
DATABASE SECURITY

APPLICATIONS

Polyinstantiation for Cover Stories

Ravi S. Sandhu and Sushil Jajodia*

Center for Secure Information Systems &
Department of Information and Software Systems Engineering

George Mason University
Falffax, VA 22030, USA

emaih {sandhu, jajodia}Qsitevax.gmu.edu

A b s t r a c t . In this paper we study the use of polyinstantiation, for the
purpose of implementing cover stories in multilevel secure relational
database systems. We define a particular semantics for polyinstantiation
called PCS (i.e., polyinstantiatlon for cover stories). PCS allows two al-
ternatives for each attribute (or attribute group) of a multilevel entity:
(i) no polyinstantiation, or (il) polyinstantiation at the explicit request
of a user to whom the polyinstantiation is visible. PCS strictly limits the
extent of polyinstantlation by requiring that each entity in a multilevel
relation has at most one tuple per security class. We demonstrate that
PCS provides a natural, intuitive and useful technique for implement-
ing cover stories. A particularly attractive feature of PCS is its run-time
flexibility regarding the use of cover stories. A particular attribute may
have cover stories for some entities and not for others. Even for the same
entity, a particular attribute may be polyinstantiated at some time and
not at other times.

1 I N T R O D U C T I O N

Polyinstantiat ion has generated a great deal of controversy lately. Some have
argued tha t polyinstantiat ion and integrity are fundamental ly incompatible, and
have proposed alternatives to polyinstantiation. Others have argued about the
correct definition of polyinstantiat ion and its operational semantics. Much has
been writ ten about this topic, as can be seen from the bibliography of this paper.

There are two extreme positions that can be identified with respect to polyin-
stantiation.

- Polyinstantiat ion and integrity are fundamental ly incompatible, and steps
must be taken to avoid polyinstantiat ion in multilevel relations regardless of
the cost.

- Polyinstantiat ion is an intrinsic phenomenon, inevitable in the multilevel
world. Therefore, multilevel relations must be polyinstant iated whenever
necessary.

* The work of both authors was partially supported by the U.S. Air Force, Rome Air
Development Center through contract #F-30602-92-C-002. We are indebted to Joe
Giardono for making this work possible.

308

Extreme proponents of the former view are apparently willing to tolerate infor-
mation leakage and/or severe denial-of-service in order to totally banish polyin-
stantiation. Extreme proponents of the latter view appear similarly willing to
generate large numbers of spurious tuples and data associations, whenever the
opportunity is presented.

As is often the case in such situations, the t ruth lies somewhere in between.
To reconcile these extreme views, it is useful to draw an analogy with the debate
in the early 1970's regarding g o t o statements in programming languages. To-
day it is we]] understood that indiscriminate use of goto ' s is harmful, but also
that the complete eliminations of go to ' s creates more problems than it solves.
Polyinstantiation should similarly be viewed as a technique which can be used
for better or for worse.

It is important to understand that there is nothing fundamental about the
occurrence of polyinstantiation. Jajodia and Sandhu [16, 23] have shown how it
is possible to prohibit polyinstantiation securely (i.e., without leakage of secret
information or denial-of-service). In other words, if you don' t like it you can get
rid of it completely and securely.

At the same time, it is equally important to understand that there is no
fundamental incompatibility between polyinstantiation and integrity. A prop-
erly designed database management system (DBMS) can limit the occurrence
of polyinstantiation to precisely those instances where it is explicitly requested
by s user 2 to whom the polyinstantiation is visible. The early work on polyin-
stantiation allowed an unclassified user to insert information which propagated
into several polyinstantiated tuples at the secret and higher levels. The resulting
"spaghetti relations" do remind one of the all too familiar spaghetti code riddled
with goto 's . But, much as the elimination of goto ' s is not fundamental to struc-
tured programming, the elimination of polyinstantiation is not fundamental to
database integrity.

The principal objective of this paper is to demonstrate that careful use of
polyinstantiation is a natural, intuitive and disciplined method for implementing
cover stories in multilevel secure relational databases. Polyinstantiation should,
of course, be used only where it is appropriate. Therefore polyinstantiation must
be prevented in the many situations where there is no need for cover stories.
In other words, even within the same database or relation we should be able to
allow or disallow polyinstantiation selectively. We also reiterate the importance
of limiting the occurrence of polyinstantiation to precisely those instances where
it is explicitly requested by the user to whom it will be visible.

This paper defines a particular semantics s for polyinstantiation called PCS
(i.e., polyinstantiation for cover stories). In developing PCS we have refined
many of our previously published ideas, included some new ones; as well as
borrowed and adapted concepts from other researchers who have published on

2 Strictly speaking we should be saying subject rather than user. For the most part
we will loosely use these terms interchangeably. Where the distinction is important
we wiIl be appropriately precise.

s We do not claim that PCS is the only useful semantics for polyinstantiation.

309

this topic. Our principal contribution is in the total package we have produced,
by combining and refining various ideas into a consistent, intuitive, and flexible
aggregate.

PCS allows two alternatives for each at tr ibute (or at tr ibute group) of a multi-
level entity: (i) no polyinstantiation, or (ii) polyinstantiation by explicit request.
PCS offers run-time flexibility of when to use cover stories, and uniformity of
the query interface. These are not available in other proposals for implementing
cover stories, such as having a separate at tr ibute for the true facts and the cover
story. A particularly attractive feature of PCS is that the same at t r ibute may be
polyinstantiated or not for different entities in the same relation. For example,
the Destination of the Starship Enterprise can be polyinstantiated for a cover
story, while polyinstantiation for the Destination of the Voyager is forbidden.
Furthermore, PCS can readily accommodate the situation where on different
occasions the same entity does or does not have a cover story for a particular
at tr ibute, as the need changes. For example, the Destination of the Starship
Enterprise can be polyinstantiated for a cover story today, but tomorrow its
polyinstantiation can. be forbidden.

The remainder of this paper is organized as follows. Section 2 reviews the
concept of polyinstantiation emphasizing those aspects which are impor tant to
our objective in this paper. Section 3 discusses how polyinstantiation can be
eliminated in a secure manner, i.e., without introducing signaling channels 4 for
leakage of secret information or incurring serious denial-of-service costs. Sec-
tion 4 introduces and motivates the concepts of PCS. (A formal model for PCS,
including its enti ty integrity and referential integrity properties, is given in the
appendix.) Section 5 gives our conclusions.

