
Proc. of 7th IEEE Computer Security Foundations Workshop, Franconia, NH, June 1994, pages 138-149.

One-Representative Safety Analysis in the

Non-Monotonic Transform Model

Paul E. Ammann and Ravi S. Sandhu�

Center for Secure Information Systems &

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Abstract

We analyze the safety question for the Non-Monotonic
Transform (NMT) model, an access control model that
encompasses a wide variety of practical access control
mechanisms. In general, safety analysis, i.e whether
it is possible for a speci�ed subject to obtain a given
access right for a certain object, is computationally in-
tractable, even for many monotonic models. We iden-
tify one-representable NMT schemes and argue that
they have tractable safety analysis. Safety analysis of
one-representable schemes considers exactly one repre-
sentative of each type of subject in the initial state, and
thus the complexity of safety analysis is independent of
the total number of subjects in the system. We demon-
strate by example that one-representable schemes ad-
mit applications of practical interest, and that safety
analysis guides the construction of such schemes.

1 Introduction

The concept of transformation of access rights was
introduced in its monotonic form by Sandhu [San89].
Monotonic transformations only add access rights in
the system, but do not remove previously existing
rights. Sandhu and Suri [SS92] extended the concept
to include non-monotonic transformations, i.e., trans-
formations which not only add access rights in the
system, but in the process may also remove existing
rights.

Transformation of rights uni�es a surprising va-
riety of access-control mechanisms found in the lit-

�The work of both authors is partially supported by Na-
tional Science Foundation grant CCR-9202270. Ravi Sandhu is
also supported by the National Security Agency through con-
tract MDA904-92-C-5141. We are grateful to Dorothy Dar-
nauer, Nathaniel Macon, Howard Stainer, and Mike Ware for
their support and encouragement in making this work possible.

erature. Monotonic transformations include mecha-
nisms such as ampli�cation, copy ags, synergistic
authorization, and some common forms of separation
of duties [San89]. Non-monotonic transformations
can account for transfer-only and countdown privi-
leges, among others [SS92]. If these various mecha-
nisms were to be lumped together, the result would
be a complex ad hoc model in totality. Instead it
has been demonstrated that a few basic concepts,
namely, strong typing, grant transformations and in-
ternal transformations, su�ce to express all these
mechanisms and more.

Sandhu and Suri [SS92] de�ned a formal model
called NMT (for Non-Monotonic Transform) which in-
corporates these concepts. They outlined a simple im-
plementation of NMT in a distributed environment,
using the familiar client-server architecture.

This paper focuses on safety analysis in NMT. The
safety problem in access control asks whether or not a
given subject can ever acquire a particular access right
to a given object. For monotonic transformations,
safety can be decided in polynomial time [San89].
NMT is known to have decidable safety. However,
the reduction given in [SS92] is to a problem which
is exponentially hard in the number of subjects, and
is to a model [LS78] that is much more general than
NMT.

The principal contribution of this paper is the
identi�cation of a class of NMT schemes called one-
representable, for which safety is computationally
tractable. Intuitively speaking, these schemes allow
safety analysis to be accomplished by introducing ex-
actly one subject of each type. This subject serves as
a representative for all instances of that type. In this
manner the complexity of safety analysis is indepen-
dent of the actual number of subjects in the system.
All monotonic schemes are one-representable. Our
contribution is to identify some simple su�cient con-
ditions which guarantee one-representability for non-

monotonic schemes. We demonstrate, by examples,
that one-representable schemes admit applications of
practical interest, and that safety analysis is useful in
the design of such schemes.

The safety analysis problem has been a long-
standing barrier to progress in the area of access con-
trol systems, which are exible and can be customized
to enforce a speci�c organization's policies. The neg-
ative results of [HRU76, HR78] showed that safety
is undecidable under surprisingly weak assumptions.
Since then progress [AS92, San88, Sny81] has been
made on the safety problem for cases which are mono-
tonic, or can be treated as such for safety analysis pur-
poses. Results for non-monotonic cases have been neg-
ative [Bud83, LS78], underscoring the computational
di�culty of this problem. The positive results of this
paper stand in contrast to the past, and o�er a new
hope for progress in this important area.

The rest of this paper is organized as follows. Sec-
tion 2 outlines the non-monotonic transform model.
Section 3 de�nes the concept of one-representable
schemes in NMT, and provides su�cient conditions for
schemes that satisfy this property. Section 4 discusses
the complexity of safety analysis for one-representable
NMT schemes. Section 5 illustrates, by examples, how
our safety analysis results are useful in the design of
NMT systems. Section 6 concludes the paper.

2 The NMT model

In this section we briey de�ne the Non-Monotonic
Transform (NMT) model. Detailed motivation of and
discussion about the model, as well as an implemen-
tation outline, can be found in [SS92].

The protection state in NMT can be viewed in
terms of the familiar access matrix. There is a row
for each subject in the system, and a column for each
object. In NMT the subjects and objects are disjoint.
NMT does not de�ne any access rights for operations
on subjects, which are assumed to be completely au-
tonomous entities.

NMT consists of a small number of basic constructs,
and a language for specifying the commands which
cause changes in the protection state. For each com-
mand we have to specify the authorization required to
execute that command, as well as the e�ect of the com-
mand on the protection state. NMT provides three
kinds of commands for changing the protection state,
as follows:

1. Creation commands, which allow subjects to cre-
ate objects.

2. Internal transformation commands, which allow
a subject that possesses certain rights for an ob-
ject to obtain additional rights. In the course of
doing so the subject may lose one or more rights
previously possessed by the subject.

