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Abs t rac t .  The Transformation Model (TRM) was recently introduced [10] 
in the literature by Sandhu and Ganta. TRM is based on the concept 
of transformation of rights. The propagation of access rights in TRM is 
authorized entirely by existing rights for the object in question. It has 
been demonstrated in the earlier work that TRM is useful for expressing 
various kinds of consistency, confidentiality, and integrity controls. 
In our previous work [10], a special case of TRM named Binary Transfor- 
mation Model (BTRM) was defined. We proved that BTRM is equivalent 
in expressive power to TRM. This result indicates that it suffices to allow 
testing for only two cells of the matrix. 
In this paper we study the relationship between TRM and the Unary 
Transformation Model (UTRM). In UTRM, individual commands are 
restricted to testing for only one cell of the matrix (whereas individual 
TRM commands can test for multiple cells of the matrix). Contrary to 
our initial conjecture (of [10]), we found that TRM and UTRM are 
formally equivalent in terms of expressive power. The implications of 
this result on safety analysis is also discussed in this paper. 

Keywords:  Access Control, Access Rights, Authorization, Client-Server 
Architecture, Expressive Power. 

1 I n t r o d u c t i o n  

In this paper we analyze the expressive power of a family of access control models 
called transformation models [10]. These models are based on the concept of 
transformation of rights, which simply implies that the possession of rights for 
an object by subjects allows those subjects to obtain and lose rights for that  
object and also grant and revoke the rights (for that  object) to other subjects. 
Hence, in these models, the propagation of access rights is authorized entirely 
by the existing rights for the object in question. (More generally, propagation 
could also be authorized by the existing rights for the source and destination 
subjects, for example, in models such as HRU [4] and TAM [8].) The concept of 
transformation of rights allows us to express a large variety of practical security 
policies encompassing various kinds of consistency, confidentiality and integrity 
controls. 
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The concept of transformation of access rights was introduced by Sandhu 
in [7]. Based on it the monotonic transform model [7] and its non-monotonic ex- 
tension (NMT) [9] were proposed. The simplicity and expressive power of NMT 
is demonstrated in [9] by means of a number of examples. It was recently dis- 
covered by the authors that  NMT cannot adequately implement the document 
release example given in [9]. The reason behind this is the limited testing power 
of NMT. This led us to the formulation of the Transformation Model (TRM). 
TRM substantially generalizes NMT. 

TRM does have good expressive power (which NMT lacks). TI~M can also be 
implemented efficiently [10] in a distributed environment using a typical client- 
server architecture. This is due to the fact that  the propagation of access rights 
in TRM is authorized entirely by existing rights for the object in question. In 
typical implementations these rights would be represented in an access control 
list (ACL), stored with the object. The server responsible for managing that  
object will have immediate access to all the information (i.e., the ACL) required 
to make access control decisions with respect to that object. Moreover, the effect 
of propagation commands is also confined only to the ACL of that  object. 

The Binary Transformation Model (BTP~M) was defined in [10]. BTRM is 
a simpler version of TRM in which testing can involve up to two cells of the 
matrix. It has been proven in [10] that  BTRM is formally equivalent to TRM. 
(Two models are said to be equivalent in expressive power, if for every system 
in one model, there is an equivalent system in the other, and vice versa. For the 
purpose of this paper, we simplify the definition of equivalence of two systems 
to intuitively mean that two systems are equivalent if and only if both of them 
enforce the same policy). This also implies that  it suffices to have systems that  
test for two cells of the matrix. 

In this paper we study the relationship between TRM and the Unary Trans- 
formation Model (UTRM) defined in [10]. In UTRM the commands are autho- 
rized by checking for rights in a single cell of the access matrix. It has been 
conjectured in [10] that UTRM does not have the adequate expressive power to 
enforce simple policies like the document release example. On the contrary, we 
prove in this paper that UTRM is equivalent to TRM in terms of expressive 
power and hence UTRM can also enforce all the policies enforced by TRM (in- 
cluding the document release example). The equivalence of TRM and UTRM 
helps in concluding that the safety results of UTRM are in no way better than 
that  of TRM. 

The rest of the paper is organized as follows. Section 2 gives a brief back- 
ground of the Transformation Model (TRM). It also describes two models, 
UTRM and BTRM, which are restricted cases of TRM. In section 3 we first 
briefly describe the discussion of [10], which conjectured that  UTRM is not ade- 
quate enough to express the document release example. We then prove that  this 
is not the case by proving formally that  UTRM is equivalent to TRM. We also 
discuss in section 3, the implications of this result on safety analysis. Finally, 
section 4 concludes the paper. 



303 

2 B a c k g r o u n d  

In this section, we review the definition of the Transformation Model (TRM),  
which was introduced in [10]. Our review is necessarily brief. The motivation for 
developing TRM, and its relation to other access control models are discussed 
at length in [10]. Following the review of TRM we briefly review the definitions 
of UTRM and BTRM. 