2 P O L Y I N S T A N T I A T I O N

In this section we discuss some basic concepts of polyinstantiation by means of
examples. We assume that the readers are familiar with the basic concepts of
the standard (single-level) as well as multilevel relations. We refer the readers
to [14] or [15] for a detailed exposition.

A multilevel relation is said to be polyinstantiated when it contains two or
more tuples with the same "apparent" primary key values. The concept of ap-
parent primary key was introduced by Denning et al. in [3]. While the notion of
a primary key is simple and well understood for classical (single-level) relations,

A signaling channel is distinct from a covert channel. A signaling channel is a means
of information flow which is inherent in the data model, and will occur in every
implementation of the model. A covert channel, on the other hand, is a property of
a specific implementation; not a property of the data model. In other words, even
if the data model is free of downward signaling channels, a specific implementation
may well contain covert channels due to implementation quirks. It is therefore most
important for the data model to be free of downward signaling channels. Otherwise
there is no implementation of the model, however idealized, which can be free of
information leakage.

310

it does not have a straightforward extension to multilevel relations. The appar-
ent primary key of a multilevel relation are those attributes which are asserted
by the user as being the primary key. The real primary key (i.e., the minimal
set of attributes which is unique in each tuple) of the multilevel relation is ob-
tained by adding one or more classification attributes to the apparent primary
key. The exact manner in which this is done is closely related to the precise
polyinstantiation behavior of the relation (see [2] for a detailed discussion).

In multilevel relations, a major issue is how access classes are assigned to
da ta stored in relations. One can assign access classes to relations, to individual
tuples in a relation, to individual attributes (i.e., "columns") of a relation, or
to the individual da ta elements of a relation. Polyinstantiation does not arise
explicitly when access classes are assigned to relations or individual attributes of
a relation. For generality, we consider the case where access classes are at tached
to the individual data elements themselves. Systems which at tach access classes
to the tuples in a relation have limited expressive power and will not be discussed
in this paper.

There are two different types of polyinstantiation in multilevel relations with
element level labeling [19], as follows:

- entity polyinstantiation, and
- element polyinstantiation.

Our proposal in PCS is to disallow entity polyinstantiation 5, and allow element
polyinstantiation in a carefully controlled manner, as explicitly requested by
u s e r s .

2.1 E n t i t y P o l y l n s t a n t i a t i o n

Enti ty polyinstantiation occurs when a relation contains multiple tuples with
the same apparent primary key values, but having different access class values
for the apparent primary key. As an example, consider the relation SOD given
below:

[Starship I Objective [Destination[TC]

Enterprise U Exploration UITalos U [U
Enterprise S Spying S[Rigel S [

Here, as in all our examples, each attr ibute in a tuple not only has ,a value
but also a classification. In addition there is a tuple-class or TC attribute. This
at tr ibute is computed to be the least upper bound of the classifications of the
individual data elements in the tuple. We assume that the attr ibute Starship is
the apparent primary key of SOD.

5 Entity polyinstantiation can actually be allowed without significantly impacting
PCS. There may be situations in which entity polyinstantiation is desirable. How-
ever, it should be understood that entity polyinstantlatlon is particularly detrimental
to referential integrity as noted in [7].

311

The name "entity polyinstantiation" arises from the interpretation that these
two tuples refer to two distinct entities in the external world. That is, there are
two distinct Starships with the same name Enterprise. We will discuss how to
prevent entity polyinstantiation in section 3.

2.2 Elemen t Po ly ins tan t i a t ion

The following relation illustrates element polyinstantiation:

Starship Objective Destination[TC I

Enterprise U Exploration U Talos U [U
Enterprise U Spying S Talos U [S

With element polyinstantiation, a relation contains two or more tuples with iden-
tical apparent primary keys and the associated access class values, but having
different values for one or more remaining attributes. As shown in the above
example, the objective of the starship Enterprise is different for U- and S-users.

What are we to make of this last relation given above? There are at least
two reasonable interpretations that have been proposed in the literature.

- The objective of Exploration is a cover 8tory (at the U-level) for the real
objective of Spying (at the S-level).

- We have an inconsistency in the database which needs to be resolved.

We will show in section 3 how to securely prevent element polyinstantiation from
arising due to inconsistencies. As a result the only occurrence of polyinstantiation
will be when it is deliberately requested for the purpose of implementing cover
stories.

To appreciate the intuitive notion of a cover story consider the eight instances
of SOD shown below [9].

[No.l[Starship Objective DestinationITC

1 [IEnterprise U

2 [[Enterprise U
[[Enterprise U

3 UEnterprise U
I[Enterprise U

4 [[Enterprise U
[[Enterprise U

5 !Enterprise U
Enterprise U
Enterprise U

6 Enterprise U
Enterprise U
Enterprise U

Exploration

Exploration
Spying

Exploration
Exploration

Exploration
Spying

Exploration
Exploration
Spying

!Exploration
I
!Spying
Spying

U Talos

U !Talos
S Talos

U Talos
U Rigel

U Talos
S Rigel

U Talos
U Rigel
S Rigel

U Talos
S Talos
S Rigel

uIu
. uU IUs

S S

S S

u 6
S S
S S

U U
U S
S S

312

INo.ll Starship

7 Enterprise U
Enterprise U
Enterprise U

Objective

Exploration
Spying
Exploration

Enterprise U Exploration
Enterprise U Spying
Enterprise U Exploration
Enterprise U Spying

U Talos
S Talos
U Rigel

U Talos
S Talos
U Rigel
S Rigel

DestinationlTC

U U
U S
S S

U U
U S
S S
S S

These instances can be partitioned into three classes as follows.

- Instance 1 has no polyinstantiation and is therefore straightforward.
- Instances 2, 3, and 4 are also relatively straightforward. In each case there

is a single U-tuple and a single S-tuple for the Enterprise. The U-tuple can
therefore be reasonably interpreted as being a cover story for the S-tuple.
Instances 2, 3, and 4 differ in the extent to which the U cover story is actually
true or false at the S level. Instance 2 has a cover story for the objective,
but the U destination is correct. Instance 3 conversely has a cover story for
the destination, but the U objective is correct. Instance 4 has a cover story
for both the objective and destination.

