
Attribute-Aware Relationship-Based Access
Control for Online Social Networks

World-Leading Research with Real-World Impact!

Yuan Cheng, Jaehong Park and Ravi Sandhu
Institute for Cyber Security

University of Texas at San Antonio
7/14/2014

28th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security and Privacy (DBSec 2014)

1

• Relationship-based Access Control (ReBAC)
• Motivation
• UURACA Model
• Algorithm
• Conclusion

© Ravi Sandhu 2World-Leading Research with Real-World Impact!

Outline

 Users in OSNs are connected by social
relationships (user-to-user relationships)

 Owner of the resource can control its release
based on such relationships between the
access requester and the owner

 Access conditions are usually based on type,
depth, or strength of relationships

Relationship-based Access Control

Related Work

Fong 2009 Fong 2011 Carminati 2009a Carminati 2009b UURACA

Relationship Category
Multiple Relationship
Types

√ √ √ √

Directional
Relationship

√ √ √

Model Characteristics
Policy
Individualization

√ √ √ √ √

User & Resource as a
Target

(partial) √

Outgoing/Incoming
Action Policy

(partial) √

Relationship Composition
Relationship Depth 0 to 2 0 to n 1 to n 1 to n 0 to n
Relationship
Composition

f, f of f Exact type
sequence

Path of same
type

Exact type
sequence

Path pattern of
different types

Attribute-aware Access Control
Common-friendsk √ √
User Attributes (partial) √
Relationship
Attributes

(partial) √

− Passive form of action allows outgoing and incoming action policy
− Path pattern of different relationship types makes policy specification more

expressive
− Attribute-aware access control based on attributes of users and relationships

Motivation

 ReBAC usually relies on type, depth, or strength of
relationships, but cannot express more complicated
topological information

 ReBAC lacks support for attributes of users,
resources, and relationships

 Useful examples include common friends, duration of
friendship, minimum age, etc.

UURACA Model

 Extended from the UURAC model (DBSec 12)
 Social graph is modeled as a directed labeled

simple graph G=<U, E, Σ>
− Nodes U as users
− Edges E as relationships
− Σ={σ1, σ2, …,σn, σ1

-1, σ2
-1,…, σn

-1}
as relationship types supported

UA: Accessing User
UT: Target User
UC: Controlling User
RT: Target Resource
AUP: Accessing User Policy
TUP: Target User Policy
TRP: Target Resource
Policy
SP: System Policy

• Policy Individualization
• User and Resource as a Target
• Separation of user policies for

incoming and outgoing actions
• Regular Expression based path

pattern w/ max hopcounts (e.g.,
<ua, (f*c,3)>)

U2U Relationship-based Access Control
(UURAC) Model

 Access Request <ua, action, target>
− ua tries to perform action on target
− Target can be either user ut or resource rt

 Policies and Relationships used for Access
Evaluation
− When ua requests to access a user ut

 ua’s AUP, ut’s TUP, SP
 U2U relationships between ua and ut

− When ua requests to access a resource rt
 ua’s AUP, rt’s TRP, SP
 U2U relationships between ua and uc

Access Request and Evaluation

Policy Representation

 action-1 in TUP and TRP is the passive form since it
applies to the recipient of action

 TRP has an extra parameter uc to specify the controlling
user
− U2U relationships between ua and uc

 SP does not differentiate the active and passive forms
 SP for resource needs r.typename, r.typevalue to refine

the scope of the resource

Example

• Alice’s policy PAlice:
• < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑎𝑎, 𝑓𝑓 ∗, 3 >,< 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1, 𝑢𝑢𝑡𝑡, 𝑓𝑓, 1 >,
• < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑢𝑢𝑎𝑎, Σ ∗, 5 >

• Harry’s policy PHarry:
• < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑎𝑎, 𝑐𝑐𝑐𝑐 ∗, 5 ˅ 𝑓𝑓 ∗, 5 >,< 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1, 𝑢𝑢𝑡𝑡, 𝑓𝑓 ∗, 2 >

• Policy of file2 Pfile2:
• < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, (𝑢𝑢𝑢𝑢, ¬ 𝑝𝑝+, 2 >

• System’s policy PSys:
• < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑎𝑎, Σ ∗, 5 >
• < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 𝑢𝑢𝑎𝑎, Σ ∗, 5 >

Attributes in OSNs

• Node attributes
• Define user’s identity and characteristics: e.g., name, age,

gender, etc.
• Edge attributes

• Describe the characteristics of the relationship: e.g., weight,
type, duration, etc.