3. Grant transformation commands, which enable
granting of access rights by one subject to an-
other. The general idea is that possession of a
right for an object by a subject allows that sub-
ject to give some other rights for that object to
another subject. Again, in the course of this pro-
cess the �rst subject may lose one or more rights
previously possessed by that subject.

The language for specifying these commands is de�ned
below. (The syntax for NMT commands presented
here is more compact than that in [SS92].)

2.1 Rights

Each system has a set of rights R. It is important
to understand that R is not speci�ed in the model but
varies from system to system. We will generally ex-
pect R to include the usual rights such as own, read,
write, append, and execute. But this is not required by
the model. We also expect R to generally include more
complex rights, such as review, release, etc. The mean-
ing of these rights will be explained wherever they are
used in our examples.

The access rights serve two purposes. Firstly, pres-
ence of a right, such as read, in the [S;O] cell of the
access matrix authorizes S to perform the read oper-
ation on O. Secondly, presence of a right, say own, in
[S;O] authorizes S to perform some operation which
changes the access matrix, e.g., by entering read in
[S0; O]. In other words, S as the owner of O can
change the permissions in the access matrix so that
S0 can read O. The focus of NMT is on this second
purpose of rights, i.e., the authorization by which the
access matrix itself gets changed.

2.2 Types of subjects and objects

The notion of protection type, or simply type, is fun-
damental to NMT. All subjects and objects are as-
sumed to be strongly typed. Strong typing requires
that each subject or object is created to be of a par-
ticular type, which thereafter cannot change.

NMT requires that a disjoint set of subject types,
TS, and object types, TO, be speci�ed in a scheme.
For example, we might have TS=fuser, security-
o�cerg and TO=fuser-�les, system-�lesg, with the
signi�cance of these types indicated by their names.

2.3 Creation commands

Object creation is speci�ed by a �nite number of
creation commands, each of which has the following
format.

CREATEi(S :u, O :o) �
create O ; [S ,O] := Y ;

This command is interpreted as saying that a subject
S of type u can create an object O of type o. The e�ect
of creation is that the creator gets Y = fy1; : : : ; ymg
rights for the newly created object. In terms of the
access matrix, a new column for O is created with all
cells empty except for [S;O], which contains the rights
fy1; : : : ; ymg.

The i in the command name is an identi�er used
to distinguish among di�erent CREATE commands.
Typically i will be a small integer or a symbolic name.
The GRANT and ITRANS commands, de�ned be-
low, are similarly distinguished by attaching an iden-
ti�er to make each name unique.

2.4 Grant transformation commands

A grant transformation command has the general
format given below.

GRANTi(S1:u, S2:v , O :o) �
if X � [S1,O] then�

[S1,O] := [S1,O] � Y ;
[S2,O] := [S2,O] [Z ;

Here X, Y , and Z are subsets of R. S1 is the source
of the operation and S2 is the destination. A grant
transformation is interpreted as follows: subject S1 of
type u can grant Z = fz1; : : : ; zlg rights for an object
O of type o to subject S2 of type v provided S1 has
X = fx1; : : : ; xng rights for O, but in the transforma-
tion S1 will lose the Y = fy1; : : : ; ymg rights for O.�

A monotonic grant transformation is a special case of
our GRANT command, in which Y is empty.

2.5 Internal transformation commands

An internal transformation command has the gen-
eral format given below.

ITRANSi(S :s, O :o) �
if X � [S ,O] then

[S ,O] := [S ,O] � Y [Z ;

�The de�nition of NMT in [SS92] also requires Y � X; in
essence an operationcannot delete a right from the source unless
the right is actually present in the source. Requiring Y � X

corresponds to the de�nition of normal operations introduced
in section 3.

As in grant transformation, X, Y , and Z are subsets
of R. The interpretation of this command is that a
subject S of type u who has the X = fx1; : : : ; xng
rights for an object O of type o can obtain the
Z = fz1; : : : ; zlg rights for O by internal transfor-
mation, but in the process S will lose the rights
Y = fy1; : : : ; ymg for O.y If the Y set of rights
is empty, the internal transformation reduces to its
monotonic case.

2.6 Summary

A summary of the NMT model is as follows:

De�nition 1 A scheme for transformation of rights
is stated in NMT by specifying the following �nite
components.

1. A set of rights R.

2. Disjoint sets of subject types TS, and object
types TO.

3. A set of object creation commands fCREATEi:
i = 1 : : : lg.

4. A set of grant transformation commands
fGRANTi: i = 1 : : :mg.

5. A set of internal transformation commands
fITRANSi: i = 1 : : :ng.

De�nition 2 An NMT system consists of an NMT
scheme, an initial set of subjects and objects, and the
initial access matrix.

Note that, although revocation commands are de�ned
in NMT [SS92], we ignore them here since they do
not a�ect worst-case safety analysis. Commands for
destroying objects are similarly ignored.

It is clear that NMT treats each column of the ac-
cess matrix independently of any other column. Thus,
in analyzing the behavior of NMT it su�ces to focus
on one column at a time. This is in contrast to more
general models, such as [AS92, HRU76, San88, San92],
in which the state of one column can a�ect the behav-
ior of commands on another column. NMT has been
kept deliberately simple in this way, and yet it accom-
modates many practically useful access control policies
as shown in [San89, SS92].

yThe comment in the previous footnote applies here also.

3 One-representative schemes

In this section we address analyzability of NMT. In
general, safety in NMT is decidable, but of exponential
complexity in the number of subjects in the system.
Since subject creation is not in the NMT model, the
number of subjects technically is �xed for any given
system and, as shown in [LS78], the restriction is suf-
�cient to yield decidable safety.