- Instances 5, 6, 7, and 8 are, however, confusing to interpret from a cover story
perspective. Each of these cases has more than one S-tuple for the Enterprise,
but only one U-tuple. It is possible to give a meaningful and consistent
interpretation and update semantics for such relations [9, 12]. However, these
interpretations loose the basic intuitive simplicity of the relational model.

The intuitive appeal of instances 2, 3 and 4 is that they have one tuple per tuple
class. We will adhere to this requirement in the rest of this paper.

It should be noted that certain problems with the concept of one-tuple-per-
tuple-class in context of a partially ordered lattice were identified in [21]. These
problems arise because [21] takes the following view: those attributes in a tuple
that are classified below the tuple class are automatically derived from lower-
level polyinstantiated tuples. PCS, however, takes the view that such attributes
are ezplicitly derived by the user when constructing the higher-level tuple. PCS
therefore does not suffer from the problems identified in [21].

2 . 3 U p d a t e P r o p a g a t i o n

One of the subtleties involved in maintaining plausible cover stories is consistency
across different levels. To illustrate this issue consider the following relation
instances:

Starship Objective DestinationlTC

Enterprise U Exploration U Talos U I U
Enterprise U Exploration U Rigel S I S

313

I Starship I Objective [DestinationlTC [

IEnterprise U Exploration UiTalos U I U
Enterprise U Exploration S [Rigel S I

We will treat these relations as being different, even though the values of the
individual data elements are the same in both cases. In other words, there is a dif-
ference between the objective being <Exploration,U) versus <Exploration,S).
To understand this difference, consider what happens when a U-user updates the
objective of the Enterprise to be Mining. These two relations will respectively
be updated as follows:

[Starship I Objective [Destination[Tel
IEnterprise U[Mining U[Talos U I U
Enterprise UIMining UIRigel S I

[Starship I Objective IDestinationlTCI
[Enterprise U Mining U[Talos U I U
Enterprise U Exploration S [Rigel S I

3 E L I M I N A T I N G P O L Y I N S T A N T I A T I O N

In this section we show how polyinstantiation can be completely prevented. We
discuss the prevention of entity and element polyinstantiation separately below.

3.1 Source of Ent i ty Polylns tant ia t ion

Entity polyinstantiation can occur in basically two different ways, which we
respectively call polyhigh and polylow for ease of reference [23].

1. Polyhigh: A high user inserts a tuple with a primary key that already exists
at the low level.

2. Polylow: A low user inserts a tuple with a primary key that already exists
at the high level.

Polyhigh is easily prevented without disclosing secret information. The DBMS
simply rejects the attempted insertion. The real challenge is in preventing poly-
lOW.

To be concrete, let us illustrate polyhigh by considering the following instance
of SOD.

I Starship [Objective IDestinationlTC I
[Enterprise U]Exploration U[Talos U [U I

Now suppose a S-user attempts to insert the following tuple in this relation:
(Enterprise, Spying, Rigel). A polyinstantiating DBMS will allow this insertion
giving us the following result.

314

I Starsmp I Objective [DestinationlTC [
Enterprise UIExploration U Talos U [U
Enterprise S ISpying S Rigel S [

There is, however, no fundamental need to polyinstantiate in this situation. The
DBMS can simply reject this insertion by the S-user. The key conflict is visible
to the S-user without any secrecy violation. Since the name Enterprise is already
in use, it is only proper to ask the S-user to choose another name for the new
ship, say, Enterprise ~. In other words, there is no serious denial-of-service to the
S-user; so long as the user can rename the new Starship to be Enterprise I and
enter the following tuple: (Enterprise l, Spying, Rigel) to obtain

[Starship I Objective [Destination[TC[

Enterprise U Exploration U Talos U I U
Enterprise ~ S Spying S Rigel S [

without polyinstantiation.
Similarly, let us illustrate polylow by considering the following relation in-

stance.

I Starship [Objective[Vestination[TC I

[Enterprise S[Spying S [Rigel S [S I

Note that due to simple-security this tuple is not visible to U-users, who therefore
see an empty relation. Now suppose a U-user attempts to insert the following
tuple in this relation: (Enterprise, Exploration, Talos). This insertion cannot be
rejected without some security compromise. Once we allow the database to come
to this point, we can get out of the situation only by compromising some aspect
of security. Various solutions have been proposed but none are really palatable.
We can identify the following alternatives.

1. Tolerate Loss of Secrecy. Proponents of this approach consider it better to
disallow the insertion and leak information, by inference, that the Enterprise
is being used as a key at some level above U. Unfortunately the signaling
channels opened up by this tolerance preclude such systems from attaining
a high rating (i.e., B2 or above [6]) for multilevel security.

2. Tolerate Loss o.f Integrity. This is the entity polyinstantiation route and
would give us the following result.

I Starship [Objective]DestinationJTC[
IEnterprise U Exploration UITalos U I U
Enterprise S Spying S IRigel S I

It is possible to maintain an appeaxance of integrity in this case by deleting
the existing S-tuple for the Enterprise and inserting the new U-tuple to
obtain

I Starship I Objective IDestinationlTCI

]Enterprise U[Exploration U[Talos U] U [

315

.

For obvious reasons, no one has proposed this "solution" seriously.
Tolerate Denial of Service. The SWORD I~roject [25] has proposed that in
such situations we forbid all further insertions for all time! For instance, s
U-user is prevented from even inserting a tuple such as (Voyager, Mining,
Mars) which does not cause any key conflict. Thus, the moment a S-key has
been inserted no more Starships can be created by any user in this relation.
Moreover, there is no way of recovering from this state. This is clearly serious
denial-of-service.

The main point to note, for our purpose, is that is too late to securely pre~ent this
insertion at the point ~here the insertion is about to tal:e place. The insertion can
be securely prevented only by taking proactive steps in advance of its imminent
occurrence.

3.2 P r e v e n t i o n of E n t i t y Po ly ln s t an t i a t l on

There are three basic techniques for eliminating entity polyinstantiation.

