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A b s t r a c t .  In this paper we study the use of polyinstantiation, for the 
purpose of implementing cover stories in multilevel secure relational 
database systems. We define a particular semantics for polyinstantiation 
called PCS (i.e., polyinstantiatlon for cover stories). PCS allows two al- 
ternatives for each attribute (or attribute group) of a multilevel entity: 
(i) no polyinstantiation, or (il) polyinstantiation at the explicit request 
of a user to whom the polyinstantiation is visible. PCS strictly limits the 
extent of polyinstantlation by requiring that each entity in a multilevel 
relation has at most one tuple per security class. We demonstrate that 
PCS provides a natural, intuitive and useful technique for implement- 
ing cover stories. A particularly attractive feature of PCS is its run-time 
flexibility regarding the use of cover stories. A particular attribute may 
have cover stories for some entities and not for others. Even for the same 
entity, a particular attribute may be polyinstantiated at some time and 
not at other times. 

1 I N T R O D U C T I O N  

Polyinstantiat ion has generated a great deal of controversy lately. Some have 
argued tha t  polyinstantiat ion and integrity are fundamental ly  incompatible,  and 
have proposed alternatives to polyinstantiation. Others have argued about  the 
correct definition of polyinstantiat ion and its operational semantics. Much has 
been writ ten about  this topic, as can be seen from the bibliography of this paper.  

There  are two extreme positions that  can be identified with respect to polyin- 
stantiation.  

- Polyinstantiat ion and integrity are fundamental ly  incompatible,  and steps 
must  be taken to avoid polyinstantiat ion in multilevel relations regardless of 
the cost. 

- Polyinstantiat ion is an intrinsic phenomenon, inevitable in the multilevel 
world. Therefore, multilevel relations must  be polyinstant iated whenever 
necessary. 

* The work of both authors was partially supported by the U.S. Air Force, Rome Air 
Development Center through contract #F-30602-92-C-002. We are indebted to Joe 
Giardono for making this work possible. 
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Extreme proponents of the former view are apparently willing to tolerate infor- 
mation leakage and/or  severe denial-of-service in order to totally banish polyin- 
stantiation. Extreme proponents of the latter view appear similarly willing to 
generate large numbers of spurious tuples and data  associations, whenever the 
opportunity is presented. 

As is often the case in such situations, the t ruth lies somewhere in between. 
To reconcile these extreme views, it is useful to draw an analogy with the debate 
in the early 1970's regarding g o t o  statements in programming languages. To- 
day it is we]] understood that  indiscriminate use of goto ' s  is harmful, but also 
that  the complete eliminations of go to ' s  creates more problems than it solves. 
Polyinstantiation should similarly be viewed as a technique which can be used 
for better or for worse. 

It is important  to understand that  there is nothing fundamental  about the 
occurrence of polyinstantiation. Jajodia and Sandhu [16, 23] have shown how it 
is possible to prohibit polyinstantiation securely (i.e., without leakage of secret 
information or denial-of-service). In other words, if you don' t  like it you can get 
rid of it completely and securely. 

At the same time, it is equally important  to understand that  there is no 
fundamental  incompatibility between polyinstantiation and integrity. A prop- 
erly designed database management system (DBMS) can limit the occurrence 
of polyinstantiation to precisely those instances where it is explicitly requested 
by s user 2 to whom the polyinstantiation is visible. The early work on polyin- 
stantiation allowed an unclassified user to insert information which propagated 
into several polyinstantiated tuples at the secret and higher levels. The resulting 
"spaghetti relations" do remind one of the all too familiar spaghetti code riddled 
with goto 's .  But, much as the elimination of goto ' s  is not fundamental to struc- 
tured programming, the elimination of polyinstantiation is not fundamental  to 
database integrity. 

The principal objective of this paper is to demonstrate that  careful use of 
polyinstantiation is a natural, intuitive and disciplined method for implementing 
cover stories in multilevel secure relational databases. Polyinstantiation should, 
of course, be used only where it is appropriate. Therefore polyinstantiation must 
be prevented in the many situations where there is no need for cover stories. 
In other words, even within the same database or relation we should be able to 
allow or disallow polyinstantiation selectively. We also reiterate the importance 
of limiting the occurrence of polyinstantiation to precisely those instances where 
it is explicitly requested by the user to whom it will be visible. 

This paper defines a particular semantics s for polyinstantiation called PCS 
(i.e., polyinstantiation for cover stories). In developing PCS we have refined 
many of our previously published ideas, included some new ones; as well as 
borrowed and adapted concepts from other researchers who have published on 

2 Strictly speaking we should be saying subject rather than user. For the most part 
we will loosely use these terms interchangeably. Where the distinction is important 
we wiIl be appropriately precise. 

s We do not claim that PCS is the only useful semantics for polyinstantiation. 
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this topic. Our principal contribution is in the total package we have produced, 
by combining and refining various ideas into a consistent, intuitive, and flexible 
aggregate. 

PCS allows two alternatives for each at tr ibute (or at tr ibute group) of a multi- 
level entity: (i) no polyinstantiation, or (ii) polyinstantiation by explicit request. 
PCS offers run-time flexibility of when to use cover stories, and uniformity of 
the query interface. These are not available in other proposals for implementing 
cover stories, such as having a separate at tr ibute for the true facts and the cover 
story. A particularly attractive feature of PCS is that  the same at t r ibute may be 
polyinstantiated or not for different entities in the same relation. For example, 
the Destination of the Starship Enterprise can be polyinstantiated for a cover 
story, while polyinstantiation for the Destination of the Voyager is forbidden. 
Furthermore, PCS can readily accommodate the situation where on different 
occasions the same entity does or does not have a cover story for a particular 
at tr ibute,  as the need changes. For example, the Destination of the Starship 
Enterprise can be polyinstantiated for a cover story today, but  tomorrow its 
polyinstantiation can. be forbidden. 