The practical objection to this decidability result is
that exponential complexity in the number of subjects
is computationally too expensive. NMT is so much
simpler than the general case of [LS78] that it seems
intuitively reasonable to expect a more e�cient safety
analysis.

To exploit the simplicity of NMT, we look for re-
strictions that limit the number of subjects necessary
for safety analysis. In this paper, we de�ne restric-
tions that limit the number of necessary subjects to
one of each protection type. Such a subject is referred
to as a representative, because the subject can simul-
taneously represent any number of other subjects of
the same type. Thus the total number of subjects
has no e�ect on complexity, since only one subject of
each type is required for analysis. These concepts are
formalized in the following de�nitions.

De�nition 3 A representative (with respect to some
object O of type o) is a subject that is capable of
mimicking the operations on O of one or more other
subjects of the same type.

De�nition 4 A representative is blank (with respect
to an object O) if there are no access rights (for O)
associated with that representative.

De�nition 5 A scheme is 1-representative analyzable
(or one-representative analyzable) if the safety ques-
tion can be answered by analyzing at most one repre-
sentative of each protection type.

Recall that object creation in NMT gives rights for
the object to exactly one subject and thus ties the
creator of the object to the object itself. In general,
there will be exactly one non-blank representative in
the state immediately following any CREATE oper-
ation. Thus, if we let n = jTSj, the number of blank
representatives needed for 1-representative analysis is
at most n � 1.

The structure of the rest of this section is as fol-
lows. First, we use examples to illustrate two proper-
ties which are undesirable, from a safety perspective,
in that the properties can lead to one representative

Initial State xy

A1 A2 rep (A)

After GRANT 1

x y

y

Figure 1: E�ect of Non Normal Operation

being insu�cient for safety analysis. We then formal-
ize rules to exclude these properties and prove that
these rules are su�cient to guarantee that a scheme is
1-representative analyzable.

We start with a distinction between rights that can
a�ect the evolution of a protection state and those
that cannot:

De�nition 6 A propagation right x is a right where a
test is made for the presence of x in the precondition
of some GRANT or ITRANS operation.

In answering safety questions, propagation rights im-
pact the analysis in a way that non-propagation rights
cannot. Speci�cally, the presence or absence of propa-
gation rights determines whether a speci�c GRANT
or ITRANS operation can be carried out in a partic-
ular state.

3.1 Non-normal schemes

Consider the example illustrated in �gure 1. The
example shows one way that, for certain schemes, two
subjects of a given type can accomplish more than a
single representative that is trying to simulate the ac-
tions of both. In the example the two distinct subjects
are A1 and A2 of type a. We suppose that initially
x 2 [A1; O], and y 2 [A2; O]. This is indicated in
�gure 1 by placing x and y respectively inside circles
labeled A1 and A2. The identity of the object O is not
explicitly shown in the �gure. Consider the operation
GRANT1.

GRANT1(A:a, B:b, O :o) �
if fxg � [A,O] then�

[A,O] := [A,O] � fx; yg;
[B,O] := [B,O] [fzg;

IfGRANT1 is applied to A1 the e�ect of subtracting
fx; yg is to leave A1 with the empty set of rights. A2

Initial State

After x is

obtained

After GRANT 2

xz

xz

yz

xyz

z

A21A rep (A)

zy

xy

Figure 2: E�ect of Duplicate Rights

is una�ected by the application of GRANT1 to A1

and is therefore free to use y in some other GRANT
or ITRANS operation.

Now consider what happens if we use a single sub-
ject, rep(A) to try to simulate A1 and A2. The initial
state of rep(A) is the union of the states of A1 and
A2, or fx; yg. After operation GRANT1 is applied
to rep(A), the state of rep(A) is the empty set. But
then rep(A) is no longer able to simulate the actions
of A2, since A2 holds y and rep(A) does not.

The problem in this example is that GRANT1

deleted a (propagation) right y from the source even
though there was no test for y in the precondition. We
formalize this notion as follows:

De�nition 7 An operation is normal if the precon-
dition of the operation tests for the presence of every
propagation right that is deleted from the source cell.
Otherwise the operation is non-normal. A scheme is
normal if all operations in the scheme are normal.

3.2 Duplicate schemes

Consider a second example, illustrated in �gure 2.
The example shows another way that, for certain
schemes, two subjects of a given type can accomplish
more than a single representative that is trying to sim-
ulate the actions of both. In the example the two dis-
tinct subjects are A1 and A2 of type a. We suppose
that the initial state of A1 is y, and the initial state
of A2 is z. Suppose that A1 and A2 can both obtain
the right x via some unspeci�ed transform operations
in the scheme. Now consider GRANT2, which is a
normal operation.

GRANT2(A:a, B:b, O :o) �
if fx; yg � [A,O] then

�
[A,O] := [A,O] � fx; yg;
[B,O] := [B,O] [fpg;

Suppose GRANT2, is applied with A1 as the source.
Although A1 is subsequently empty, A2 still holds x
and z, and some other unspeci�ed transform operation
that tests for fx; zg in the precondition is applicable
to A2.

Now consider what happens if we use a single sub-
ject, rep(A) to try to simulate the e�ects ofA1 and A2.
The initial state of rep(A) is the union of the states of
A1 and A2, or fy; zg. Subsequently, rep(A) acquires
x, yielding a state fx; y; zg. Note that rep(A) may
acquire x twice, but only a single copy of a right can
be maintained since adding a right to a cell is de�ned
via set union.