1. Make all the keys visible. In this method the apparent primary key is required
to be labeled at the lowest level at which a relation is visible. For example, we
can require that all keys be unclassified. Consequently, the following relation

[~!arship [Objective [Destination[TCJ

Enterprise U Exploration U[Talos U
[En.terpzise S Spying S]Rigel S I U

I

would be forbidden. Note that we can represent the same information in two
different relations called USOD and SSOD as follows

I UStarship I Objective [DestinationlTC I
[Enterpr!se U]Exploration UITalos U] U J

[S~tarship I Objective]DestinationlTC [

IEnterprise SISpying SIRigel S I S I

In other words we horizontally partition the original SOD relation, putting
all the U-Starships in USOD and all the S-Starships in SSOD.

2. Partition the domain of the primary key. Another way to eliminate entity
polyinstantiation is to partition the domain of the primary key among the
various access classes possible for the primary key. For our example, we
can say require that starships whose names begin with A-E are unclassified,
starships whose names begin with F-T are secret, and so on. Whenever a new
tuple is inserted, we enforce this requirement as an integrity constraint. In
this case we would need to rename the secret Enterprise, perhaps as follows.

] Starship [Objective [DestinationlTC j

Enterprise UIExploration UITalos U I U
FEnterprise S ISpying S]Rigel S]

316

.

The DBMS can now reject any attempt by a U-user to insert a Starship
whose name begins with F-Z, without causing any information leakage or
integrity violation.
Limit i~sertion~ ~o be do,re b~l trusted subject. A third way to eliminate en-
tity polyinstantiation is to require that all insertions are done by a system-
high user, with a write-down occurring as part of the insert operation.
(Strictly speaking, we only need a relation-high user, i.e., a user to whom all
tuples axe visible.) In context of our example this means that a U-user who
wishes to insert the tuple: (Enterprise, Exploration, Talos), must request a
S-user to do the insertion. The S-user does so by invoking a trusted subject
which can check for key conflict, and if there is none insert a U-tuple by
writing down. If there is a conflict the S-user informs the U-user about it,
so the U-user can, say, change the name of the Starship to Enterprise ~.

The first approach is available in any DBMS which allows a range of access classes
for individual attributes (or attribute groups), by simply limiting the classifica-
tion range of the apparent key to be a singleton set. The second approach is
available to any DBMS that can enforce domain constraints with adequate gen-
erality. The third approach is always available but requires the use of trusted
code, and tolerates some leakage of information (although with a human in the
loop). The best approach will depend upon the characteristics of the DBMS and
the application, particularly concerning the frequency and source of insertions.

3.3 Source o f E l e m e n t Po ly lns t an t l a t lon

Element polyinstantiation can occur by polyhigh or polylow, similar to the oc-
currence of entity polyinstantiation. Let us again consider concrete examples to
make these notions clearer.

Polyhigh occurs when an S-user attempts to update the destination of the
Enterprise in the following relation to be RJge].

[Staxship [Objective [DestinationJTC[

[Enterprise U[Exploration U[Talos U I U[

The existing destination of Talos cannot be overwritten without violating the *-
property. Therefore, either the update must be rejected or the destination must
be polyinstantiated to get the following result.

I Starship [Objective [DestinationlTC [

Enterprise U Exploration U Talos U l U
Enterprise U Exploration U Rigel S I

In either case U-users see no change in the relation and there is no information
leakage.

Polylow arises in the opposite situation, where the Enterprise previously
already has an S-destination and a U-destination is entered later. Specifically,
consider the following relation.

317

I Starship I Objective IDestinationlTCI

IEnterprise UIExploration U]Rigel S I S I

U-users see this relation with the secret data filtered out as follows.

I Starship I Objective IDestinationlTCI

IEnterprise UIExploration Ulnull U I UI

Now suppose a U-user attempts to update the destination of the Enterprise to
be Talos. This update cannot be rejected on the grounds that a S-destination for
the Enterprise already exists, because that amounts to establishing a downward
signaling channel. It is possible to overwrite the secret destination, so that both
U- and S-users see the following relation after the update takes place.

I Starship I Objective IDestinationlTC I

IEnterpriseUIExploration UITalos U I UI

This option has major problems for the integrity of secret data, and has never
been seriously considered. The remaining option is to polyinstantiate the des-
tination attribute for the Enterprise, so that S-users see the following relation;
whereas, U-users see the relation above.

I Starship] Objective IDestinationlTC[

Enterprise U Exploration U Talos U I U
Enterprise U Exploration U Rigel S I

To summarize, we can deal with polylow using the same three alternatives iden-
tified for polylow in entity polyinstantiation.

1. Tolerate Loss of Secrecy. This precludes a high degree of assurance (i.e., B2
or above [6]) for multilevel secure DBMS's.

2. Tolerate Loss of Integrity. This is the polyinstantiation route. (Or, the clearly
unacceptable route of overwriting secret data by unclassified data.)

3. Tolerate Denial of Service. Once any secret data has been entered in a rela-
tion, we can prohibit further entry of any unclassified data.

It is again important to understand that it is too late to securely prevent the poly-
lo~ update at the point where the update is about to take place. The update can
be securely prevented only by taking proactive steps in advance of its imminent
occurrence.

3.4 P r e v e n t i o n o f E l e m e n t Po ly in s t an t i a t i on

In this section we show how to prevent element polyinstantiation without com-
promising on confidentiality, integrity or denial-of-service requirements. The ba-
sic idea is to introduce a special symbol denoted by "restricted" as the possible
value of a data element [23]. The value "restricted" is distinct from any other
value for that element and is also different from "null." In other words the do-
main of a data element is its natural domain extended with "restricted" and

318

"nulL" We define the semantics of "restricted" in such a way that we are able
to eliminate both polyhigh and polylow.

Consider again the polyhigh scenario of section 3.3. We have the following
relation to begin with.

[Starship [Objective]Destination]TC[

[Enterprise U[Exploration U[Talos U [U [

Next a S-user attempts to modify the destination of the Enterprise to be Rigel.
As we have argued we can reject this update securely. But what if the true
destination has changed to <Rigel,S>? Surely there must be some way to enter
this information. We require the S-user to first login as a U-subject s and mark
the destination of the Enterprise as restricted giving us the following relation.