2.1 T h e  T r a n s f o r m a t i o n  M o d e l  

TRM is an access control model in which authorization for propagation of ac- 
cess rights is entirely based on existing rights for the object in question. As 
discussed in the introduction this leads to an efficient implementation of TRM 
in a distributed environment using a simple client-server architecture. The ex- 
pressiveness of TRM is indicated in [10] by enforcing various kinds of consistency, 
confidentiality, and integrity controls. 

The protection state in TRM can be viewed in terms of the familiar access 
matrix.  There is a row for each subject in the system and a column for each 
object. In TRM, the subjects and objects are disjoint. TRM does not define any 
access rights for operations on subjects, which are assumed to be completely 
autonomous entities. The IX, Y] cell contains rights which subject X possesses 
for object Y. 

TRM consists of a small number of basic constructs and a language for spec- 
ifying the commands which cause changes in the protection state. For each com- 
mand, we have to specify the authorization required to execute that  command, 
as well as the effect of the command on the protection state. We generally call 
such a specification as an authorization scheme (or simply scheme) [8]. 

A scheme in the TRM is defined by specifying the following components. 

1. A set of access rights R. 
2. Disjoint sets of subject and object types, TS and TO, respectively. 
3. A collection of three classes of state changing commands: transformation 

commands, create commands, and destroy commands. Each individual com- 
mand specifies the authorization for its execution, and the changes in the 
protection state effected by it. 

The scheme is defined by the security administrator when the system is first set 
up and thereafter remains fixed. It should be kept in mind that  TRM treats the 
security administrator as an external entity, rather than as another subject in 
the system. Each component of the scheme is discussed in turn below. 

The Typed Access Matrix Model (TAM) [8] and TRM are strongly related. 
They differ in state changing commands. In TRM, propagation of access rights 
is authorized entirely by existing rights for the object in question, whereas in 
TAM this authorization can involve testing rights for multiple objects. TRM 
commands can only modify one column at a time, where as TAM can modify 
multiple columns of the matrix. TRM does allow testing for absence of rights, 
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while the original definition of TAM in [8] does not allow for such testing.. If 
TAM is augmented with testing for absence of rights (as in [1]), it is then a 
generalization of TRM. 

Rights 

Each system has a set of rights, R. R is not specified in the model but varies 
from system to system. Generally R is expected to include the usual rights such 
as own, read, write, append and execute. However, this is not required by the 
model. We also expect R to generally include more complex rights, such as 
review, pat-ok, grade-it, release, credit, debit, etc. The meaning of these rights 
will be explained wherever they are used in our examples. 

The access rights serve two purposes. First, the presence of a right, such as 
r, in the [S, O] cell of the access matrix may authorize S to perform, say, the 
read operation on O. Secondly, the presence of a right, say o, or the absence of 
right o, in [S, O] may authorize S to perform some operation which changes the 
access matrix, e.g., by entering r in [S 'l, O]. The focus of TRM is on this second 
purpose of rights, i.e., the authorization by which the access matrix itself gets 
changed. 

T y p e s  o f  S u b j e c t s  a n d  Ob jec t s  

The notion of type is fundamental to TRM. All subjects and objects are assumed 
to be strongly typed. Strong typing requires that each subject or object is created 
to be of a particular type which thereafter does not change. The advantage of 
strong typing is that it groups together subjects and objects into classes (i.e., 
types) so that  instances of the same type have the same properties with respect 
to the authorization scheme. 

Strong typing is analogous to tranquility in the Bell-LaPadula style of se- 
curity models [2], whereby security labels on subjects and objects cannot he 
changed. The adverse consequences of unrestrained non-tranquility are well known 
[3, 5, 6]. Similarly, non4ranquility with respect to types has adverse consequences 
for the safety problem [8]. 

TRM requires that a disjoint set of subject types, TS, and object types, 
TO, be specified in a scheme. For example, we might have TS={user, security- 
officer} and TO={user-files, system-files}, with the significance of these 
types indicated by their names. 

S t a t e  C h a n g i n g  C o m m a n d s  

The protection state of the system is changed by means of TRM commands. 
The security administrator defines a finite set of commands when the system is 
specified. There are three types of state changing commands in the TRM, each 
of which is defined below. 
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T r a n s f o r m a t i o n  C o m m a n d s  

We reiterate that  every command in TRM has a condition which is on a single 
object and the primitive operations comprising the command  are only on that  
object. In all the commands  the last parameter  in the command  is the object 
which is being manipulated,  and the first parameter  is the subject who initiates 
the command.  

