
SecureBus: Towards Application-Transparent Trusted
Computing with Mandatory Access Control

Xinwen Zhang
∗

George Mason University
Fairfax, Virginia, USA
xzhang6@gmu.edu

Songqing Chen
George Mason University

Fairfax, Virginia, USA
sqchen@cs.gmu.edu

Michael J. Covington
Intel Corporation

Hillsboro, Oregon, USA
Michael.J.Covington@intel.com

Ravi Sandhu
George Mason University
and TriCipher Inc., USA

sandhu@gmu.edu

ABSTRACT
The increasing number of software-based attacks has attracted sub-
stantial efforts to prevent applications from malicious interference.
For example, Trusted Computing (TC) technologies have been re-
cently proposed to provide strong isolation on application platforms.
On the other hand, today pervasively available computing cycles
and data resources have enabled various distributed applications
that require collaboration among different application processes.
These two conflicting trends grow in parallel. While much exist-
ing research focuses on one of these two aspects, a few authors
have considered simultaneously providing strong isolation as well
as collaboration convenience, particularly in the TC environment.
However, none of these schemes is transparent. That is, they re-
quire modifications either of legacy applications or the underlying
Operating System (OS).

In this paper, we propose the SecureBus (SB) architecture, aiming
to provide strong isolation and flexible controlled information flow
and communication between processes at runtime. Since SB is ap-
plication and OS transparent, existing applications can run without
changes to commodity OS’s. Furthermore, SB enables the enforce-
ment of general access control policies, which is required but diffi-
cult to achieve for typical legacy applications. To study its feasibil-
ity and performance overhead, we have implemented a prototype
system based on User-Mode Linux. Our experimental results show
that SB can effectively achieve its design goals.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-

∗Now at Samsung Information Systems America, San Jose, Cali-
fornia, USA.

tems]: Security and Protection—Unauthorized access; H.4 [Information
Systems Applications]: Miscellaneous

General Terms
Security, Management

Keywords
SecureBus, Trusted Computing, Mandatory Access Control, Se-
cure Platform

1. INTRODUCTION
Ever-increasing software-based attacks have demonstrated that ex-
isting Operating Systems (OS’s) cannot provide sufficient isola-
tion for the security demands of legacy applications. Significant
research effort has been made to strengthen isolation among pro-
cesses at runtime. For example, recently the emerging Trusted
Computing (TC) technologies have been developed to enforce strong
isolation between applications to preserve their integrity at runtime,
and provide verifiable trust to remote entities. In TC, the root of
trust is generally based on trusted hardware, such as a secure co-
processor [28] or trusted platform module (TPM) [3].

Despite the rapid growth of security threats, widely available com-
modity computing resources have enabled a large scope of dis-
tributed applications, such as Peer-to-Peer (P2P) and grid-based.
Such applications often demand collaborations among connected
computing nodes, where various processes need to communicate
with each other in order to exchange data and share resources on a
single platform or across different platforms via networking.

The increase of software-based attacks and the growth of collabo-
rative applications conflict in computing and system requirements.
To prevent attacks from outside, processes should be isolated and
integrity must be protected at runtime through isolation in memory.
For example, an email with an attachment is commonly used for
spreading viruses. If the email client and the process launched to
view/execute the attachment can be isolated so that the latter can-
not read or modify the former’s sensitive data, e.g. address book,
such attacks would have not succeeded. On the other hand, the
frequent and dynamic interactions required between processes in
many distributed applications make a running process susceptible
to easy compromise by direct interference from other processes, or

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASIACCS’07, March 20–22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003…$5.00.

117

by fake/malicious input, or by unexpected data from sources with
lower integrity or sensitivity levels.

The majority of existing research focuses on either providing pro-
cess integrity assurances at runtime via various isolation mecha-
nisms, such as the TC technologies, or providing flexible com-
munications, such as the design of Globus [14]. Only a few au-
thors have considered how to simultaneously provide strong iso-
lation with flexible communication support. For example, in Mi-
crosoft’s Next Generation Secure Computing Base (NGSCB) [7], a
secure kernel, referred to as Nexus, provides separated runtime en-
vironments for individual application agents. Communication and
access control between agents are mediated by a trusted service
provider (TSP) in user space. Proper [20] is a user space applica-
tion that provides access control services for privileged operations
between application-level virtual machines (VMs) on a PlanetLab
node. In BIND [27], critical sections of a running process are iso-
lated and there is no runtime communication between the isolated
sections and outside.