The remainder of this paper is organized as follows. Section 2 reviews the 
concept of polyinstantiation emphasizing those aspects which are impor tant  to 
our objective in this paper. Section 3 discusses how polyinstantiation can be 
eliminated in a secure manner, i.e., without introducing signaling channels 4 for 
leakage of secret information or incurring serious denial-of-service costs. Sec- 
tion 4 introduces and motivates the concepts of PCS. (A formal model for PCS, 
including its enti ty integrity and referential integrity properties, is given in the 
appendix.) Section 5 gives our conclusions. 

2 P O L Y I N S T A N T I A T I O N  

In this section we discuss some basic concepts of polyinstantiation by means of 
examples. We assume that  the readers are familiar with the basic concepts of 
the standard (single-level) as well as multilevel relations. We refer the readers 
to [14] or [15] for a detailed exposition. 

A multilevel relation is said to be polyinstantiated when it contains two or 
more tuples with the same "apparent" primary key values. The concept of ap- 
parent primary key was introduced by Denning et al. in [3]. While the notion of 
a primary key is simple and well understood for classical (single-level) relations, 

A signaling channel is distinct from a covert channel. A signaling channel is a means 
of information flow which is inherent in the data model, and will occur in every 
implementation of the model. A covert channel, on the other hand, is a property of 
a specific implementation; not a property of the data model. In other words, even 
if the data model is free of downward signaling channels, a specific implementation 
may well contain covert channels due to implementation quirks. It is therefore most 
important for the data model to be free of downward signaling channels. Otherwise 
there is no implementation of the model, however idealized, which can be free of 
information leakage. 
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it does not have a straightforward extension to multilevel relations. The appar- 
ent primary key of a multilevel relation are those attributes which are asserted 
by the user as being the primary key. The real primary key (i.e., the minimal 
set of attributes which is unique in each tuple) of the multilevel relation is ob- 
tained by adding one or more classification attributes to the apparent primary 
key. The exact manner in which this is done is closely related to the precise 
polyinstantiation behavior of the relation (see [2] for a detailed discussion). 

In multilevel relations, a major issue is how access classes are assigned to 
da ta  stored in relations. One can assign access classes to relations, to individual 
tuples in a relation, to individual attributes (i.e., "columns") of a relation, or 
to the individual da ta  elements of a relation. Polyinstantiation does not arise 
explicitly when access classes are assigned to relations or individual attributes of 
a relation. For generality, we consider the case where access classes are at tached 
to the individual data  elements themselves. Systems which at tach access classes 
to the tuples in a relation have limited expressive power and will not be discussed 
in this paper. 

There are two different types of polyinstantiation in multilevel relations with 
element level labeling [19], as follows: 

- entity polyinstantiation, and 
- element polyinstantiation. 

Our proposal in PCS is to disallow entity polyinstantiation 5, and allow element 
polyinstantiation in a carefully controlled manner, as explicitly requested by 
u s e r s .  

2.1 E n t i t y  P o l y l n s t a n t i a t i o n  

Enti ty polyinstantiation occurs when a relation contains multiple tuples with 
the same apparent primary key values, but having different access class values 
for the apparent primary key. As an example, consider the relation SOD given 
below: 

[ Starship I Objective [Destination[TC] 

Enterprise U Exploration UITalos U [ U 
Enterprise S Spying S[Rigel S [ 

Here, as in all our examples, each attr ibute in a tuple not only has ,a value 
but also a classification. In addition there is a tuple-class or TC attribute. This 
at tr ibute is computed to be the least upper bound of the classifications of the 
individual data  elements in the tuple. We assume that  the attr ibute Starship is 
the apparent primary key of SOD. 

5 Entity polyinstantiation can actually be allowed without significantly impacting 
PCS. There may be situations in which entity polyinstantiation is desirable. How- 
ever, it should be understood that entity polyinstantlatlon is particularly detrimental 
to referential integrity as noted in [7]. 
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The name "entity polyinstantiation" arises from the interpretation that these 
two tuples refer to two distinct entities in the external world. That is, there are 
two distinct Starships with the same name Enterprise. We will discuss how to 
prevent entity polyinstantiation in section 3. 

2.2 Elemen t  Po ly ins tan t i a t ion  

The following relation illustrates element polyinstantiation: 

Starship Objective Destination[TC I 

Enterprise U Exploration U Talos U [ U 
Enterprise U Spying S Talos U [ S 

With element polyinstantiation, a relation contains two or more tuples with iden- 
tical apparent primary keys and the associated access class values, but having 
different values for one or more remaining attributes. As shown in the above 
example, the objective of the starship Enterprise is different for U- and S-users. 

What are we to make of this last relation given above? There are at least 
two reasonable interpretations that have been proposed in the literature. 

- The objective of Exploration is a cover 8tory (at the U-level) for the real 
objective of Spying (at the S-level). 

- We have an inconsistency in the database which needs to be resolved. 

We will show in section 3 how to securely prevent element polyinstantiation from 
arising due to inconsistencies. As a result the only occurrence of polyinstantiation 
will be when it is deliberately requested for the purpose of implementing cover 
stories. 

To appreciate the intuitive notion of a cover story consider the eight instances 
of SOD shown below [9]. 