The representative rep(A) can
carry out GRANT2, but is then not able to repre-
sent the behavior of A2, since the right x is consumed
by GRANT2. The problem is that a subject could
obtain a right, x in this case, even though that subject
already holds x. Speci�cally, it is possible the rep(A)
�rst applied the operation that A1 used to obtain x,
and the applied the operation that A2 used to obtain
x. In the second of these steps, the duplicate right x
is absorbed by rep(A), and the subsequent evolution
of the protection state is curtailed. We formalize this
property below.

De�nition 8 A right x is monotonic if x is a prop-
agation right, and if x may not be removed from a
cell once x has been introduced. A right x is non-
monotonic if x is a propagation right, and x may be
removed from a cell by a GRANT or ITRANS op-
eration.

De�nition 9 A scheme is non-duplicate if it is never
possible to introduce a non-monotonic right x into a
cell if x is already present in that cell. Otherwise a
scheme is said to be duplicate.

3.3 Normal, nonduplicate schemes

The main result of this paper is that certain
schemes, namely those that are normal and non-
duplicate, have a simpler, more tractable safety anal-
ysis than more general schemes. Speci�cally, schemes
that conform to these properties are 1-representative
analyzable. The intuitive reason for this result is that
the situation depicted in �gures 1 and 2 cannot arise
in normal, non-duplicate schemes. We need to show
that avoiding these situations is su�cient to achieve
1-representative analyzability.

We begin by formalizing the notion of a history.

De�nition 10 A protection state (with respect to
some object O) is a tuple with an entry for each sub-
ject. Each tuple entry is the set of rights (for O) held
by the corresponding subject.

De�nition 11 A history for a scheme is a �nite se-
quence of protection states. The �rst state in any
history is that produced by the initial object creation
operation. Each subsequent state is related to the
immediately preceding state by some GRANT or
ITRANS operation.

We construct a 1-representative history H0 from H

by replacing the source and destination subjects in
each operation in H with the representative subject
of the appropriate type. As demonstrated in �gures 1
and 2, in general, some of the GRANT or ITRANS
operations in H0 may fail. In such a case, we say that
history H0 is invalid; otherwise H0 is valid. Our goal
is to show that for normal, non-duplicate schemes, all
possible histories H0 are valid. Next, we develop a
predicate on histories that ensures validity.

The partition predicate is that, for all histories, H,
where jHj = n, all states in H partition the states in
H0 (with respect to non-monotonic rights), where H0

is constructed from H as described above.
Let H(k) �s be the set of non-monotonic rights held

by subject s of type t in state k of historyH. Similarly,
let H0(k) � rep(t) be the set of non-monotonic rights
held by the type t representative in state k of history
H0. Formally, the partition predicate in state k, where
k is an index into the histories H and H0, is P (k) as
de�ned below.

(8t 2 TS)[H0(k) � rep(t) =
[

type(s)=t

H(k) � s] ^

(8s1; s2 j type(s1) = type(s2) ^ s1 6= s2)

[H(k) � s1 \H(k) � s2 = ;]

(Recall that TS is the set of subject types.)
The partition predicate yields the property that for

any operation op whose precondition is satis�ed for
some subject S after k operations in history H, it is
the case that the precondition of op is satis�ed for
the representative of S, rep(S), after k operations in
history H0.

If the partition predicate holds for all states in a
history H, then H0 is also a valid history and a single
representative is su�cient for analysis. We may an-
swer a safety question for an arbitrary cell of type t
by examining the representative of type t in H0. Fur-
ther, we may answer a safety question about a combi-
nation of cells, each of a distinct type, by examining
the corresponding representatives in H0.

In the following theorem, we prove that normal,
non-duplicate scheme are 1-representative analyzable,
because they preserve the partition predicate.

Theorem 1 A normal, non-duplicate scheme is 1-
representative analyzable.

Proof: From the above discussion, it follows that it
su�ces to show that the partition predicate holds for
all states in an arbitrary history H. We proceed by
induction over the length of such an H for a normal,
non-duplicate scheme. The predicate for induction is
the partition predicate.

Basis Case (n = 1): The �rst operation in H must
be a CREATE operation. The state produced by
object creation satis�es the partition predicate, since
all cells are empty except for the cell associated with
the subject that carried out the creation. Since H0 and
H are identical, the partition predicate is satis�ed for
all histories of length 1.

Inductive Step: We assume that for all histories
Hk, where jHkj = k, the partition predicate is sat-
is�ed. We show that for all histories Hk+1, where
jHk+1j = k + 1, the partition predicate is still satis-
�ed. Since each history of length k + 1 is obtained by
adding one operation to some history of length k, the
inductive hypothesis assures us for the �rst k opera-
tions in Hk+1, the partition predicate is satis�ed.

The last state in Hk+1, denoted Hk+1(k + 1), is
obtained by applying some operation op to the next
to last state in Hk+1, which is Hk+1(k). By the in-
duction hypothesis, the partition predicate applies to
Hk+1(k), so we may replace the source and destination
cells with the appropriate representatives and apply op
to H0

k+1(k). We are obliged to show that the partition
predicate is satis�ed with respect to Hk+1(k + 1) and
H0

k+1(k + 1).
Suppose that op is a GRANT operation. Let A

be the source and B be the destination of op in H

(note that A may equal B). Let Rs be the set of
rights deleted from the source A and Rd be the set of
rights added to the destination B. Since the scheme
is normal, Rs � Hk+1(k) � A. Thus subtracting Rs

from H(k) �A, and from H0(k) � rep(A), maintains the
partition predicate in state k + 1. Since the scheme
is guaranteed to be non-duplicate, no non-monotonic
right x, x 2 Rd is already present in any cell C, where
the types of B and C match. To see this, let C, instead
of B, be the destination of op. The operation op still
applies, since the precondition tests A, but not B. In
this case, C can acquire x even though it already holds
x, and the non-duplicate property is violated. Thus
we may add Rd to both B in H(k) and rep(B) in
H0(k) and maintain the partition predicate.