A transformalion command has the following format:  

c o m m a n d  a(S1 : s l ,  $2 :s2 . . . .  , S~ : sk, O : oi) 
i f  predicate t h e n  
opl ; opt; . . . ;  opn 

e n d  

The first line of the command  states that  ~ is the name of the command  and 
$1, $ 2 , . . . ,  Sk, O are the formal parameters.  The formal parameters  $1, $2, . . . ,  
Sk are subjects and of types sl,  s2, �9 �9 sk. The o n l y  object formal parameter  
O is of type oi and is the last parameter  in the command.  

The  second line of the command c~ is the predicate and is called the condition 
of the command.  The predicate consists of a boolean expression composed of the 
following terms connected by the usual boolean operators (such as A and V): 

ri E [S, O] or ri ~ [S, O] 

Here ri is a right in R, S can be substi tuted with any of the formal subject 
parameters  $1, $2 . . . . .  S'~; and O is the sole object parameter .  Simply speaking 
the predicate tests for the presence and absence of some rights for subjects on 
object O. Given below are some examples of TRM predicates: 

1. approve E [$1, O] A prepare ~ [b'2, O] 
2. prepare C [S, O] A assign E [$1, O] A creator ~ [S, O] 
3. own E [S, O] V wri te  G [S', O] 
4. rl E [$1, O] A (r2 e [5'1, O] V rl  C [$2, O]) A r 3 e [S2, O] /~ r E IS3, O] 

If  the condition is omitted,  the commandis  said to be an unconditional command, 
otherwise it is said to be a conditional command. 

The third line of the command consisting of sequence of operations opl; op2; 
�9  ; op~ is called the body of ~. Each opi is one of the following two primitive 
operations: 

e n t e r  r i n t o  IS, O] 
d e l e t e  r f r o m  [S, O] 

Here again, ri is a right in R, S can be substituted with any of the formal subject 
parameters  $1, $ 2 , . . . ,  S'~; and O is the sole object parameter .  It is impor tan t  to 
note that  all the operations enter or delete rights for subjects on object O alone. 

The e n t e r  operation enters a right r E R into an existing cell of the access 
matr ix.  The contents of the cell are treated as a set for this purpose, i.e., if 
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the right is already present, the cell is not changed. The d e l e t e  operation has 
the opposite effect of e n t e r .  It (possibly) removes a right from a cell of the 
access matrix.  Since each cell is treated as a set, d e l e t e  has no effect if the 
deleted right does not already exist in the cell. The e n t e r  operation is said to 
be monotonic because it only adds and does not remove from the access matrix. 
Because d e l e t e  removes from the access matr ix  it is said to be a non-monotonic 
operation. 

A command is invoked by substituting actual parameters of the appropriate 
types for the formal parameters. The condition part of the command is evaluated 
with respect to its actual parameters. The body is executed only if the condition 
evaluates to true. 

Some examples of transformation commands are given below. 
c o m m a n d  transfer-ownership ($1 : s, $2 : s, 0 :o) 

i f  own E [$1, O] t h e n  
e n t e r  own in [$2, O] 
d e l e t e  own from [$1, O] 

e n d  

c o m m a n d  grade ($1 : professor, $2 : student, 0 : project) 
i f  own E [$2, O] A grade G [$1, O] t h e n  
e n t e r  good in [$2, O] 
d e l e t e  grade from [$1, O] 

e n d  

c o m m a n d  issue-check ($1 : clerk, 0 : voucher) 
i f  prepare ~ [$1, O] A approve ~ [$1, O] t h e n  
e n t e r  issue in [$1, O] 

e n d  

Command transfer-ownership transfers the ownership of a file from one sub- 
ject to another. In the command grade, the professor gives right good to the 
students project. In command issue-check, a clerk gets an issue right only if 
he/she is not the one who prepared and approved it. 

C r e a t e  C o m m a n d s  

A create command is an unconditional command. The creator of an object gets 
some rights for the created object like own, read, etc., as specified in the body 
of the command. No subject other than the creator will get rights to the created 
object in the create command. Subjects other than the creator can subsequently 
acquire rights for the object via transformation commands. In short, the effect 
of a create command is to introduce a new column in the matr ix  with some new 
rights for the subject who created it. 

A typical create command is given below. 
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c o m m a n d  crea t e (S1  : s l ,  0 : oi)  
c r e a t e  o b j e c t  0 
enter o w n  in [$1, O] 

end 

In the general case the body of the command may enter any set of rights in the 
[S1, O] cell. 

A create command is necessarily an unconditional command as the command 
cannot check for rights on an object which does not exist, and TRM commands 
do not allow testing for rights on objects other than the object which is be- 
ing created. The create object operation requires that the object being created 
have an unique identity different from all other objects. A create command is 
monotonic. 