Although these approaches could be efficient under certain circum-
stances for achieving both strong isolation and flexible collabora-
tions, a common problem of these schemes is that either applica-
tions need to be substantially modified to use the security services
provided by the underlying layers, or the underlying OS must be
customized or trusted. For example, in NGSCB, the secure kernel
and all supported services and applications are located in an area
calledNexus modethat is separated from the original OS and all
applications are developed specifically to run in this Nexus mode.
Existing applications can only run in the standard mode, where a
legacy OS is running. Thus they cannot use the security services
provided by the new design. Proper is dedicated for a specific
Linux distribution (Linux VServers) that is deployed on PlatnetLab
nodes, and it is difficult for Proper to be applied in other environ-
ments. In BIND [27], critical sections of a process code have to be
identified and the invocation of the security functions provided by
the secure kernel needs to be inserted into these sections. This ap-
proach leads to a situation in which most existing applications and
OS’s cannot benefit from the strong security provided by emerg-
ing TC technologies. Furthermore, typically these approaches only
support some specific collaboration modes. For example, BIND
does not permit input once a critical section of a process has been
isolated and it cannot provide information flow control between
processes.

In this paper we propose a novel architecture called SecureBus
(SB), which can provide simultaneous strong isolation and trans-
parent access control enforcement between processes. Built on TC,
trusted hardware is leveraged to provide the root of trust and ex-
tend trust to a secure kernel (SK) and SB, in turn. The SB enhances
existing TC technologies and has the following features.

• Built on trusted hardware, SB provides strong runtime pro-
cess isolation by allocating and maintaining separated run-
time memory space for each process. The authenticity of
a process’s running code and its input and output data is
achieved by using digital signatures with the corresponding
usage contexts. Specifically, a process’s code is hashed by
SB before being loaded. The output data of the process is
signed by SB and concatenated with the hash values of the
process code and the input.

• By leveraging the trust chain from the trusted root of a plat-

form to SK and to applications, SB supports process-based
attestation to enable secure communications and collabora-
tions between processes. On a single platform, SB acts as
a trusted proxy of an isolated process to communicate with
other processes. In a distributed environment, SB on a plat-
form builds atrustedchannel with its counterpart on another
platform through remote attestation.

• SB provides a reference monitor that implements flexible
access control between isolated processes. Various access
control and integrity policies can be enforced, such as role-
based, history-based, and mandatory access control policies,
as well as application- and organization-specific policies.

Compared with existing approaches, SB is transparent to upper-
layer applications and the underlying OS. At the application level,
SB provides the same system call interface as the OS does and en-
forces authenticity verification and access control policies transpar-
ently. Meanwhile, since SB invokes system calls on behalf of the
protected applications, our architecture does not require modifica-
tions of the underlying OS. That is, existing applications can run
on top of SB without change, and existing OS can use SB to pro-
vide strong trusted computing and security services, such as iso-
lated runtime space and controlled accesses between processes, for
applications.

As SB is transparent but has trust relationship with applications,
common security functions such as authentication and authoriza-
tion can be implemented by SB for the purpose of confidentiality
and integrity. Thus, our architecture enables the separation of func-
tionalities and security demands of applications, which reduces the
burden to application developers and provides flexibility for secu-
rity configurations.

To verify the feasibility of our approach and study the performance
overhead of the SB architecture, we have implemented a prototype
based on User-Mode Linux [13]. As a proof-of-concept, we also
implemented the lattice-based Chinese Wall policy [26] to control
information flow in the prototype. Experiments performed based
on the prototype system show that it is effective with reasonable
performance overhead.

The remainder of this paper is organized as follows. Section 2
presents our problem statement and an overview of the design space.
In Section 3, our proposed architecture and the primitive functions
of SB are introduced. Section 4 and Section 5 describe how to
achieve integrity and authenticity verification, in addition to the ac-
cess control policy and its enforcement using SB. We present a pro-
totype implementation and some experimental results in Section 6.
Related work is reviewed in Section 7 and we make concluding
remarks in Section 8.