[No.l[ Starship Objective DestinationITC 

1 [IEnterprise U 

2 [[Enterprise U 
[[Enterprise U 

3 UEnterprise U 
I[Enterprise U 

4 [[Enterprise U 
[[Enterprise U 

5 !Enterprise U 
Enterprise U 
Enterprise U 

6 Enterprise U 
Enterprise U 
Enterprise U 

Exploration 

Exploration 
Spying 

Exploration 
Exploration 

Exploration 
Spying 

Exploration 
Exploration 
Spying 

!Exploration 
I 
!Spying 
Spying 

U Talos 

U !Talos 
S Talos 

U Talos 
U Rigel 

U Talos 
S Rigel 

U Talos 
U Rigel 
S Rigel 

U Talos 
S Talos 
S Rigel 

uIu 
. . . . .  uU IUs 

S S 

S S 

u 6 
S S 
S S 

U U 
U S 
S S 
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INo.ll Starship 

7 Enterprise U 
Enterprise U 
Enterprise U 

Objective 

Exploration 
Spying 
Exploration 

Enterprise U Exploration 
Enterprise U Spying 
Enterprise U Exploration 
Enterprise U Spying 

U Talos 
S Talos 
U Rigel 

U Talos 
S Talos 
U Rigel 
S Rigel 

DestinationlTC 

U U 
U S 
S S 

U U 
U S 
S S 
S S 

These instances can be partitioned into three classes as follows. 

- Instance 1 has no polyinstantiation and is therefore straightforward. 
- Instances 2, 3, and 4 are also relatively straightforward. In each case there 

is a single U-tuple and a single S-tuple for the Enterprise. The U-tuple can 
therefore be reasonably interpreted as being a cover story for the S-tuple. 
Instances 2, 3, and 4 differ in the extent to which the U cover story is actually 
true or false at the S level. Instance 2 has a cover story for the objective, 
but the U destination is correct. Instance 3 conversely has a cover story for 
the destination, but the U objective is correct. Instance 4 has a cover story 
for both the objective and destination. 

- Instances 5, 6, 7, and 8 are, however, confusing to interpret from a cover story 
perspective. Each of these cases has more than one S-tuple for the Enterprise, 
but only one U-tuple. It is possible to give a meaningful and consistent 
interpretation and update semantics for such relations [9, 12]. However, these 
interpretations loose the basic intuitive simplicity of the relational model. 

The intuitive appeal of instances 2, 3 and 4 is that they have one tuple per tuple 
class. We will adhere to this requirement in the rest of this paper. 

It should be noted that certain problems with the concept of one-tuple-per- 
tuple-class in context of a partially ordered lattice were identified in [21]. These 
problems arise because [21] takes the following view: those attributes in a tuple 
that are classified below the tuple class are automatically derived from lower- 
level polyinstantiated tuples. PCS, however, takes the view that such attributes 
are ezplicitly derived by the user when constructing the higher-level tuple. PCS 
therefore does not suffer from the problems identified in [21]. 

2 . 3  U p d a t e  P r o p a g a t i o n  

One of the subtleties involved in maintaining plausible cover stories is consistency 
across different levels. To illustrate this issue consider the following relation 
instances: 

Starship Objective DestinationlTC 

Enterprise U Exploration U Talos U I U 
Enterprise U Exploration U Rigel S I S 
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I Starship I Objective [DestinationlTC [ 

IEnterprise U Exploration UiTalos U I U 
Enterprise U Exploration S [Rigel S I 

We will treat these relations as being different, even though the values of the 
individual data elements are the same in both cases. In other words, there is a dif- 
ference between the objective being <Exploration,U) versus <Exploration,S). 
To understand this difference, consider what happens when a U-user updates the 
objective of the Enterprise to be Mining. These two relations will respectively 
be updated as follows: 

[ Starship I Objective [Destination[Tel 
IEnterprise U[Mining U[Talos U I U 
Enterprise UIMining UIRigel S I 

[ Starship I Objective IDestinationlTCI 
[Enterprise U Mining U[Talos U I U 
Enterprise U Exploration S [Rigel S I 

3 E L I M I N A T I N G  P O L Y I N S T A N T I A T I O N  

In this section we show how polyinstantiation can be completely prevented. We 
discuss the prevention of entity and element polyinstantiation separately below. 

3.1 Source of  Ent i ty  Polylns tant ia t ion 

Entity polyinstantiation can occur in basically two different ways, which we 
respectively call polyhigh and polylow for ease of reference [23]. 

1. Polyhigh: A high user inserts a tuple with a primary key that already exists 
at the low level. 

2. Polylow: A low user inserts a tuple with a primary key that already exists 
at the high level. 

Polyhigh is easily prevented without disclosing secret information. The DBMS 
simply rejects the attempted insertion. The real challenge is in preventing poly- 
lOW. 

To be concrete, let us illustrate polyhigh by considering the following instance 
of SOD. 

I Starship [ Objective IDestinationlTC I 
[Enterprise U]Exploration U[Talos U [U I 

Now suppose a S-user attempts to insert the following tuple in this relation: 
(Enterprise, Spying, Rigel). A polyinstantiating DBMS will allow this insertion 
giving us the following result. 
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I Starsmp I Objective [DestinationlTC [ 
Enterprise UIExploration U Talos U [ U 
Enterprise S ISpying S Rigel S [ 

There is, however, no fundamental need to polyinstantiate in this situation. The 
DBMS can simply reject this insertion by the S-user. The key conflict is visible 
to the S-user without any secrecy violation. Since the name Enterprise is already 
in use, it is only proper to ask the S-user to choose another name for the new 
ship, say, Enterprise ~. In other words, there is no serious denial-of-service to the 
S-user; so long as the user can rename the new Starship to be Enterprise I and 
enter the following tuple: (Enterprise l, Spying, Rigel) to obtain 

[ Starship I Objective [Destination[TC[ 

Enterprise U Exploration U Talos U I U 
Enterprise ~ S Spying S Rigel S [ 

without polyinstantiation. 
Similarly, let us illustrate polylow by considering the following relation in- 

stance. 

I Starship [Objective[Vestination[TC I 

[Enterprise S[Spying S [Rigel S [ S I 

Note that  due to simple-security this tuple is not visible to U-users, who therefore 
see an empty relation. Now suppose a U-user attempts to insert the following 
tuple in this relation: (Enterprise, Exploration, Talos). This insertion cannot be 
rejected without some security compromise. Once we allow the database to come 
to this point, we can get out of the situation only by compromising some aspect 
of security. Various solutions have been proposed but none are really palatable. 
We can identify the following alternatives. 