Destroy  Commands  

A des t roy  c o m m a n d  is in general, a conditional command. The effect of a destroy 
command on the matr ix will be removal of the corresponding column from the 
access matrix. A typical destroy command is given below. 

c o m m a n d  d e s t r o y ( S 1  : s l ,  0 : oi) 
i f  o w n  E [$I, O] t h e n  
d e s t r o y  o b j e c t  0 

e n d  

In this case the condition ensures that only the owner can destroy the object. 
More generally, deletion can be authorized by some combination of rights pos- 
sessed by the destroyer. A destroy command is non-monotonic. 

S u m m a r y  o f  T R M  

To summarize, a system is specified in TRM by defining the following finite 
components. 

1. A set of rights R. 
2. A set of disjoint subject and object types TS and TO respectively. 
3. A set of state-changing transformation, creation and destroy commands. 
4. The initial state. 

We say that the rights, types and commands define the system scheme .  Note 
that  once the system scheme is specified by the security administrator it remains 
fixed thereafter for the life of the system. The system state, however, changes 
with time. 
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2.2 T h e  U n a r y  T r a n s f o r m a t i o n  M o d e l  ( U T R M )  

The Unary Transformation Model is a simpler version of TRM in which testing 
in a command can be on only one cell of the matrix.  A UTRM predicate consists 
of a boolean expression composed of the following terms: 

ri E IS t , O] or r, f~ [Sj, O] 

where ri is a right in R and Sj can be any one of the formal subject parameters, 
but  all the terms in the expression must have the same Sj. In other words, the 
predicate tests for the presence and absence of rights for a single subject Sj on 
object O. Usually Sj will be the first parameter  in the command, since that  is 
the one who initiates the command. 

UTRM generalizes the model called NMT (for Non-Monotonic Transform) [9]. 
The transformation commands in NMT, viz., grant transformation and internal 
transformation, are easily expressed as UTRM commands (as they test for rights 
in one cell of the matrix).  NMT is a restricted version of UTRM as the state 
changing commands in NMT test only one cell and modify at most two cells. 

2.3 T h e  B i n a r y  T r a n s f o r m a t i o n  M o d e l  ( B T R M )  

The Binary Transformation Model is also a simpler version of TRM in which 
testing in a command can involve up to two cells of the matrix. A BTRM pred- 
icate consists of a boolean expression composed of the following terms: 

[sj, o] or r [St, O] 

where ri is a right in R and Sj can be any one of the formal subject parameters, 
but  the expression can have at most two different Sj's from the given parameters. 
In other words, the predicate tests for the presence and absence of rights for at 
most two subjects (on object 0) .  One of the Sj's will typically be the first 
parameter  which is the initiator of the command. 

3 E x p r e s s i v e  P o w e r  o f  U T R M  

In this section we first briefly look at the discussion given in [10], which con- 
jectured that  UTRM cannot adequately enforce the document release example. 
We then prove that  the conjecture is wrong by formally proving that  UTRM is 
equivalent to TRM. The equivalence of TRM and UTRM indicates that UTRM 
can enforce all the policies enforced by TRM (including the document release 
example). We also discuss the implications of the equivalence result on safety 
analysis. 
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3.1 D o c u m e n t  Release  Example  

In this subsection we will take a brief look at the discussion given in [10] which 
conjectured that  UTRM cannot adequately enforce the document release exam- 
ple. 

Consider the document release example discussed in [9]. In this example, a 
scientist creates a document and hence gets own, read and write rights to it. 
After preparing the document for publication, the scientist asks for a review 
from a patent officer. In the process, the scientist loses the write right to the 
document, since it is clearly undesirable for a document to be edited during 
or after a (successful) review. After review of the document, the patent officer 
grants the scientist an approval. It is reasonable to disallow further at tempts to 
review the document after an approval is granted. Thus the review right for the 
document is lost as approval is granted. After obtaining approval from the patent 
officer, the scientist can publish the document by getting a release right for the 
document. (The problem discussed in [9] also requires approval by a security 
officer prior to document release, but that  aspect of the problem is not germane 
to the discussion here.) 

To express this policy, we employ the following rights and types: 

- R = {own, read, write, review, pat-ok, pat-reject, release} 
TS -- {sci, po}, TO = {doe} 

The own, read, and write rights have their usual meaning. The other rights 
correspond to stages in the approval process. The right review lets a patent officer 
review a document; pat-ok is the right that is returned if the patent review is 
satisfactory otherwise pat-reject is returned; and release authorizes release of the 
document. Subject types sci and po are abbreviations for scientists and patent 
officers respectively, and there is a single object type doe. 