Suppose op is an ITRANS operation, and let A
be the source (and destination) of the operation in H.
De�ne Rs and Rd as above. The same analysis for
Rs applies for ITRANS operations as for GRANT
operations. The analysis for Rd di�ers. Let B 6= A

be another subject in H of the same type as A. On
�rst inspection, it might appear that because the pre-
condition on op can be satis�ed in A but not in B, A
may obtain x via op while B already holds x. Thus
in the �nal state, the partition predicate would not be
satis�ed since A and B both hold x. However, such a
scenario is impossible, as we show next.

Since the partition predicate holds on any history
of k states (by the induction hypothesis), the �rst k
elements of H0

k+1 form a valid history, which we de-
note H0

k. Thus we may apply op to rep(A) in the
last state of H0

k. Suppose that rep(B) already holds
x, as assumed above. If op introduces x into rep(A),
then, since rep(A) = rep(B) (recall, A and B are of
the same type), the representative is obtaining x even
though it already holds x, and the non-duplicate prop-
erty is violated, which is a contradiction. Thus the
partition predicate is maintained by ITRANS oper-
ations. 2

4 One-representative safety analysis

This section gives the complexity of safety analy-
sis under the normal, non-duplicate restrictions and
argues that safety is tractable for cases of practical
interest.

If a scheme is one-representative analyzable, a di-
rect algorithm to answer the safety question is to start
with the initial state for the subject that created the
object, augment the initial state with a representa-
tive of each unrepresented protection type, and com-
pute the states that are reachable from the augmented
state. If there are n = jT j protection types and r = jRj
rights, there are at most 2rn possible protection states.
The worst case execution time is thus O(2rn).

The e�ect of the analysis bound is improved by sev-
eral observations. First, it is not all rights, R, but only
the non-monotonic rights that lead to a state explo-
sion. Analysis for monotonic rights requires polyno-
mial instead of exponential complexity in the number
of rights. Also, non-propagation rights do not a�ect
the reachability of a given protection state.

Next, it may be that the average time is substan-
tially better than the worst case time for schemes of
practical interest. Although the examples in the next
section support this conjecture, it is likely that empir-

ical study is required to determine typical execution
times.

But the key observation is that if we evaluate com-
plexity in the total number of possible subjects and
treat the scheme as a constant, 1-representative ana-
lyzability is O(1). The coe�cient for the analysis is
(2rn), but both the number of rights and the num-
ber of types are �xed (constant) for a given scheme.
The great advantage of 1-representative analyzability
is that we need not worry about multiple subjects of
the same type.

Although we have eliminated the number of possi-
ble subjects as a factor, it is useful to see whether a
more e�cient coe�cient than (2rn) is feasible. Our
next results bounds any possible improvement to (2n)
(barring any progress on reducing NP to P).

It turns out that the safety question for schemes
which are non-duplicate and normal, (and thus for
schemes which are one-representative analyzable,) is
NP-hard in n, the number of types. Thus it is not rea-
sonable to expect to �nd algorithms for such schemes
with signi�cantly better worst case times. (Of course,
there may be further restrictions on schemes which do
result in a simpler analysis). We show this result by
reducing 3-satis�ability (3-sat) to the safety problem.

Theorem 2 3-sat reduces to the safety problem in
normal, non-duplicate NMT schemes.

Proof Sketch: We do not give a complete proof,
but only a general idea. To encode 3-sat in a non-
duplicate, normal transform scheme, we proceed as
follows. There are m variables in a 3-sat problem; and
a literal, i.e. a variable or its negation, may appear
in some subset of n terms. Each term consists of a
disjunction (i.e., logical OR) of exactly 3 literals. The
satis�ability predicate is the conjunction (i.e., logical
AND) of all n terms.

We represent each variable by one instance of a dis-
tinct type. We represent each term by one instance of
a distinct type. We represent the satis�ability predi-
cate itself with one instance of a distinct type. Thus
the scheme employs m + n + 1 types. We encode
\true" and \false" as two distinct rights. We encode
a \before" and \after" program counter as two dis-
tinct rights. The initial state is that there is a \be-
fore" program counter in the subject corresponding
to the �rst variable. Each subject corresponding to a
variable makes a nondeterministic choice (via select-
ing amongst two ITRANS operations) that consumes
the \before" counter and produces either a \true" or
\false" for the variable and an \after" counter. The
\after" counter is communicated (via a GRANT) to

V

...

V21

...

T n

P

...

...
T 2 T 1

Vm

...

Figure 3: 3-Sat as Safety: Can P Acquire The Right
\true"?

the subject representing the next variable. GRANT
operations are de�ned that allow the selection between
\true" and \false" to be communicated to the appro-
priate subjects representing terms. The last variable
subject grants a \before" token to the �rst term sub-
ject. If rights encoding su�cient literals are present
in a term subject, the term subject grants a \before"
program counter to the next term subject, or, in the
case of the last term subject, a \true" to the predicate
subject.

The construction is broadly illustrated in �gure 3,
where the Vi are cells implementing variables, the Tj
are cells implementing terms, and P is a cell imple-
menting the satis�ability predicate. Arcs represent
the transfer of rights via various operations; the linear
chain of arcs represents the ow of \program counter"
rights, and the the arcs that fan out from the Vi rep-
resent the ow of literals to the appropriate terms.
Each term Tj has exactly 3 incoming arcs, each of
which represents one of the literals in that term.