1. Tolerate Loss of Secrecy. Proponents of this approach consider it better to 
disallow the insertion and leak information, by inference, that the Enterprise 
is being used as a key at some level above U. Unfortunately the signaling 
channels opened up by this tolerance preclude such systems from attaining 
a high rating (i.e., B2 or above [6]) for multilevel security. 

2. Tolerate Loss o.f Integrity. This is the entity polyinstantiation route and 
would give us the following result. 

I Starship [ Objective ]DestinationJTC[ 
IEnterprise U Exploration UITalos U I U 
Enterprise S Spying S IRigel S I 

It is possible to maintain an appeaxance of integrity in this case by deleting 
the existing S-tuple for the Enterprise and inserting the new U-tuple to 
obtain 

I Starship I Objective IDestinationlTCI 

]Enterprise U[Exploration U[Talos U ] U [  
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For obvious reasons, no one has proposed this "solution" seriously. 
Tolerate Denial of Service. The SWORD I~roject [25] has proposed that in 
such situations we forbid all further insertions for all time! For instance, s 
U-user is prevented from even inserting a tuple such as (Voyager, Mining, 
Mars) which does not cause any key conflict. Thus, the moment a S-key has 
been inserted no more Starships can be created by any user in this relation. 
Moreover, there is no way of recovering from this state. This is clearly serious 
denial-of-service. 

The main point to note, for our purpose, is that is too late to securely pre~ent this 
insertion at the point ~here the insertion is about to tal:e place. The insertion can 
be securely prevented only by taking proactive steps in advance of its imminent 
occurrence. 

3.2 P r e v e n t i o n  of  E n t i t y  Po ly ln s t an t i a t l on  

There are three basic techniques for eliminating entity polyinstantiation. 

1. Make all the keys visible. In this method the apparent primary key is required 
to be labeled at the lowest level at which a relation is visible. For example, we 
can require that all keys be unclassified. Consequently, the following relation 

[ ~!arship [ Objective [Destination[TCJ 

Enterprise U Exploration U[Talos U 
[En.terpzise S Spying S ]Rigel S I U 

I 

would be forbidden. Note that we can represent the same information in two 
different relations called USOD and SSOD as follows 

I UStarship I Objective [DestinationlTC I 
[Enterpr!se U]Exploration UITalos U ] U J  

[ S~tarship I Objective ]DestinationlTC [ 

IEnterprise SISpying SIRigel S I S I  

In other words we horizontally partition the original SOD relation, putting 
all the U-Starships in USOD and all the S-Starships in SSOD. 

2. Partition the domain of the primary key. Another way to eliminate entity 
polyinstantiation is to partition the domain of the primary key among the 
various access classes possible for the primary key. For our example, we 
can say require that starships whose names begin with A-E are unclassified, 
starships whose names begin with F-T are secret, and so on. Whenever a new 
tuple is inserted, we enforce this requirement as an integrity constraint. In 
this case we would need to rename the secret Enterprise, perhaps as follows. 

] Starship [ Objective [DestinationlTC j 

Enterprise UIExploration UITalos U I U 
FEnterprise S ISpying S ]Rigel S ] 
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The DBMS can now reject any attempt by a U-user to insert a Starship 
whose name begins with F-Z, without causing any information leakage or 
integrity violation. 
Limit i~sertion~ ~o be do,re b~l trusted subject. A third way to eliminate en- 
tity polyinstantiation is to require that all insertions are done by a system- 
high user, with a write-down occurring as part of the insert operation. 
(Strictly speaking, we only need a relation-high user, i.e., a user to whom all 
tuples axe visible.) In context of our example this means that a U-user who 
wishes to insert the tuple: (Enterprise, Exploration, Talos), must request a 
S-user to do the insertion. The S-user does so by invoking a trusted subject 
which can check for key conflict, and if there is none insert a U-tuple by 
writing down. If there is a conflict the S-user informs the U-user about it, 
so the U-user can, say, change the name of the Starship to Enterprise ~. 

The first approach is available in any DBMS which allows a range of access classes 
for individual attributes (or attribute groups), by simply limiting the classifica- 
tion range of the apparent key to be a singleton set. The second approach is 
available to any DBMS that can enforce domain constraints with adequate gen- 
erality. The third approach is always available but requires the use of trusted 
code, and tolerates some leakage of information (although with a human in the 
loop). The best approach will depend upon the characteristics of the DBMS and 
the application, particularly concerning the frequency and source of insertions. 

3.3 Source o f  E l e m e n t  Po ly lns t an t l a t lon  

Element polyinstantiation can occur by polyhigh or polylow, similar to the oc- 
currence of entity polyinstantiation. Let us again consider concrete examples to 
make these notions clearer. 

Polyhigh occurs when an S-user attempts to update the destination of the 
Enterprise in the following relation to be RJge]. 

[ Staxship [ Objective [DestinationJTC[ 

[Enterprise U[Exploration U[Talos U I U[ 

The existing destination of Talos cannot be overwritten without violating the *- 
property. Therefore, either the update must be rejected or the destination must 
be polyinstantiated to get the following result. 

I Starship [ Objective [DestinationlTC [ 

Enterprise U Exploration U Talos U l U 
Enterprise U Exploration U Rigel S I 

In either case U-users see no change in the relation and there is no information 
leakage. 

Polylow arises in the opposite situation, where the Enterprise previously 
already has an S-destination and a U-destination is entered later. Specifically, 
consider the following relation. 
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I Starship I Objective IDestinationlTCI 

IEnterprise UIExploration U]Rigel S I S I 

U-users see this relation with the secret data filtered out as follows. 