I Starship I Objective IDestinationlTCI

[Enterprise U[Exploration U[restricted U[U]

The meaning of <restricted,U> is that this field can no longer be updated by an
ordinary U-user. z U-users can therefore infer that the true value of Enterprise's
destination is classified at some level not dominated by U. The S-user then logs
in as a S-subject and entersthe destination of the Enterprise as Rigel giving us
the following relations at the U and S levels respectively.

I Starship [Objective [Destination[TC[

IEnterprise U[Exploration U[restrictcd U[U[

[Starship [Objective [Destination]TC[

Enterprise U Exploration U[restricted U U I
Enterprise U Exploration U[Rigel S S [

Note that this protocol does not introduce a signaling channel from a S-
subject to an U-subject. There is information flow, but from a S-user (logged in
as an U-subject) to an U-subject. This is an extremely important distinction.
The paramount threat in computer security (at least, in terms of the Orange
Book [6]) is from Trojan Horse infected subjects. Information leakage due to the
activities of users in carrying out their jobs is of concern to overall system secu-
rity. However~ computerization cannot eliminate leakage that is intrinsically part
of the application domain (such as setting some data element to be restricted).
The point is that an information flow channel with a trusted S-user in the loop
can be exercised only by Trojan~ Horses that are capable of manipulating the real
world! This entails the manipulation of real trusted people making real decisions

s Alternately the S-user logs in at the U-level and requests some properly authorized
U-user to carry out this step. Communication of this request from the S-user to
the U-user may also occur outside of the computer system, by say direct personal
communication or a secure telephone call.

T As discussed in section 4.6, only those U-users with the unrestrlct privilege for this
field can update it.

319

and not merely the manipulation of bits in a database. Finally, it is important
to understand that information flow which includes humans in the loop always
exists. For example, the above scenario can be played out replacing "restricted"
with "null" and the same information flow occurs.

Next consider how the polylow scenario of section 3.3 plays out with the
restricted requirement. In this case the Enterprise can have a secret destination
only if the destination has been marked as being restricted at the unclassified
level. Thus either the S- and U-users respectively see the following instances of
SOD,

I Starship I Objective]DestinationlTC I

Enterprise U Exploration U restricted ol U
Enterprise U Exploration U Rigel S]

I Starship I Objective]Destinatiou[TC I
[Enterprise UIExploration Ulrestricted U I U I

or both S- and U-users see the following instance

I Starship I Objective IDestinationlTCl
[Enterprise U[Exploration Ulnull U I u I

In the former event an attempt by a U-user to update the destination of the
Enterprise to Talos will be rejected, whereas in the latter event the update will
be allowed (without causing polyinstantiation).

The concept of restricted is straightforward, so long as we have a totally
ordered lattice. In the general case of a partially ordered lattice some subtleties
arise. How to completely eliminate polyinstantiation using restricted is discussed
at length in [23]. In general, updating the value of a data element to restricted
is a safe operation from a polyinstantiation viewpoint; that is, it cannot cause
polyinstantiation. On the other hand, updating the value of a data element
to a data value, say, at the c-level can be the cause of polyinstantiation. If
polyinstantiation is to be completely prohibited, this update must require that
the data element is restricted at all levels which do not dominate c. The fact that
the data dement is restricted at all levels below c can be verified by the usual
integrity checking mechanisms in a DBMS [22]. However, to guarantee this at
levels incomparable with c is more tricky. In preparing to enter a data value at
the c level, we would need to start a system-low (really data element low) process
which can then write-up. A protocol for this purpose is described in [23]. s

4 S E M A N T I C S OF PCS

We now describe and motivate the intuitive semantics underlying our concept
of PCS (i.e.~ polyinstantiation for cover stories). A formal model is given in the

8 It should be noted that this protocol works for any arbitrary lattice, and does not
require any trusted subjects. The use of trusted subjects will allow simpler protocols
for this purpose.

320

appendix. In a nutshell, PCS combines the "one tuple per tuple class" concept
discussed in section 2 with the "restricted" concept of section 3. The basic mo-
tivation for PCS can be appreciated by considering the following instance of
SOD.

J Starship [Objective [Vestination[TCJ

Enterprise U restricted U Talos U I U
Enterprise U Spying S Rigel S [sl

In this case the Destination attribute of the Enterprise is polyinstantiated, so
that <Talos,U> is a cover story for the real S destination of Rigel. The Objective
is not polyinstantiated.

In the rest of this section we will discuss various aspects of PCS in turn,
leading up to a summary at the end of this section which reiterates the main
points.

4.1 Po ly low Rev i s i t ed

Let us reconsider the occurrence of polyinstantiation due to polylow, as discussed
by example in section 3.3. This example begins with S- and U-users respectively
having the following views of SOD.

[Starship [Objective [Destination[TCJ

[Enterprise U[Exploration UJRigel S J S [

I Starship [Objective [Destination[TCJ

IEnterprise U[Exploration U[null U [U [

So far there is no polyinstantiation. Polyinstantiation occurs in the example
when a U-user updates the destination of the Enterprise to be Talos.

In developing PCS we win take a slightly different perspective on this ex-
ample. The shift in viewpoint, although very small, is extremely significant for
the semantics of polyinstantiation. In our opinion it is a mistake to say that
polyinstantiation does not exist in the S-instance of SOD given above. Indeed
this instance should be correctly shown as follows.

[Starship [Objective IVestination[TCJ

Enterprise U Exploration U null U I U
Enterprise U Exploration U Rigel S I

But then polyinstantiation already exists prior to the U-user updating the des-
tination of the Enterprise to be Talos! This update merely modifies an already
polyinstantiated relation instance to the one given below.

I Starship [Objective [DestinationlTC [
Enterprise U Exploration U Talos U J U
Enterprise U Exploration U Rigel S [

321

With this perspective, element pol~/instantiation can occur only due to polfl~igl~.
Polylow simply cannot be the cause of dement polyinstantistion. Consequently,
polyinstantiation will occur only by the deliberate action of s user to whom
the polyinstantiation is immediately available. In other words, polyinstantiation
does not occur as a surprise.