• Count attributes
• Depict the occurrence requirements for the attribute-based

path specification, specifying the lower bound of the
occurrence of such path

• <quantifier, f(ATTR(N), ATTR(E)), count ≥ i>

+0 +1 +2 -2 -0-1

+1 +2 -2 -1

∀[+1, -2], age(u) > 18
∃[+1, -1], weight(e) > 0.5
∃{+1, +2, -1}, gender = “male”

-2

World-Leading Research with Real-World Impact!

Attribute-based Policy

12

• Strategy: DFS
• Parameters: G, path, hopcount, s, t

World-Leading Research with Real-World Impact!

f

п0

п1

п2

п3

f

f

c

c

f

DFA for f*cf*

Access Request: (Alice, read, rt)

Policy: (read-1, rt, (f*cf*, 3))

Path pattern: f*cf*
Hopcount: 3

Path-checking Algorithm

13

GeorgeFredCarol

HarryEdAlice

DaveBob
f

f

c

f

f

f

f

f

f

f

c

c
c

п0

п1

п2

п3

f

f

c

c

f

d: 0
currentPath: Ø
stateHistory: 0

Path pattern: f*cf*
Hopcount: 3

Harry

п0

Dave п1

d: 1
currentPath: (H,D,f)
stateHistory: 01

Case 1: next node is
already visited, thus
creates a self loop

d: 2
currentPath: (H,D,f)(D,B,f)
stateHistory: 011

f

Bob

Alice

Case 3: currentPath
matches the prefix of the
pattern, but DFA not at
an accepting state

d: 2
currentPath: (H,D,f)(D,B,c)
stateHistory: 012

п2

п3

d: 3
currentPath: (H,D,f)(D,B,c)(B,A,f)
stateHistory: 0123

Case 2: found a matching
path and DFA reached an
accepting state

14

GeorgeFredCarol

HarryEdAlice

DaveBob
f

f

f

f

f

f

f

f

f

f

f

<access, (ua, ((f*, 4): ∃[+1, -1], occupation = ‘student’, count ≥ 3)))>

Occupation
= ‘student’

+1

+1

-1+1

-1

Occupation
= ‘teacher’

Occupation
= ‘student’

Occupation
= ‘teacher’

Occupation
= ‘student’

Occupation
= ‘student’

World-Leading Research with Real-World Impact!

Example: Node Attributes

15

GeorgeFredCarol

HarryEdAlice

DaveBob
f

f

f

f

f

f

f

f

f

f

f

<read, Photo1, (ua, ((f*, 3): ∀[+1, -1], duration ≥ 3 month, _)))>

Since =
June, 2013

Since =
Feb, 2014

Since =
Aug, 2010

Since =
May, 2009

Since =
Aug, 2008

World-Leading Research with Real-World Impact!

Example: Edge Attributes

16

Complexity

 Time complexity is bounded between
[O(dminHopcount),O(dmaxHopcount)], where dmax and
dmin are maximum and minimum out-degree of
node
− Users in OSNs usually connect with a small group of

users directly, the social graph is very sparse
− Given the constraints on the relationship types and

hopcount limit, the size of the graph to be explored can be
dramatically reduced

− Attribute-based check introduces overhead costs when it
finds a possible qualified path, which are proportional to
the amount of attributes as well as the type of attribute
functions considered

Conclusion

• Presented an extended UURAC model for OSNs

• Formalized the attribute-based policies and the
grammar for policy specifications

• Enhanced the path checking algorithm with attribute-
awareness

Questions

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