I Starship I Objective IDestinationlTCI 

IEnterprise UIExploration Ulnull U I UI  

Now suppose a U-user attempts to update the destination of the Enterprise to 
be Talos. This update cannot be rejected on the grounds that a S-destination for 
the Enterprise already exists, because that amounts to establishing a downward 
signaling channel. It is possible to overwrite the secret destination, so that both 
U- and S-users see the following relation after the update takes place. 

I Starship I Objective IDestinationlTC I 

IEnterpriseUIExploration UITalos U I UI 

This option has major problems for the integrity of secret data, and has never 
been seriously considered. The remaining option is to polyinstantiate the des- 
tination attribute for the Enterprise, so that S-users see the following relation; 
whereas, U-users see the relation above. 

I Starship ] Objective IDestinationlTC[ 

Enterprise U Exploration U Talos U I U 
Enterprise U Exploration U Rigel S I 

To summarize, we can deal with polylow using the same three alternatives iden- 
tified for polylow in entity polyinstantiation. 

1. Tolerate Loss of Secrecy. This precludes a high degree of assurance (i.e., B2 
or above [6]) for multilevel secure DBMS's. 

2. Tolerate Loss of Integrity. This is the polyinstantiation route. (Or, the clearly 
unacceptable route of overwriting secret data by unclassified data.) 

3. Tolerate Denial of Service. Once any secret data has been entered in a rela- 
tion, we can prohibit further entry of any unclassified data. 

It is again important to understand that it is too late to securely prevent the poly- 
lo~ update at the point where the update is about to take place. The update can 
be securely prevented only by taking proactive steps in advance of its imminent 
occurrence. 

3.4 P r e v e n t i o n  o f  E l e m e n t  Po ly in s t an t i a t i on  

In this section we show how to prevent element polyinstantiation without com- 
promising on confidentiality, integrity or denial-of-service requirements. The ba- 
sic idea is to introduce a special symbol denoted by "restricted" as the possible 
value of a data element [23]. The value "restricted" is distinct from any other 
value for that element and is also different from "null." In other words the do- 
main of a data element is its natural domain extended with "restricted" and 
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"nulL" We define the semantics of "restricted" in such a way that we are able 
to eliminate both polyhigh and polylow. 

Consider again the polyhigh scenario of section 3.3. We have the following 
relation to begin with. 

[ Starship [ Objective ]Destination]TC[ 

[Enterprise U[Exploration U[Talos U [ U [  

Next a S-user attempts to modify the destination of the Enterprise to be Rigel. 
As we have argued we can reject this update securely. But what if the true 
destination has changed to <Rigel,S>? Surely there must be some way to enter 
this information. We require the S-user to first login as a U-subject s and mark 
the destination of the Enterprise as restricted giving us the following relation. 

I Starship I Objective IDestinationlTCI 

[Enterprise U[Exploration U[restricted U[ U]  

The meaning of <restricted,U> is that this field can no longer be updated by an 
ordinary U-user. z U-users can therefore infer that the true value of Enterprise's 
destination is classified at some level not dominated by U. The S-user then logs 
in as a S-subject and entersthe destination of the Enterprise as Rigel giving us 
the following relations at the U and S levels respectively. 

I Starship [ Objective [Destination[TC[ 

IEnterprise U[Exploration U[restrictcd U[ U[ 

[ Starship [ Objective [Destination]TC[ 

Enterprise U Exploration U[restricted U U I 
Enterprise U Exploration U[Rigel S S [ 

Note that this protocol does not introduce a signaling channel from a S- 
subject to an U-subject. There is information flow, but from a S-user (logged in 
as an U-subject) to an U-subject. This is an extremely important distinction. 
The paramount threat in computer security (at least, in terms of the Orange 
Book [6]) is from Trojan Horse infected subjects. Information leakage due to the 
activities of users in carrying out their jobs is of concern to overall system secu- 
rity. However~ computerization cannot eliminate leakage that is intrinsically part 
of the application domain (such as setting some data element to be restricted). 
The point is that an information flow channel with a trusted S-user in the loop 
can be exercised only by Trojan~ Horses that are capable of manipulating the real 
world! This entails the manipulation of real trusted people making real decisions 

s Alternately the S-user logs in at the U-level and requests some properly authorized 
U-user to carry out this step. Communication of this request from the S-user to 
the U-user may also occur outside of the computer system, by say direct personal 
communication or a secure telephone call. 

T As discussed in section 4.6, only those U-users with the unrestrlct privilege for this 
field can update it. 
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and not merely the manipulation of bits in a database. Finally, it is important 
to understand that information flow which includes humans in the loop always 
exists. For example, the above scenario can be played out replacing "restricted" 
with "null" and the same information flow occurs. 

Next consider how the polylow scenario of section 3.3 plays out with the 
restricted requirement. In this case the Enterprise can have a secret destination 
only if the destination has been marked as being restricted at the unclassified 
level. Thus either the S- and U-users respectively see the following instances of 
SOD, 

I Starship I Objective ]DestinationlTC I 

Enterprise U Exploration U restricted ol U 
Enterprise U Exploration U Rigel S] 

I Starship I Objective ]Destinatiou[TC I 
[Enterprise UIExploration Ulrestricted U I U I 

or both S- and U-users see the following instance 

I Starship I Objective IDestinationlTCl 
[Enterprise U[Exploration Ulnull U I u I  

In the former event an attempt by a U-user to update the destination of the 
Enterprise to Talos will be rejected, whereas in the latter event the update will 
be allowed (without causing polyinstantiation). 