4.2 The Semant ics of Null

The issue here is a subtle one, but one that is very important to resolve properly;
so as to get a good semantics for PCS. Our proposal is remarkably simple: a
"null" value should be treated just like any data value (except in the apparent
key fields where "null" should not occur). Previous work on the semantics of
null in polyinstantiated databases has taken the view that null's are subsumed
by non-null values independent of the access class [9, 21]. In this case the first
tuple in the following relation

I Starship I Objective IDestinationlTC I
Enterprise UlExploration Ulnun U I U
Enterprise U[Exploration U[l~gel S [

is subsumed by the second tuple, resulting in the Mlowing relation used in our
polylow example of section 3.3.

[Starship] Objective]Destination]TC]

IEnterprise U]Exploration UlRigel S t S]

In PCS the former relation is quite acceptable. The latter can be acceptable, but
only if the lower limit on the classification of the destination attribute is S.

To further illustrate the semantics of null in PCS, consider the following
relation.

[Starship [Objective IDestination[TCj

Enterprise U Exploration U null U I U
Enterprise U Exploration U null S I

PCS will consider this to be a polyinstantiated relation. The fact that we have
null's rather than data values in the polyinstantiated field has no bearing on this
issue. We note that the semantics of null in [9, 21] require all null values to be
classified at the level of the apparent key (U in this case), thereby deeming the
second tuple as illegal.

4.3 The Semant ics of U p d a t e

Our interpretation of the semantics of an SQL UPDATE command is identical to
the one in the standard relational model: An update command is used to change
values in tuples that are already present in a relation. In short, UPDATE does
not cause polyinstantiation. UPDATE is a set level operator; i.e., all tuples in the

322

relation which satisfy the predicate in the update statement are to be updated
(provided the resulting relation satisfies integrity constraints).

The UPDATE statement executed by a c-user (i.e., a user with clearance c)
has the following general form.

UPDATE R
SET A~ = s~[, Aj = s j] . . .
[WHERE p]

Here, sk is a scaler expression, and p is a predicate expression which identifies
those tuples in Rc that are to be modified. The predicate p may include condi-
tions involving the classification attributes, in addition to the usual case of data
attributes. The assignments in the SET clause, however, can only involve the
data attributes. The corresponding classification attributes are implicitly deter-
mined to be c. In PCS this statement is interpreted, from the c-users perspective,
to apply only to tuples with TC = c as follows.

UPDATE R
SET Ai = si[,Aj = s j] . . .
WHERE ~ ^] T C = c

To be specific consider the following relation instance

[Sta~ship [Objective [DestinationlTC I

IEnterprise UIExploration U]null U [U I

to which a U-user applies the following UPDATE command

UPDATE SOD
SET Destination = "Ta]os"
WHERE Starship : "Enterprise"

This statement is interpreted in PCS as follows

UPDATE SOD
SET Destination = "Talos"
WHERE Starship : "Enterprise" ^ TC = U

giving us the following result

[Starship I Objective [Destination[TC[

[Enterprise U[Exploration UlTalos U l u l

Next, suppose a S-user executes the following UPDATE statement

UPDATE SOD
SET Destination = "Riger'
WHERE Starship = "Enterprise"

PCS interprets this as follows

UPDATE SOD
SET Destination -- "Rigel =
WHERE Starship : "Enterprise" A TC = S

Since there is no secret tuple for the Enterprise, this UPDATE has no effect.

323

4.4 Propagation of U p d a t e s

As discussed in section 2.3 the update of an attribute must propagate into polyin-
stantiated tuples. For example, consider the above UPDATE by a U-user in
context of the following relation.

I Starship I Objective IDestinationlTC I

IEnterprise U Exploration U]null U I U
Enterprise U Spying S Inull U [

The S-tuple is invisible to the U-user who therefore sees exactly the scenario
described above, i.e., the destination of the Enterprise is set to <Talos,U>. The
point of update propagation is that this change must also be reflected in the
S-tuple. That is, S-users should now see the following relation.

I Starship [Objective IDestination[TCI

Enterprise U Exploration U Talos U I U
Enterprise U Spying S Talos U [

In this relation the Destination attribute of the U-tuple has been explicitly up-
dated by a U-user. The Destination attribute of the S-tuple is implicitly updated
unknown to the U-user. The fact that the Destination attribute of the S-tuple
is classified U indicates that this implicit update is desired.

Suppose further, that a U-user executes the following UPDATE statement.

UPDATE SOD
SET Objective : "Mining"
WHERE Starship -- "Enterprise"

After this update S-users will see the following relation

I Starship [Objective]Destination[Tq

IEnterprise UIMining UITalos U
Enterprise U[Spying S ,Talos U l ~ [

This behavior can be implemented in a kernellzed architecture using decompo-
sitions similar to [14]. Detailed discussion of this is beyond the scope of this
paper.

4.5 P o l y i n s t a n t i a t i n g U p d a t e s

In addition to the usual UPDATE statement, whose interpretation is given
above, we propose in PCS to introduce a polyinstantiating update statement
to allow users to explicitly request polyinstantiation. This statement is called a
PUPDATE (i.e., polyinstantiating UPDATE) statement and has the same gen-
eral format as an UPDATE, as shown below.

PUPDATE R
SET A t - s i [, A j - s j] . . .
[WHERE p]

324

The interpretation of this statement in PCS is intuitively speaking, to polyinstan-
tiate whenever a write-down is imminent. To be concrete consider the following
relation instance

I Starship I Objective IDestinationlT q
[Enterprise U[Exploration U[null U [U [

to which a S-user applies the following UPDATE command

PUPDATE SOD
SET Destination = "Rige]"
WHERE Starship = "Enterprise"

Since overwriting the null destination in place would result in a write-down, PCS
will interpret this statement as a request to polyinstantiate a secret destination.
It will therefore insert a new tuple into the
but with a secret destination of Rigel. This

[Starship] Objective

Enterprise U Exploration
Enterprise U Exploration

relation, identical to the one above,
will give us the following relation.

IDestination[TCI

U null U I U
U Rigel S [

Subsequent PUPDATEs by S-users to the Enterprise are treated just like UP-
DATES. For example, the following PUPDATE statement

PUPDATE SOD
SET Destination : "Sirius"
WHERE Starship : "Enterprise"

by an S-user will be interpreted in PCS as

UPDATE SOD
SET Destination - "Sirius"
WHERE Starship : "Enterprise" A TC : S

giving us the following result

[Starship [Objective [DestinationlTC [

Enterprise U Exploration U null U l U
Enterprise U Exploration U Sirius S [

In other words a PUPDATE requests polyinstantiation if necessary to prevent
a write-down, but otherwise is identical to an UPDATE.