The safety question is, can the right \true" appear
in the node representing the predicate. Safety analysis
yields \yes" i� the corresponding predicate is satis�-
able. Thus 3-satis�ability reduces to safety. 2

One �nal, unfortunate observation may be made
on the scheme used in the construction: the scheme
is acyclic, in that there is no sequence of operations
such that the destination of each operation matches
the source of the next, and the destination of the last
operation matches the source of the �rst. Thus re-
stricting transform schemes to be acyclic is not su�-
cient to keep the analysis from being NP-hard.

5 Document release examples

In this section we give variations on a document
approve/release example to show how safety analysis
can be applied to guide the implementation of various
polices in NMT. We also see via example how far from
the worst case the actual complexity of safety analysis
can be for a practical system.

We consider the case of a scientist who creates a
document and consequently gets the own, read, and
write privileges for it. We stipulate that prior to re-
leasing this document for publication, the scientist
needs approvals from two separate and independent
sources. The security-o�cers and the patent-o�cers
of the organization are the two types of users who can
grant the scientist each of these separate approvals.
They, of course, need to review the document before
granting approval.

After preparing the document for publication, the
scientist asks for review from a security-o�cer and a
patent-o�cer. In the process, the scientist loses the
write privilege to the document, since it is clearly un-
desirable for a document to be edited during or after
a (successful) review.

After review of the document, the security-o�cer
and the patent-o�cer each grant the scientist an ap-
propriate approval. It is reasonable to disallow further
attempts to review the document after an approval is
granted. Thus the review privilege for the document is
lost as approval is granted. After obtaining approval
from both o�cers, the scientist can internally trans-
form the approvals into the release privilege needed to
publish the document.

To express this policy, and the variations that fol-
low, we employ the following rights and types:

1. R = fown, read, write, ask-sec, ask-pat, review,
sec-ok, sec-reject, pat-ok, pat-reject, releaseg

2. TS = fsci, so, pog, TO = fdocg

Briey, many rights correspond to stages in the ap-
proval process: ask-pat is the right to ask the patent
o�cer for a review, review is the right that lets an
o�cer review a document, pat-ok is the right that is
returned if the patent review is satisfactory, and so on.
Some examples do not use all of the rights, but it is
convenient to de�ne the rights and types once and then
use an appropriate subset. Subjects types are abbrevi-
ations for scientist, security-o�cer, and patent-o�cer.

The same creation operation is used in all the ex-
amples. We present it once:

CREATEdoc(S :sci , O :doc) �
create O ; [S ,O] := fown, read, writeg;

An initial speci�cation of the problem, obtained
from the English description above, might be as fol-
lows.

Scheme 1 Initial Speci�cation

GRANTseek�security�ok(S1:sci , S2:so, O :doc) �
if own � [S1,O] then�

[S1,O] := [S1,O] � write;
[S2,O] := [S2,O] [review ;

GRANTseek�patent�ok(S1:sci , S2:po, O :doc) �
if own � [S1,O] then�

[S1,O] := [S1,O] � write;
[S2,O] := [S2,O] [review ;

GRANTapprove�sec(S1:so, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review ;
[S2,O] := [S2,O] [sec-ok ;

GRANTapprove�pat(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review ;
[S2,O] := [S2,O] [pat-ok ;

ITRANSget�release(S :sci , O :doc) �
if own, sec-ok, pat-ok � [S ,O] then

[S ,O] := [S ,O] � sec-ok, pat-ok [release;

We describe the scheme as follows. The scientist
can create the document and edit it via the read and
write privileges. By using the GRANTseek�security�ok

and GRANTseek�patent�ok operations, the scientist
can request approval from a security-o�cer and
a patent-o�cer, respectively. In doing so, the
scientist loses the write privilege. After review,
these o�cials employ the GRANTapprove�sec and
GRANTapprove�pat operations to give the scientist
the necessary rights to use ITRANSget�release to ob-
tain the release privilege.

An initial observation on the scheme is that the op-
erations that grant the review right to the security and
patent o�cers are potentially non-normal. However,
in this scheme, the write privilege is not a propaga-
tion right, and so the consideration of normal versus
non-normal does not apply. The speci�cation has the
desirable property that it does not matter if approval
is sought �rst from the security-o�cer or �rst from the
patent-o�cer. In either case, the write privilege is lost
immediately.

It may appear from the English speci�cation, and
from an initial scan that the scheme is also non-
duplicate. For example, the review right, which is

clearly non-monotonic, is consumed by the patent-
o�cer while granting the scientist the pat-ok right,
and thus the GRANTapprove�pat operation consumes
its precondition.

However, if the analysis procedure of the previous
section is applied, it reveals that the scheme is du-
plicate. The scientist is free to ask for an arbitrary
number of reviews, and, in particular, the scientist can
grant the review right to a reviewer even if the reviewer
already holds the review right. One option out of this
dilemma is to make a policy decision that multiple
review rights are acceptable. Under this interpreta-
tion, the given speci�cation is misleading since rights
that are apparently destroyed can easily be recovered.
Since the scheme is duplicate, it is also unanalyzable
via the techniques developed in this paper. An alter-
nate speci�cation of such a policy is discussed at the
end of this section.