The concept of restricted is straightforward, so long as we have a totally 
ordered lattice. In the general case of a partially ordered lattice some subtleties 
arise. How to completely eliminate polyinstantiation using restricted is discussed 
at length in [23]. In general, updating the value of a data element to restricted 
is a safe operation from a polyinstantiation viewpoint; that is, it cannot cause 
polyinstantiation. On the other hand, updating the value of a data element 
to a data value, say, at the c-level can be the cause of polyinstantiation. If 
polyinstantiation is to be completely prohibited, this update must require that 
the data element is restricted at all levels which do not dominate c. The fact that 
the data dement is restricted at all levels below c can be verified by the usual 
integrity checking mechanisms in a DBMS [22]. However, to guarantee this at 
levels incomparable with c is more tricky. In preparing to enter a data value at 
the c level, we would need to start a system-low (really data element low) process 
which can then write-up. A protocol for this purpose is described in [23]. s 

4 S E M A N T I C S  OF PCS 

We now describe and motivate the intuitive semantics underlying our concept 
of PCS (i.e.~ polyinstantiation for cover stories). A formal model is given in the 

8 It should be noted that this protocol works for any arbitrary lattice, and does not 
require any trusted subjects. The use of trusted subjects will allow simpler protocols 
for this purpose. 
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appendix. In a nutshell, PCS combines the "one tuple per tuple class" concept 
discussed in section 2 with the "restricted" concept of section 3. The basic mo- 
tivation for PCS can be appreciated by considering the following instance of 
SOD. 

J Starship [Objective [Vestination[TCJ 

Enterprise U restricted U Talos U I U 
Enterprise U Spying S Rigel S [ sl 

In this case the Destination attribute of the Enterprise is polyinstantiated, so 
that  <Talos,U> is a cover story for the real S destination of Rigel. The Objective 
is not polyinstantiated. 

In the rest of this section we will discuss various aspects of PCS in turn, 
leading up to a summary at the end of this section which reiterates the main 
points. 

4.1 Po ly low Rev i s i t ed  

Let us reconsider the occurrence of polyinstantiation due to polylow, as discussed 
by example in section 3.3. This example begins with S- and U-users respectively 
having the following views of SOD. 

[ Starship [ Objective [Destination[TCJ 

[Enterprise U[Exploration UJRigel S J S [ 

I Starship [ Objective [Destination[TCJ 

IEnterprise U[Exploration U[null U [ U [  

So far there is no polyinstantiation. Polyinstantiation occurs in the example 
when a U-user updates the destination of the Enterprise to be Talos. 

In developing PCS we win take a slightly different perspective on this ex- 
ample. The shift in viewpoint, although very small, is extremely significant for 
the semantics of polyinstantiation. In our opinion it is a mistake to say that 
polyinstantiation does not exist in the S-instance of SOD given above. Indeed 
this instance should be correctly shown as follows. 

[ Starship [ Objective IVestination[TCJ 

Enterprise U Exploration U null U I U 
Enterprise U Exploration U Rigel S I 

But then polyinstantiation already exists prior to the U-user updating the des- 
tination of the Enterprise to be Talos! This update merely modifies an already 
polyinstantiated relation instance to the one given below. 

I Starship [ Objective [DestinationlTC [ 
Enterprise U Exploration U Talos U J U 
Enterprise U Exploration U Rigel S [ 
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With this perspective, element pol~/instantiation can occur only due to polfl~igl~. 
Polylow simply cannot be the cause of dement polyinstantistion. Consequently, 
polyinstantiation will occur only by the deliberate action of s user to whom 
the polyinstantiation is immediately available. In other words, polyinstantiation 
does not occur as a surprise. 

4.2 The  Semant ics  of  Null  

The issue here is a subtle one, but one that is very important to resolve properly; 
so as to get a good semantics for PCS. Our proposal is remarkably simple: a 
"null" value should be treated just like any data value (except in the apparent 
key fields where "null" should not occur). Previous work on the semantics of 
null in polyinstantiated databases has taken the view that null's are subsumed 
by non-null values independent of the access class [9, 21]. In this case the first 
tuple in the following relation 

I Starship I Objective IDestinationlTC I 
Enterprise UlExploration Ulnun U I U 
Enterprise U[Exploration U[l~gel S [ 

is subsumed by the second tuple, resulting in the Mlowing relation used in our 
polylow example of section 3.3. 

[ Starship ] Objective ]Destination]TC] 

IEnterprise U]Exploration UlRigel S t S ] 

In PCS the former relation is quite acceptable. The latter can be acceptable, but 
only if the lower limit on the classification of the destination attribute is S. 

To further illustrate the semantics of null in PCS, consider the following 
relation. 

[ Starship [ Objective IDestination[TCj 

Enterprise U Exploration U null U I U 
Enterprise U Exploration U null S I 

PCS will consider this to be a polyinstantiated relation. The fact that we have 
null's rather than data values in the polyinstantiated field has no bearing on this 
issue. We note that the semantics of null in [9, 21] require all null values to be 
classified at the level of the apparent key (U in this case), thereby deeming the 
second tuple as illegal. 

4.3 The  Semant ics  of  U p d a t e  

Our interpretation of the semantics of an SQL UPDATE command is identical to 
the one in the standard relational model: An update command is used to change 
values in tuples that are already present in a relation. In short, UPDATE does 
not cause polyinstantiation. UPDATE is a set level operator; i.e., all tuples in the 
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relation which satisfy the predicate in the update statement are to be updated 
(provided the resulting relation satisfies integrity constraints). 

The UPDATE statement executed by a c-user (i.e., a user with clearance c) 
has the following general form. 

UPDATE R 
SET A~ = s~[, Aj = s j ] . . .  
[WHERE p] 

Here, sk is a scaler expression, and p is a predicate expression which identifies 
those tuples in Rc that are to be modified. The predicate p may include condi- 
tions involving the classification attributes, in addition to the usual case of data 
attributes. The assignments in the SET clause, however, can only involve the 
data attributes. The corresponding classification attributes are implicitly deter- 
mined to be c. In PCS this statement is interpreted, from the c-users perspective, 
to apply only to tuples with TC = c as follows. 

