cannot_dou 2 UT,TT If cannot_dou(ui, Tj) is true
then the task Tj cannot be
assigned to user ui.

cannot_dor 2 RT,TT If cannot_dor(Ri, Tj) is true
then the task Tj cannot be
assigned to role Ri.

APPENDIX B (CONSTRAINT SPECIFICATION
LANGUAGE RULES)

Rule Head Body
explicit execution or specification

atom
empty

assignment must_executeu,
must_executer, cannot_dou

or cannot_dor atom

specification, execution, or
comparison literals, or aggregate
atoms

static checking statically_checked atom specification, comparison literals,
or aggregate atoms. Each literal
in an aggregate atom is a
specification or a comparison
literal

integrity panic atom specification, execution, or
comparison literals, or aggregate
atoms

18

static planning or specification
atom

specification, comparison literals,
or aggregate atoms. Each literal
in an aggregate atom is a
specification or a comparison
literal

dynamic planning execution or
specification atom

specification, execution,
comparison literals, or aggregate
atoms. At least a literal in the rule
must be an execution literal.