The following TRM (or more precisely BTRM) commands enforce the desired 
policy: 

c o m m a n d  create-doc(S : sci, 0 :doc) 
c r ea t e  ob j ec t  O 
e n t e r  own in [S, O] 
e n t e r  read in [S, O] 
e n t e r  write in [S, O] 

e n d  
c o m m a n d  rqst-review(S : sci, P : po, 0 :doc) 
i f  own E [S, O]A write E [S, O] t h e n  

e n t e r  review in [P, O] 
de l e t e  write from [S, O] 

e n d  
c o m m a n d  get-approval( S : sci, P : po, 0 :doc) 
i f  review E [P, O] A own E IS, O] t h e n  

e n t e r  pat-ok in [S, O] 
d e l e t e  review from [P, O] 

e n d  
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c o m m a n d  get-rejection(S : sci, P : po, 0 :doc) 
i f  review E [P, O] A own E IS, O] t h e n  

e n t e r  pat-reject in IS, O] 
d e l e t e  review from [P, O] 

e n d  
c o m m a n d  release-doc(S : sci, 0 : doc) 
i f  pat-ok E [S, O] t h e n  

e n t e r  release in [S, O] 
d e l e t e  pat-ok from IS, O] 

e n d  
c o m m a n d  revise-doc(S : sci, 0 : doc) 
i f  pat-reject E [S, O] t h e n  

e n t e r  write in [S, O] 
d e l e t e  pat-reject from [S, O] 

e n d  

The scientist creates a document using the command create-doc. After prepar- 
ing the document the scientist asks the patent  officer to review it through com- 
mand  rqst-review. The scientist gets approval to release through command  get- 
approval or a rejection via get-rejection. In the former case the scientist gets the 
release permission by means of the command  release-doc. In the latter case the 
scientist gets the write permission by means of the command  revise-doc so as to 
revise the document  if appropriate.  

We now discuss why UTRM cannot adequately express the document  release 
example. All the commands,  except get-approval and get-rejection, are UTRM 
commands.  The commands  get-approval and get-rejection are BTRM commands  
as they test two cells. 

The ger command tests for rights in two cells of the matrix.  More 
specifically, it tests if the patent officer has the review right for the document  
and if the scientist is the owner of the document.  If  this condition is satisfied the 
command  gives the right, pat-ok, to the owner. 

If  the get-approval command does not test for the own right, then the com- 
mand  might  give the pat-ok right to some other scientist who is not a owner. 
The system will then halt in an unwanted state as the scientist who creates the 
document  cannot get the release right for it. This is due to the fact that  the 
scientist cannot request a second review prior to receiving a response for the 
first one (this is achieved by conditioning the request for review on presence 
of the write right, which is then removed until a rejection is received). At the 
same time, the patent  officer can give the pat-ok only once to one scientist (as 
the patent  officer loses the review right in this process). Therefore if the patent  
officer gives the right pat-ok to a scientist who is not owner, the actual owner 
cannot get the release right and the system halts in an unwanted state. 

I f  the get-approval command does not test for the review right then a patent  
officer can grant pat-ok for documents which the scientist can still write. More- 
over, this can be done whether or not a request for review has been made. 
The danger of this approach is obvious. But then the required policy cannot be 
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conveniently enforced by UTRM. Note that  similar considerations apply to the 
get-rejection command. 

In short, to enforce the document release example, it appears that  there is 
a need for commands which test for two cells of the matrix. Since UTRM (and 
NMT lack) such commands, they cannot conveniently express the document 
release example. 

The discussion above (of [10]) argues informally that  UTRM is inadequate to 
express the document release example. On the contrary, we formally prove in the 
next subsection, the equivalence of UTRM and TRM, which implies that  UTRM 
can also enforce M1 the policies enforced by TRM (including the document release 
example). 

3.2 E q u i v a l e n c e  o f  T R M  a n d  U T R M  

We now analyze the relative expressive power of TRM and UTRM. TRM and 
UTI~M are said to be equivalent in expressive power, if for every scheme in TRM, 
there is an equivalent scheme in UTRM, and vice versa. For the purpose of this 
paper, we simplify the definition of equivalence of two systems to intuitively 
mean that  two systems are equivalent if and only if both of them enforce the 
same policy. 

Recall that  UTRM is a restricted version of TRM. It is the same as TRM 
except that  the testing in a command can only be on a single cell. It has been 
proven in [10] that  TRM is equivalent to BTRM with just three parameters. Thus 
to prove the equivalence of TRM and UTRM, it is sufficient to show that  for 
every BTRM scheme with three parameters, there exists an equivalent UTRM 
scheme. 

We will now show how any given BTRM command can be simulated by 
multiple UTRM commands. The Boolean condition of any BTRM command, 
say Y, can be converted into the familiar disjunctive normal form which consists 
of a disjunction (i.e., V) of minterms. Each minterm is a conjunction (i.e., A) 
of primitive terms of the form ri C [Si, O] or ri ~ [Si, O]. The command Y 
can then be factored into multiple commands, each of which has one minterm 
as its condition and the original body of Y as its body. Hence, we can assume 
without loss of generality that  the predicate of every BTRM command consists 
of a conjunction of primitive terms. 