4.6 The Semant ic s o f R e s t r i c t e d

Our proposal in PCS is to treat "restricted" for the most part as just another
data value. The main difference comes about when restricted is changed to unre-
stricted (i.e., some value other than restricted), and vice versa. The usual write
privilege for the data item in question should not authorize these special updates
which change restricted to unrestricted, and vice versa. Otherwise restricted pro-
vides no additional protection. Our proposal in PCS is to provide two additional
access privileges as follows.

325

I. The restrict privilege on a data item authorizes a write operation which
changes unrestricted to restricted.

2. The ugregtrict privilege on a data item authorizes a write operation which
changes restricted to unrestricted.

The possession of restrict and unrestfict privileges must be carefully controlled
by non-discretionary means to make this effective. One possibility is to tie the use
of these privileges to some kind of a mandatory integrity label on the subject.
Another possibility is to control the propagation of these privileges, by non-
discretionary means such as described in [20, 24], so it can be determined who
can possess them (i.e., with efficient safety analysis).

The meaning of <restricted,c> in a data element is that ordinary c-users
cannot modify this field. Only a c-user with the unrestrict privilege for that field
is allowed to write into it. Similarly, ordinary c-users cannot write the restricted
value into a data field in the first place.

4.7 S u m m a r y

In summary we can describe the salient features of PCS as follows.

1. No entity polyinstantiation (which greatly facilitates referential integrity).
2. Element polyinstantiation only by explicit polyhigh PUPDATE requests.
3. One tuple per tuple class for a given apparent primary key.
4. UPDATEs apply only to tuples at the user's access class, and propagate to

higher level tuples.
5. Nulls are treated like any other data value.
6. Polyinstantiation is further controlled by restricted.
7. Changing restricted to unrestricted and vice versa requires special privileges.

The former is specially dangerous in terms of possible polyinstantiation and
should be executed only with proper protocols.

Finally, we note that PCS can be implemented in a kernelized architecture using
decompositions similar to [14]. Detailed discussion of this will require another
paper.

5 C O N C L U S I O N

In this paper we have brought together a number of our previously published
ideas, along with some new ones. We have also incorporated some concepts
proposed by other researchers in the polyinstantiation arena. We have adapted
and refined these ideas, while combining them into a consistent, intuitive and
flexible package called PCS (i.e., polyinstantiation for cover stories).

PCS has several advantages over other proposals for incorporating cover sto-
ries in a multilevel relational DBMS. Most noteworthy are its uniform query
interface and its flexibility. One can ask the same query and expect to be shown
cover stories only when they exist, rather than having to explicitly ask for them.

326

The cover stories are created upon need and may disappear and reappear from
time to time for the same entity. Using explicit at tr ibutes to accommodate such
situations makes for a rigid structure in which the DBA (Database Administra-
tor) is the ult imate author i ty regarding creation of cover stories. PCS puts this
power in the users' hands, where it properly belongs.

There is little, if any, experience regarding the use of multilevel DBMSs. Until
recently, there have been no systems to use. Systems are now emerging but with
many ad hoc features built into their da ta models. We must give users a flexible
vehicle to experiment with. We believe PCS provides a useful data model for
this purpose.

References

1. l~e K. Burns, "Referential Secrecy." Proc. 1EEE Symposium on Security and Pri-
vacy, Oakland, California, May 1990, pages 133-142.

2. F. Cuppens and K. Yasdanian, "A "natural" decomposition of multi-level rela-
tions," Proc. IEEE Symposium on Security and Privacy, May 1992, pages 273-284.

3. Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, Mark Heckman, and William
R. Shocldey, "A multilevel relational data model." Proc. IEEE Symposium on
Security and Privacy, April 1981, pages 220-234.

4. Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, William 1t. Shockley, and
Mark Heckman, "The SeaView security model." Proc. IEEE Symposium on Secu-
rity and Privacy, April 1988, pages 218-233.

5. Dorothy E. Denning, "Lessons Learned from Modeling a Secure Multilevel Re-
lational Database System." In Database Security: Status and Prospects, (C. E.
Landwehr, editor), North-Holland, 1986, pages 35-43.

6. Department of Defense National Computer Security Center. Department o/Defense
Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD (1985).

7. Gajnak, G.E. "Some Results from the Entity-Relationship Multilevel Secure
DBMS Project." Aerospace Computer Security Applications Conference, pages 86-
71 (1988).

8. J. Thomas Halgh, Richard C. O'Brien, and Daniel J. Thomsen, "The LDV Secure
Relational DBMS Model." Database Security IV: Status and Prospects, S. 3ajodia
and C. E. Landwehr (editors), North-Holland, 1991, pages 265-279.

9. Sushil Jajodia and Kavi S. Sandhu, "Polyinstantiation integrity in multilevel rela-
tions." Proc. IEEE Symposium on Security and Privacy, Oakland, California, May
1990, pages 104--115.

10. Sushil Jajodia and Ravi S. Sandhu, "A formal framework for single level decompo-
sition of multilevel relations." Proc. IEEE Workshop on Computer Security Foun-
dations, Franconia, New Hampshire, June 1990, pages 152-158.

11. Sushll Jajodia and Itavi S. Sandhu, "Polyinstantiation integrity in multilevel rela-
tions revisited." Database Security IV." Status and Prospects, S. Jajodia and C. E.
Landwehr (editors), North-Holland, 1991, pages 297-307.

12. Sushil Jajodia, l~avi S. Sandhu, and Edgar Sibley, "Update semantics of multi-
level relations." Proc. 6th Annual Computer Security Applications Conf., December
1990, pages 103-112.

13. Sushil Jajodia and Ravi S. Sandhu, "Database security: Current status and key
issues," ACM SIGMOD Record, Vol. 19, No. 4, December 1990, pages 123-126.

327

14. Sushil Jajodia and Ravi S. Sandhu, "A novel decomposition of multilevel rela-
tions into single-level relations." Proc. IEEE Symposium on Security and Privacy,
Oakland, California, May 1991, pages 300-313.