For our present purposes, we follow the English
speci�cation more closely, and adopt the policy that
the scientist cannot have more than one security re-
view request (or more than one patent review request)
outstanding. To this end, we modify the scheme so
that it is non-duplicate. We make the write privilege
a propagation right and link consumption of the write
privilege with the granting of rights to ask for review.
We add one new operation, ITRANSfinish�document,
and rede�ne two others, GRANTseek�security�ok0 and
GRANTseek�patent�ok0. (In general, rede�nition is de-
noted by a trailing tick on the operation name.) Other
operations are una�ected and so are not explicitly re-
listed below, although the una�ected operations are
part of the scheme.

Scheme 2 Non-Duplicating Speci�cation (Modi�es
Scheme 1)

ITRANS�nish�document(S :sci , O :doc) �
if own, write � [S ,O] then

[S ,O] := [S ,O] � write [ask-sec, ask-pat ;

GRANTseek �security�ok 0(S1:sci , S2:so, O :doc) �
if ask-sec � [S1,O] then�

[S1,O] := [S1,O] � ask-sec;
[S2,O] := [S2,O] [review ;

GRANTseek �patent�ok 0(S1:sci , S2:po, O :doc) �
if ask-pat � [S1,O] then�

[S1,O] := [S1,O] � ask-pat ;
[S2,O] := [S2,O] [review ;

The scheme is now one-representative analyzable.
An enumeration by hand of all reachable states re-
sults in 11 states being generated. This is insigni�-
cant when compared to the theoretical worst case of

2nr, where n, the number of types, is 3 and r, the
number of propagation rights, is at least 7. At least
two informal observations help explain the small num-
ber of actual states. First, there aren't many possible
successor states for any given state. Each operation is
designed to apply to a small number of states. Second,
the operations in this scheme use rights in very limited
ways, and hence it is clear from inspection that many
states are unreachable. For example, it is clear from
a static observation of the operations that a security-
o�cer can never obtain the ask-pat, ask-sec, or release
rights. The document release example is encourag-
ing in suggesting that, for practical applications, one-
representative analyzability may have expected com-
putational complexity that is much smaller than the
worst case bound.

The next variation on the example is to allow for the
security o�cer or the patent-o�cer to explicitly reject
the document instead of simply withholding approval.
One reasonable policy decision would be for the doc-
ument to then be considered \dead". The scientist
would be forced to create a new document and start
over. We specify this extension below by adding two
operations that can explicitly send rejection rights,
sec-reject and pat-reject to the scientist. (Again, unaf-
fected operations are not explicitly listed but are part
of the scheme).

Scheme 3 Explicitly Specifying Rejection (Modi�es
Scheme 2)

GRANTreject�sec(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review ;
[S2,O] := [S2,O] [sec-reject ;

GRANTreject�pat(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review ;
[S2,O] := [S2,O] [pat-reject ;

Safety analysis shows Scheme 3 to be normal and
non-duplicate and hence 1-representative analyzable.
The number of reachable states has increased mod-
estly to 18.

Instead of beginning a new document following a se-
curity or patent rejection, it might be more e�cient,
from the viewpoint of the scientist, to be allowed to
edit the existing document. Since editing requires the
write privilege, we might try to modify the operations
GRANTreject�sec and GRANTreject�pat to allow for
further editing by the scientist. After editing, the sci-
entist can resubmit the document for review using pre-
viously de�ned operations. To this end, we replace

the explicit rejection rights, sec-reject and pat-reject,
with the rights to ask for review, ask-sec and ask-pat
and obtain the following scheme. Note that at some
modest increase in complexity, it would be possible to
continue to use explicit rejection rights; for simplicity
we choose not to do so here.

Scheme 4 First Attempt To Allow Re-Editing (Mod-
i�es Scheme 3)

GRANTreject�sec0(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review;
[S2,O] := [S2,O] [ask-sec, write;

GRANTreject�pat 0(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review;
[S2,O] := [S2,O] [ask-pat, write;

Safety analysis now reveals that the scheme is du-
plicate; the scientist can receive the write privilege
while holding the write privilege. Worse, even with
one representative of each type, it is possible for the
scientist to hold the write privilege for the document
after the security-o�cer, the patent-o�cer, or both
complete a review. It is also possible for the scientist
to hold the write and release privileges simultaneously.
The problem is that the exclusion between holding the
write privilege and the ask-sec and ask-pat privileges
has been broken.

We repair the scheme by further revising the def-
initions GRANTreject�sec00 and GRANTreject�pat00.
(Note that the doubly revised operations are denoted
with two trailing ticks). We add a new operation that
is the inverse of the �nish-document operation. To al-
low for undoing approval from one review authority to
accommodate required revisions from the other review
authority, we introduce two internal transformations
that convert approval back into the right to ask for
approval. The modi�ed and new operations are:

Scheme 5 Analyzable Scheme That Allows Re-
Editing (Modi�es Scheme 3)

GRANTreject�sec00(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review;
[S2,O] := [S2,O] [ask-sec;

GRANTreject�pat 00(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � review;
[S2,O] := [S2,O] [ask-pat ;

ITRANSrevise�document(S :sci , O :doc) �
if own, ask-sec, ask-pat � [S ,O] then

[S ,O] := [S ,O] � ask-sec, ask-pat [write;

ITRANSundo�security�ok(S :sci , O :doc) �
if own, sec-ok � [S ,O] then

[S ,O] := [S ,O] � sec-ok [sec-ask ;

ITRANSundo�patent�ok(S :sci , O :doc) �
if own, pat-ok � [S ,O] then

[S ,O] := [S ,O] � pat-ok [pat-ask ;

Analysis on this scheme reveals that there are 11
reachable states. In none of them is it possible for
the scientist to hold the write privilege and a sec-ok,
pat-ok or release privilege simultaneously.