UPDATE R 
SET Ai = si[,Aj = s j ] . . .  
WHERE ~ ^ ] T C = c  

To be specific consider the following relation instance 

[ Sta~ship [ Objective [DestinationlTC I 

IEnterprise UIExploration U]null U [U I 

to which a U-user applies the following UPDATE command 

UPDATE SOD 
SET Destination = "Ta]os" 
WHERE Starship : "Enterprise" 

This statement is interpreted in PCS as follows 

UPDATE SOD 
SET Destination = "Talos" 
WHERE Starship : "Enterprise" ^ TC = U 

giving us the following result 

[ Starship I Objective [Destination[TC[ 

[Enterprise U[Exploration UlTalos U l u l  

Next, suppose a S-user executes the following UPDATE statement 

UPDATE SOD 
SET Destination = "Riger' 
WHERE Starship = "Enterprise" 

PCS interprets this as follows 

UPDATE SOD 
SET Destination -- "Rigel = 
WHERE Starship : "Enterprise" A TC = S 

Since there is no secret tuple for the Enterprise, this UPDATE has no effect. 
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4.4 Propagation of U p d a t e s  

As discussed in section 2.3 the update of an attribute must propagate into polyin- 
stantiated tuples. For example, consider the above UPDATE by a U-user in 
context of the following relation. 

I Starship I Objective IDestinationlTC I 

IEnterprise U Exploration U]null U I U 
Enterprise U Spying S Inull U [ 

The S-tuple is invisible to the U-user who therefore sees exactly the scenario 
described above, i.e., the destination of the Enterprise is set to <Talos,U>. The 
point of update propagation is that this change must also be reflected in the 
S-tuple. That is, S-users should now see the following relation. 

I Starship [ Objective IDestination[TCI 

Enterprise U Exploration U Talos U I U 
Enterprise U Spying S Talos U [ 

In this relation the Destination attribute of the U-tuple has been explicitly up- 
dated by a U-user. The Destination attribute of the S-tuple is implicitly updated 
unknown to the U-user. The fact that the Destination attribute of the S-tuple 
is classified U indicates that this implicit update is desired. 

Suppose further, that a U-user executes the following UPDATE statement. 

UPDATE SOD 
SET Objective : "Mining" 
WHERE Starship -- "Enterprise" 

After this update S-users will see the following relation 

I Starship [Objective]Destination[Tq 

IEnterprise UIMining UITalos U 
Enterprise U[Spying S ,Talos U l ~ [  

This behavior can be implemented in a kernellzed architecture using decompo- 
sitions similar to [14]. Detailed discussion of this is beyond the scope of this 
paper. 

4.5 P o l y i n s t a n t i a t i n g  U p d a t e s  

In addition to the usual UPDATE statement, whose interpretation is given 
above, we propose in PCS to introduce a polyinstantiating update statement 
to allow users to explicitly request polyinstantiation. This statement is called a 
PUPDATE (i.e., polyinstantiating UPDATE) statement and has the same gen- 
eral format as an UPDATE, as shown below. 

PUPDATE R 
SET A t  - s i [ , A j  - s j ] . . .  
[WHERE p] 
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The interpretation of this statement in PCS is intuitively speaking, to polyinstan- 
tiate whenever a write-down is imminent. To be concrete consider the following 
relation instance 

I Starship I Objective IDestinationlT q 
[Enterprise U[Exploration U[null U [ U [  

to which a S-user applies the following UPDATE command 

PUPDATE SOD 
SET Destination = "Rige]" 
WHERE Starship = "Enterprise" 

Since overwriting the null destination in place would result in a write-down, PCS 
will interpret this statement as a request to polyinstantiate a secret destination. 
It will therefore insert a new tuple into the 
but with a secret destination of Rigel. This 

[ Starship ] Objective 

Enterprise U Exploration 
Enterprise U Exploration 

relation, identical to the one above, 
will give us the following relation. 

IDestination[TCI 

U null U I U 
U Rigel S [ 

Subsequent PUPDATEs by S-users to the Enterprise are treated just like UP- 
DATES. For example, the following PUPDATE statement 

PUPDATE SOD 
SET Destination : "Sirius" 
WHERE Starship : "Enterprise" 

by an S-user will be interpreted in PCS as 

UPDATE SOD 
SET Destination - "Sirius" 
WHERE Starship : "Enterprise" A TC : S 

giving us the following result 

[ Starship [ Objective [DestinationlTC [ 

Enterprise U Exploration U null U l U 
Enterprise U Exploration U Sirius S [ 

In other words a PUPDATE requests polyinstantiation if necessary to prevent 
a write-down, but otherwise is identical to an UPDATE. 

4.6 The  Semant ic s  o f  R e s t r i c t e d  

Our proposal in PCS is to treat "restricted" for the most part as just another 
data value. The main difference comes about when restricted is changed to unre- 
stricted (i.e., some value other than restricted), and vice versa. The usual write 
privilege for the data item in question should not authorize these special updates 
which change restricted to unrestricted, and vice versa. Otherwise restricted pro- 
vides no additional protection. Our proposal in PCS is to provide two additional 
access privileges as follows. 
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I. The restrict privilege on a data item authorizes a write operation which 
changes unrestricted to restricted. 

2. The ugregtrict privilege on a data item authorizes a write operation which 
changes restricted to unrestricted. 

The possession of restrict and unrestfict privileges must be carefully controlled 
by non-discretionary means to make this effective. One possibility is to tie the use 
of these privileges to some kind of a mandatory integrity label on the subject. 
Another possibility is to control the propagation of these privileges, by non- 
discretionary means such as described in [20, 24], so it can be determined who 
can possess them (i.e., with efficient safety analysis). 

The meaning of <restricted,c> in a data element is that ordinary c-users 
cannot modify this field. Only a c-user with the unrestrict privilege for that field 
is allowed to write into it. Similarly, ordinary c-users cannot write the restricted 
value into a data field in the first place. 