We will illustrate the construction by simulating a BTRM command X 
(which has three parameters) of the following format. 

c o m m a n d  X(S1 : t l ,  $2 : t2, 0 : o) 
i f  P1 A P2 t h e n  

o p e r a t i o n s  in [$1, O] 
o p e r a t i o n s  in [$2, O] 

e n d  

In the above command, each Pi is itself composed of a conjunction of terms 
rj E [&, O] or rj ~ [&, 0], where rj C R. Intuitively Pi tests for the presence 
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0 : 0  

$1 : tl [ al 
$2 : tl I c~2 
$3 : t2 a3 

S~ ":'t= c~n 

O : o  

Lock : lock I L I 
S1 : ; :  ~1 
$ 2  : 'Of  2 ' 

(a) Initial state of BTRM (b) Initial state of UTRM 

Fig. 1. UTRM simulation of command X 

of, and absence of some rights in the single cell [Si, O]. In the body of command 
X, the phrase " o p e r a t i o n s  in [Si, O]" denotes a sequence of enter and delete 
(or possibly empty) operations in the [S~, O] cell. Note that  the types tl  and t2 
need not be distinct. The formal parameters $1, $2 must of course be distinct, 
but the actual parameters used on a particular invocation of this command may 
have repeated parameters as allowed by parameter types. For ease of exposition, 
we will initially assume that  the actual parameters $1 and $2 are distinct. The 
simulation of a BTRM command with repeated parameters, will be explained 
at the end of this section. 

We now consider how the BTRM command X can be simulated by several 
UTRM commands. As X tests two cells, it is obvious that  the simulation of X 
cannot be a single UTRM command. Since UTRM can test for only one cell, 
the simulation of X must be done by multiple commands in the UTRM system. 
The key to doing this successfully is to prevent other UTRM commands from 
interfering with the simulation of the given BTRM command, X. The simplest 
way to do this is to ensure that BTRM commands can be executed in the UTRM 
simulation only one at a time. To do this we need to synchronize the execution 
of successive BTRM commands in the UTRM simulation. 

This synchronization is achieved by introducing an extra subject called Lock 
of type lock, and an extra right, L. The role of Lock is to sequentialize the 
execution of simulation of BTRM commands in the UTRM system. The type 
lock is assumed, without loss of generality, to be distinct from any type in the 
given BTRM system. 

Also the initial state of the UTRM system is modified in such a way that  
every subject of the BTRM system is given a different type. This assumption is 
acceptable within the framework of these models, because the number of subjects 
in the system is static (as there is no creation and destruction of subjects in 
Transformation Models). If the initial state of the BTRM system resembles figure 
l(a),  then in our construction the initial state of the UTRM system resembles 
figure l(b).  The ai's are sets of rights in the indicated cell. 

The UTRM simulation of X proceeds in five phases as indicated in figure 2 
and 3. In these figures we show only the relevant portion of the access matrix, 
and only those rights introduced specifically for the UTRM simulation. Hence, 
for clarity of the diagram, we do not show the c~i's rights, but these are intended 
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to be present. Since the focus in TRM is on a single object, the matr ix reduces 
to a single column for that  object. 

The objective of the first phase is to make sure that  no other UTRM com- 
mand corresponding to another BTRM command can execute (on object O) 
until the simulation of X is complete. The first phase also ensures that  the ac- 
tual parameters of the UTRM commands are tied to the actual parameters of 
the BTRM command. In the second phase, if P1 part of the condition of X is 
true, then that  fact is indicated to all the subjects in the system. If P1 is false, 
the second phase indicates the failure of the condition of X by entering right 
clcanX in [Lock, 0]. In the third phase, if the condition of X is true, then the 
body of X is partly executed. If the condition of X is false, the third phase 
also indicates the failure of the condition of X. In the fourth phase, the rest of 
the body of X is executed. And finally the fifth phase removes all the additional 
bookkeeping rights and also indicates that  the simulation of X is complete. Each 
of the phases and the commands used are explained briefly below. 

The UTRM command X-l-invocation corresponds to phase I. It checks for 
right L in [Lock, 0], and if present deletes it, to make sure that  no other UTRM 
command (simulating some other BTRM command) can execute (on object O) 
until the simulation of X is complete. It also makes sure that  the actual param- 
eters of X are used in the simulation by entering rights Pl, P2 in cells [S1, O] 
and [$2, O] respectively. It also enters the right X in cells [$1, O], [$2, O] to in- 
dicate that  the simulation of X is currently in progress. The matrix, after the 
execution of command X-l-invocation resembles figure 2(a). To simulate X, we 
need a different. X-i-invocation command for each distinct combination of a sub- 
ject of type tl  and a subject of type t, .  For example, if there are m subjects 
of type tl  and n subjects of type t2 in the BTRM system, then in phase 1, the 
simulation of command X requires rnn commands in the UTt{M system. Phase 
I command simulating X with actual parameters corresponding to types Sl and 
s2 respectively is given below. 