15. Sushil Jajodia and Ravi S. Sandhu, "Toward a multilevd secure relational data
model," Proc. ACM SIGMOD Int'l. Conf. on Management of Data, Denver, Col-
orado, May 29-31, 1991, pages 50-59.

16. Sushil Jajodia and Ravi S. Sandhu, "Enforcing Primary Key Requirements in Mul-
tilevel Relations," Proc. ~th RADC Workshop on Multilevel Database Security,
Rhode Island, April 1991.

17. Teresa F. Lunt, Dorothy E. Denning, Roger It. Schell, Mark Heckman, and William
It. Shockley, "The SeaView security model." IEEE Transactions on Software En-
gineering, Vol. 16, No. 6, June 1990, pages 593-607.

18. Teresa F. Lunt and Donovan Hsleh, "Update semantics for a multilevel rela-
tional database." Database Security IV: Status and Prospects, S. Jajodla and C.
E. Landwehr, (editors), North-Holland, 1991, pages 281-296.

19. Teresa F. Lunt, "Polyinstantiation: an inevitable part of a multilevel world." Proc.
IEEE Workshop on Computer Security Foundations, Franconia, New Hampshire,
June 1991, pages 236-238.

20. Ravi S. Sandhu, "The Schematic Protection Model: Its Definition and Analysis for
Acydic Attenuating Schemes." Journal of A CM 35(2):404-432 (1988).

21. Itavi S. Sandhu, Sushil Jajodia, and Teresa F. Lunt, "A new polyinstantiation
integrity constraint for multilevel relations." Proc. IEEE Workshop on Computer
Security Foundations, Franconia, New Hampshire, June 1990, pages 159-165.

22. Itavi S. Sandhu and Sushil Jajodia, "Integrity Mechanisms in Database Manage-
ment Systems." Proc. 13th NIST-NCSC National Computer Security Conference,
Washington, D.C., October 1990, pages 526-540.

23. Ravi S. Sandhu and Sushil Jajodia, "Honest Databases That Can Keep Secrets."
Proc. l~th NIST-NCSC National Computer Security Conference, Washington,
D.C., October 1991, pages 267-282.

24. Ravi S. Sandhu, "The Typed Access Matrix Model." Proc. IEEE Symposium on
Research in Security and Privacy, Oakland, California, May 1992, pages 122-136.

25. Simon R. Wiseman, "On the Problem of Security in Data Bases." In Database
Security III: Status and Prospects, (Spooner, D.L. and Landwehr, C.E., editors),
North-Holland, 1990, pages 143-150.

A P P E N D I X : F O R M A L M O D E L OF P C S

A multilevel relation consists of the following two parts . 9

D e f i n i t i o n I . [R E L A T I O N S C H E M E] A state-invariant multilevel relat ion
scheme

R(A1, C1, A2, C2, . . . , An, Ca, TC)

where each Ai is a data attribute over domain Di, each Ci is a classificatior~
attribute for Ai and TC is the tuple-class at t r ibute . The domain of Ci is specified
by a range [Li, Hi] which defines a sub-lattice of access classes ranging from Li

s For simplicity the formal model is stated in terms of individual attributes. It can be
generalized by replacing each Ai by an attribute group in a straightforward manner.

328

up to Hi. The domain of TC is ~ub{L, : i = 1 . . . n},]ub{Hi : i = 1 . . . n}] (where
lub denotes the least upper bound). Let AI = A K be the apparent primary key.

Defini t ion 2. [R E L A T I O N I N S T A N C E S] A collection of state-dependent
relation instances

P~(A ~, c~, A2, c2, . . . , A~, c~, TC)

one for each access class c in the given lattice. Each instance is a set of distinct
tuples of the form (al, cl, a2, c~, . . . , a,~, c,~, tc) where each ai E Di or o~ = null,
c >_ ci and tc = lub{ci : i : 1 . . .n}. Moreover, ifa~ is not null then c~ G ILl, Hi].
We requixe that ci be defined even if a~ is null, i.e., a classification attribute
cannot be null.

P r o p e r t y 3. [Ent i ty In tegr i ty] Let A K be the apparent key ofR. A multilevel
relation R satisfies entity integrity if and only if for all instance Rc of R and
t E R ~

1. Ai G AK =~ t[Ai] ~ null,
2. Ai, Aj E A K ~ t[Ci] = t[Cj], i.e., A N is uniformly classified, and
3. Ai fL A K =~ t[Ci] >_ t[CAK] (where CAK is defined to be the classification of

the appaxent key).

P r o p e r t y 4. [No E n t i t y Poly lns tan t ia t ion] A multilevel relation R has no
entity polyinstantiation if and only if A K ---, CAK. 1~

P r o p e r t y 5. [Tuple In tegr i ty] A multilevel relation R has tuple integrity if
and only i fAK, CAK, TC --, Ai. (In context with Property 4, it suffices to require
AK, TC ~ Ai.)

P r o p e r t y 6. [Ent i ty E lemen t In tegr i ty] A multilevel relation R has entity
element integrity if and only ff AK, CAK, Ci --, A~. (In context with Property 4,
it suffices to require AK, Ci --, A~.)

P r o p e r t y 7. [In te r - Ins tance Integr i ty] R satisfies inter-instance integrity if
and only if for all c ~ <_ e we have Re, : {tit ERc A t[TC] < c').

P r o p e r t y 8. [Referent ia l In tegr i ty] Let Aj be a foreign key of R(A1, C1, . . . ,
An, C,z) referencing an entity in Q(B1, C1, . . . , Bin, C,~). R and Q satisfy refer-
ential integrity if and only if for all c, if t E R c with t[Aj] ~ null or restricted
then there exists q G Qc such that t[Aj] : q[B1].

Formalization of UPDATE and PUPDATE semantics is omitted due to lack of
space. The formalization is very similar in outline to the minimal propagation
semantics of [12].
This article was processed using the IbTEX macro package with LLNCS style

10 The notation X1, ... ,X,~ --* Y signifies that Y is functionally dependent on
X1,. . . ,X, , , that is, it is not possible to have two tuples with the same values for
XI , . . . , X,, but different values for Y.