4.7 S u m m a r y  

In summary we can describe the salient features of PCS as follows. 

1. No entity polyinstantiation (which greatly facilitates referential integrity). 
2. Element polyinstantiation only by explicit polyhigh PUPDATE requests. 
3. One tuple per tuple class for a given apparent primary key. 
4. UPDATEs apply only to tuples at the user's access class, and propagate to 

higher level tuples. 
5. Nulls are treated like any other data value. 
6. Polyinstantiation is further controlled by restricted. 
7. Changing restricted to unrestricted and vice versa requires special privileges. 

The former is specially dangerous in terms of possible polyinstantiation and 
should be executed only with proper protocols. 

Finally, we note that PCS can be implemented in a kernelized architecture using 
decompositions similar to [14]. Detailed discussion of this will require another 
paper. 

5 C O N C L U S I O N  

In this paper we have brought together a number of our previously published 
ideas, along with some new ones. We have also incorporated some concepts 
proposed by other researchers in the polyinstantiation arena. We have adapted 
and refined these ideas, while combining them into a consistent, intuitive and 
flexible package called PCS (i.e., polyinstantiation for cover stories). 

PCS has several advantages over other proposals for incorporating cover sto- 
ries in a multilevel relational DBMS. Most noteworthy are its uniform query 
interface and its flexibility. One can ask the same query and expect to be shown 
cover stories only when they exist, rather than having to explicitly ask for them. 



326 

The cover stories are created upon need and may disappear and reappear from 
time to time for the same entity. Using explicit at tr ibutes to accommodate such 
situations makes for a rigid structure in which the DBA (Database Administra- 
tor) is the ult imate author i ty  regarding creation of cover stories. PCS puts this 
power in the users' hands, where it properly belongs. 

There  is little, if any, experience regarding the use of multilevel DBMSs. Until 
recently, there have been no systems to use. Systems are now emerging but  with 
many ad hoc features built into their da ta  models. We must give users a flexible 
vehicle to experiment with. We believe PCS provides a useful data  model for 
this purpose. 
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A P P E N D I X :  F O R M A L  M O D E L  OF P C S  

A multilevel relation consists of the following two parts .  9 

D e f i n i t i o n  I .  [ R E L A T I O N  S C H E M E ]  A state-invariant multilevel relat ion 
scheme 

R(A1, C1, A2, C2, . . . ,  An, Ca, TC) 

where each Ai is a data attribute over domain Di, each Ci is a classificatior~ 
attribute for Ai and TC is the tuple-class at t r ibute .  The domain of Ci is specified 
by a range [Li, Hi] which defines a sub-lattice of access classes ranging from Li 

s For simplicity the formal model is stated in terms of individual attributes. It can be 
generalized by replacing each Ai by an attribute group in a straightforward manner. 
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up to Hi. The domain of TC is ~ub{L, : i = 1 . . .  n}, ]ub{Hi : i = 1 . . .  n}] (where 
lub denotes the least upper bound). Let AI = A K  be the apparent primary key. 

Defini t ion 2. [ R E L A T I O N  I N S T A N C E S ]  A collection of state-dependent 
relation instances 

P~( A ~, c~, A2, c2, . . . , A~, c~, TC) 

one for each access class c in the given lattice. Each instance is a set of distinct 
tuples of the form (al, cl, a2, c~, . . . ,  a,~, c,~, tc) where each ai E Di or o~ = null, 
c >_ ci and tc = lub{ci : i : 1 . . .n}.  Moreover, ifa~ is not null then c~ G ILl, Hi]. 
We requixe that ci be defined even if a~ is null, i.e., a classification attribute 
cannot be null. 

P r o p e r t y  3. [Ent i ty  In tegr i ty]  Let A K  be the apparent key ofR. A multilevel 
relation R satisfies entity integrity if and only if for all instance Rc of R and 
t E R ~  

1. Ai G AK =~ t[Ai] ~ null, 
2. Ai, Aj E A K  ~ t[Ci] = t[Cj], i.e., A N  is uniformly classified, and 
3. Ai fL A K  =~ t[Ci] >_ t[CAK] (where CAK is defined to be the classification of 

the appaxent key). 

P r o p e r t y  4. [No E n t i t y  Poly lns tan t ia t ion]  A multilevel relation R has no 
entity polyinstantiation if and only if A K  ---, CAK. 1~ 

P r o p e r t y  5. [Tuple In tegr i ty]  A multilevel relation R has tuple integrity if 
and only i fAK,  CAK, TC --, Ai. (In context with Property 4, it suffices to require 
AK, TC ~ Ai.) 

P r o p e r t y  6. [Ent i ty  E lemen t  In tegr i ty]  A multilevel relation R has entity 
element integrity if and only ff AK, CAK, Ci --, A~. (In context with Property 4, 
it suffices to require AK, Ci --, A~.) 

P r o p e r t y  7. [ In te r - Ins tance  Integr i ty]  R satisfies inter-instance integrity if 
and only if for all c ~ <_ e we have Re, : {tit ERc  A t[TC] < c'). 

P r o p e r t y  8. [Referent ia l  In tegr i ty]  Let Aj be a foreign key of R(A1, C1, . . . ,  
An, C,z) referencing an entity in Q(B1, C1, . . . ,  Bin, C,~). R and Q satisfy refer- 
ential integrity if and only if for all c, if t E R c  with t[Aj] ~ null or restricted 
then there exists q G Qc such that t[Aj] : q[B1]. 

Formalization of UPDATE and PUPDATE semantics is omitted due to lack of 
space. The formalization is very similar in outline to the minimal propagation 
semantics of [12]. 
This article was processed using the IbTEX macro package with LLNCS style 

10 The notation X1, ... ,X,~ --* Y signifies that Y is functionally dependent on 
X1,. . . ,X, , ,  that is, it is not possible to have two tuples with the same values for 
XI , . . . ,  X,, but different values for Y. 