Finally, we return to the question of analyzing a
policy in which it is allowable for the scientist to ask
for a review even though there is an outstanding re-
quest for a review. In this case, it is clearer to make the
review right explicitly monotonic since, from a safety
perspective, it is unnecessary to consider the deletion
of a right if that right can be unconditionally restored.
If a decision is made to make review monotonic, simi-
lar arguments apply, in this example, to make sec-ok,
pat-ok, and release also monotonic. The full set of
transformations for the scheme is:

Scheme 6 Revision Allowing Multiple Simultaneous
Reviews (Replaces Scheme 1)

GRANTseek�security�ok(S1:sci , S2:so, O :doc) �
if own � [S1,O] then�

[S1,O] := [S1,O] � write;
[S2,O] := [S2,O] [review ;

GRANTseek�patent�ok(S1:sci , S2:po, O :doc) �
if own � [S1,O] then�

[S1,O] := [S1,O] � write;
[S2,O] := [S2,O] [review ;

GRANTapprove�sec(S1:so, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � ;
[S2,O] := [S2,O] [sec-ok ;

GRANTapprove�pat(S1:po, S2:sci , O :doc) �
if review � [S1,O] then�

[S1,O] := [S1,O] � ;
[S2,O] := [S2,O] [pat-ok ;

ITRANSget�release(S :sci , O :doc) �
if sec-ok, pat-ok � [S ,O] then

[S ,O] := [S ,O] � [release;

The safety analysis from the previous section can
now be applied to the scheme since no non-monotonic
right is duplicate. Analysis reveals a total of 10 reach-
able states. Inspection of reachable states veri�es that
in no state can the scientist simultaneously hold the
write privilege and any of sec-ok, pat-ok, and release.

6 Conclusion

One approach to the safety problem for access con-
trol models is to identify constructs and restrictions
that delimit special cases where the model is still
practically useful but safety analysis is tractable. In
this paper, we have identi�ed restrictions that can
make tractable the analysis for a subset of the non-
monotonic transformmodel (NMT). Via examples, we
have shown that practical polices can be expressed
within these restrictions.

We consider schemes in which one (representative)
subject of each type is su�cient to bound the worst-
case evolution of the protection state, independent of
the total number of subjects. We identify two proper-
ties, normality and non-duplication, and show that for
schemes that satisfy both properties, one representa-
tive is su�cient for analysis. In addition, the failure of
a scheme to adhere to either property can be detected
during analysis.

Most importantly, the complexity of analysis is in-
dependent of the total number of subjects. The com-
plexity of the analysis procedure given in this paper
is exponential in the product of the number of types
and the number of rights in the scheme under analy-
sis. From a reduction of 3-satis�ability to safety, we
have shown that the worst-case bound is unlikely to
improve signi�cantly. However, both the number of
types and the number of rights are constant for any
given scheme. Additionally, we conjecture that the
analysis of many schemes of practical interest will in
fact require substantially less e�ort than the worst-
case behavior. This conjecture is supported by the
document release examples given in section 5; further
evidence likely requires empirical study.

The document release example of section 5 demon-
strated how the analysis could reveal safety proper-
ties of practical schemes to guide implementation of
various policies. The example demonstrated how the
analysis procedure uncovers unexpected and/or unde-
sirable properties of a given scheme and helps identify
where the scheme should be altered.

The intractability of the safety analysis problem has
been a long-standing barrier to progress in the area of

access control systems, which are exible and can be
customized to enforce a speci�c organization's poli-
cies. The results in this paper are especially notewor-
thy in the absence of positive safety results for other
non-monotonic models. These results are substantial
progress towards overcoming the safety analysis bar-
rier.

References

[AS92] P.E. Ammann and R.S. Sandhu. The ex-
tended schematic protection model. The
Journal Of Computer Security, 1(3&4):335{
384, 1992.

[Bud83] T.A. Budd. Safety in grammatical protec-
tion systems. International Journal of Com-
puter and Information Sciences, 12(6):413{
431, 1983.

[HR78] M.H. Harrison and W.L. Ruzzo. Monotonic
protection systems. In R.A. DeMillo, D.P.
Dobkin, A.K. Jones, and R.J. Lipton, edi-
tors, Foundations of Secure Computations,
pages 337{365. Academic Press, 1978.

[HRU76] M.H. Harrison, W.L. Ruzzo, and J.D. Ull-
man. Protection in operating systems. Com-
munications of the ACM, 19(8):461{471,
1976.

[LS78] R.J. Lipton and L. Snyder. On snychroniza-
tion and security. In R.A. DeMillo, D.P.
Dobkin, A.K. Jones, and R.J. Lipton, edi-
tors, Foundations of Secure Computations,
pages 367{385. Academic Press, 1978.

[San88] R.S. Sandhu. The schematic protection
model: Its de�nition and analysis for acyclic
attenuating schemes. Journal of the ACM,
35(2):404{432, April 1988.

[San89] R.S. Sandhu. Transformation of access
rights. In Proceedings IEEE Computer So-
ciety Symposium on Security and Privacy,
pages 259{268, Oakland, CA, May 1989.

[San92] R.S. Sandhu. The typed access matrix
model. In Proceedings IEEE Computer Soci-
ety Symposium on Research In Security and
Privacy, pages 122{136, Oakland, CA, May
1992.

[Sny81] L. Snyder. Formal models of capability-
based protection systems. IEEE Transac-
tions on Computers, C-30(3):172{181, 1981.

[SS92] R.S. Sandhu and G. Suri. Non-monotonic
transformations of access rights. In Proceed-
ings IEEE Computer Society Symposium on
Research In Security and Privacy, pages
148{161, Oakland, CA, May 1992.