c o m m a n d  X-l-invocation(S1 :$1, $2 :$2, Lock : L, 0 :o) 
i f  L 6 [Lock, O] t h e n  

d e l e t e  L from [Lock, O] 
e n t e r  Pl in [$1, O] 
e n t e r  P2 in [$2, O] 
e n t e r  X in [$1, O] 
e n t e r  X in [5',., O] 

e n d  

In phase II, the commands test if the P1 part of the condition of X is true. If 
so, the command X-2-successful gives the right PI* to all the subjects (to indicate 
that P1 is true). The matr ix at the end of successful phase II, resembles figure 
2(b). If P1 is false, the command X-2-fail enters the right cleanX in [Lock, O] 
to indicate that  the condition of command X is false. The right cleanX in 
[lock, O] also indicates that  simulation has reached the final phase. In this case, 
the matr ix  at the end of failed phase II, resembles figure a(a). It is important  
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(a) End of phase I 
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(b) End of phase II 

O 
Lock cleanX 
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$2 p2, X, P? , P~ 

(d) End of phase IV 

Fig. 2. UTRM simulation of the authorized BTRM command X 

0 
LOCK[ cleanX 

S, ] pl ,X 
S~ p2, X 

S,, 

O 
LOCKl cleanX [ 

$2 

S,  

(a) End of phase II (b) End of phase III 

Fig. 3. UTRM simulation of unauthorized BTRM command X 

to note that  in phase II, only one of X-2-fail or X-2-successful can execute. To 
simulate X, we need a different X-2-successful command for each subject of 
type tl  and a different X-2-fail command for each subject of type tl. Phase II 
commands simulating X with actual parameters corresponding to types sl and 
s2 respectively, are given below. 

c o m m a n d  X-2-successful(S1 : sl, $2 :s2,  $3 : s3, . . . ,  Sn : sn, Lock : L, 0 : 
o) 
i f  pl E [$1, O] A P1 A X E [$1, O] t h e n  

e n t e r  PI* in [$1, O] 

e n t e r  Pl* in [Sn, O] 
e n d  
c o m m a n d  X-g-fail(S1 : Sl, Lock : L, 0 : o) 
i f  pl E [$1, O] A -~P1 A X e [S~, O] t h e n  

e n t e r  cleanX in [Lock, O] 
e n d  
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Note that  these are valid UTRM commands because all tests in the condition 
part  are in the [$1, O] cell. 

In phase III, the rest of the condition of X is tested in X-3-successful. If 
the condition is true, part of the body of X is executed. The matr ix  at the 
end of successful phase III, resembles figure 2(c). If the condition is not true, 
the command X-3-fail enters the right cleanX in [Lock, O] to indicate that  
the simulation of X has failed. In this case the matr ix at the end of phase 
III, resembles figure 3(b). It is important  to note that in phase III, only one 
of X-3-fail or X-3-successful can execute. Here also to simulate X, we need a 
different X-3-successful command for each subject of type t2 and a different X- 
3-fail command for each subject of type t2. Phase III commands simulating X 
with actual parameters corresponding to types sl and s2 respectively, are given 
below. 

c o m m a n d  X-3-successful(& :81, ~2 :82 , . . . ,  • : 8n, Lock : L, 0 :o)  
i f  P2 E [$2, O] A P{ E [S~, O] A P2 A X E [S2, O] t h e n  

o p e r a t i o n s  in [$2, O] 
e n t e r  P~ in [S1, O] 

e n t e r  P~ in [Sn, O] 
e n d  
c o m m a n d  X-3-fail(S2 :s2, Lock : L, O :o) 
i f  P2 E [$2, O] A ~P2 A X �9 [$2, O] t h e n  

e n t e r  cleanX in [Lock, O] 
e n d  

In the fourth phase, the rest of the body of X is executed. Also right cleanX 
is entered in [lock, O] also indicate that simulation has reached the final phase. 
It is also important  to note that tile phase IV command is executed only if the 
commands executed in phases II and III are successful commands. The matr ix  
at the end of phase IV resembles figure 2(d). Here also to simulate X, we need 
a different X-~-sueeessful command for each subject of type tl .  Phase IV com- 
mands simulating X with actual parameters corresponding to types sl and sp. 
respectively, are given below. 

c o m m a n d  X-~-successful(S1: 81, Lock : L, 0 :o) 
i f  Pl ~ [$1, O] A P2* ~ ['5'1, O] Z x~ ~ [$1, O] t h e n  

o p e r a t i o n s  in [$1, O] 
e n t e r  cleanX in [Lock, O] 

e n d  

In the final phase, all the bookkeeping rights R* = {Px, P2, X,  P~, P~, cleanX} 
are deleted. Also right L is entered back into [Lock, O] to indicate that  the 
simulation of X is complete and the simulation of some other BTRM command 
(on object O) can now begin. The matr ix after the final phase, resembles figure 
l(b).  The phase V command to simulate X is given below. 
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c o m m a n d  X-5-complete(S1 : 81,~2 : 82,$3 : S 3 , . . . , S n  : Sn,Lock : L ,O : o) 
i f  cleanX E [Lock, O] t h e n  

d e l e t e  R* from [$1, O] 

d e l e t e  R* from [Sn, O] 
d e l e t e  cleanX from [Lock, O] 
e n t e r  L in [Lock, O] 

e n d  

The important  thing to be noted from our construction is that  once the 
UTRM simulation of command X proceeds with some actual parameters in phase 
I, then in all other phases, the commands execute with the same parameters. 

We have shown how a BTRM command X, can be simulated by UTRM 
commands. The command X has actual parameters (S1 ,$2)  which are distinct 
(as they are of types tl  and t2). A BTRM command can also have actual param- 
eters which are repeated. This is possible if the command has two parameters of 
the same type. Our construction can be easily extended to simulate such com- 
mands. For example, if the BTRM command X has both the subject parameters 
of type tl,  then the following type of commands are needed a l o n g  with the five 
phases of commands explained before. The command X-l-invocation-repeated 
will make sure that the two actual subject parameters of X are same and the 
command X-repeated-done does the necessary operations (if the two actual sub- 
ject  parameters of X are same). If there are m subjects of type tl in the BTRM 
system, then we need to give m X-l-invocation-repeated commands and m X- 
repeated-done commands. The UTRM commands simulating X with repeated 
actual parameters corresponding to type sl are given below. 

c o m m a n d  X-l-invocation-repeated(S1 : sl , Lock; L, 0 : o) 
i f  L E [Lock, O] t h e n  

d e l e t e  L from [Lock, O] 
e n t e r  Pl in [S], O] 
e n t e r  P2 in [$1, O] 
e n t e r  X in [$1, O] 

e n d  
c o m m a n d  X-repeated-done(S1 : sl, Lock; L, 0 : o) 
i f  X E [Lock, O] A Pl E [$1, O] /k P2 E [$1, O] /k P1 A P2 t h e n  

o p e r a t i o n s  in [$1, O] 
e n t e r  cleanX in [Lock, O] 

e n d  

A proof sketch for the correctness of the construction is given below. 

T h e o r e m  1. For every B T R M  system ~1, the construction outlined above pro- 
duces an equivalent UTRM system f12. 

P r o o f  Ske tch :  It is easy to see that  any reachable state in fll can be reached 
in f12 by simulating each BTRM command by UTRM commands, as discussed 
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above. Conversely any reachable state in fl~, with L E [LOCK, O], will corre- 
spond to a reachable state in/71. A reachable state in/32, with L ~ [LOCK, O] 
and which passes phase III ,  will correspond to a state in fll where one BTRM 
command  has been partially completed. A state in t32, with L ~ [LOCK, O] 
and which fails the testing phase, will then lead /32 to a previous state where 
L E [LOCK, O], which is reachable in ill. Our construction also ensures tha t  
once the UTRM simulation passes the first phase, then the simulation proceeds 
with the same actual parameters  of the first phase. Hence the above construc- 
tion proves the equivalence of T R M  and UTRM. A formal inductive proof  can 
be easily given, but is omit ted for lack of space. 

Di s c us s i o n  

The construction given in this section illustrates tha t  T R M  and UTRM are 
equivalent in terms of expressive power. (The discussion of [10] given earlier in 
this section indicates that  this result is not obvious). The construction also in- 
dicates how the document  release example can be enforced in UTRM (as the 
document  release example given in this section has BTRM commands,  and our 
construction gives multiple UTRM commands  to simulate those BTRM com- 
mands.  The UTRM system obtained from our construction also assumes that  
all the subjects are each of a different type). The UTRM scheme to enforce the 
document  release example is not given in this paper due to lack of space. We can 
also extend the construction given in this paper  to prove that  NMT augmented 
with testing for absence of rights is equivalent to TRM. We have omit ted it due 
to lack of space. 

The equivalence of TRM and UTRM would imply that  the safety results 
of UTRM are not any better  than TRM. As TRM does not have any efficient 
non-monotonic safety results, neither would UTRM. This leads to the fact that  
it is difficult to have a model which can express some simple policies and at the 
same t ime have efficient non-monotonic safety results. 

4 Conclus ion  

In this paper  we have shown that  the Transformation Model (TRM) [10] and the 
Unary Transformat ion Model (UTRM) [10] are formally equivalent in expressive 
power. The equivalence of TRM and UTRM would imply that  the safety results 
of UTRM are not any better  than TRM. The fact that  T R M  does not yet have 
any efficient non-monotonic safety results indicates that  it is difficult to have a 
model which can express some simple policies and at the same t ime have efficient 
non-monotonic  safety results. 
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