2. PROBLEM STATEMENT AND DESIGN
SPACE

Modern operating systems support process abstraction with isola-
tion, flexible sharing (e.g., of file systems, OS resources, and hard-
ware), and inter-process communication (IPC). With an increasing
amount of loss and damage caused by various software-based at-
tacks, it has been realized that a commodity OS alone cannot pro-
vide a high-assurance environment for applications. Understand-
ing and using trust at the application layer has been studied for
a long time, such as in the Database Interpretation of the Orange

118

Book [12]. Recently a new approach called Trusted Computing
(TC) has been developed by leading industry vendors for this pur-
pose. A distinguishing aspect of TC is that it combines crypto-
graphic mechanisms with access control. Keys providing the root
of cryptographic trust are not only protected in a separate hardware
component but their use is also limited to approved software.

The Trusted Computing Group (TCG) has defined a set of speci-
fications aiming at providing a hardware-based root of trust and a
set of primitive functions that allow trust to propagate to applica-
tion software. The root of trust in the TCG approach is a hardware
component on the platform called Trusted Platform Module (TPM).
Application-level trust requires strong integrity checks of binary
code for running processes and a mechanism that allows other en-
tities (applications or platforms) to verify the integrity. A TPM
has the capabilities to measure and report runtime configurations
of the platform, from BIOS to OS. TPM and TC-enhanced hard-
ware technologies such as Intel’s LaGrande Technology (LT) [1]
and AMD’s Secure Execution Mode (SEM) [6] generally allocate
isolated memory partitions to different application processes to pre-
vent software-based attacks at runtime.

Although isolation based on TC ensures thebinary code’s integrity
of an application at runtime, it creates hurdles if the process needs
to communicate or share information with other isolated processes
on the same platform. For example, when processes are strongly
isolated in memory space at runtime, traditional IPC mechanisms,
such as shared memory, are no longer viable.

Moreover, even with strong isolation for runtime integrity warranty,
such isolation cannot guarantee the authenticity of the communi-
cating party and the data flow (e.g., input and output) between ap-
plications, and cannot provide flexible access control mechanisms
between applications. These two aspects are critical to preserve
the overall integrity of a system, which is not solely dependent on
its running code’s integrity. In the former case, a (receiving) pro-
cess needs to ensure that the data it is receiving is trusted, i.e., the
source process is genuine. Furthermore, the trust should be verifi-
able. For the latter, sometimes even if a data-sending process can
be trusted, it may have lower integrity or higher confidentiality than
that of the receiving process. Receiving such data may compromise
the integrity of its own data or confidentiality of the sender’s data.
Therefore, access control should be enforced between processes to
satisfy certain security requirements defined by the system admin-
istrator. Currently such interactions between applications heavily
depend on the underlying OS, which can easily cause illegal infor-
mation flow and compromise the overall integrity and confidential-
ity of the system. For example, even if an application runs in an
isolated memory space and no other process (e.g., virus) can mod-
ify it, spyware can invoke its functions by providing some fake/junk
input, thus compromise the integrity of the process’s data. If a pro-
cess takes input from the network, the input can be eavesdropped
or even modified by malicious processes at the OS layer.

Several approaches have been proposed to enhance the security at
the OS level, such as security-enhanced Linux (SELinux) [19] and
TrustedBSD [5]. In these systems, the OS kernel is extended to in-
clude authorization modules which enforce access control policies.
With an increasing number of attacks launched at the OS kernel
level, such as malicious device drivers and rootkits [8, 18], these
systems cannot provide high assurance for trusted computing ser-
vices.

Similar to enforcing isolation between processes with a secure ker-
nel (e.g., with Nexus in NGSCB), an intuitive approach to address
the above problems is to use a secure kernel as an intermediary for
inter-process communications, i.e., it forwards messages between
processes. While this is applicable for some simple cases, it would
be very complex for the kernel to implement all kinds of commu-
nication mechanisms, since most of them need involvement of the
OS, for example to access the local file system or the network stack.
Therefore it is difficult for a secure kernel to enforce effective and
flexible access control between processes. Even if it is possible,
with these functionalities, the trust of the secure kernel is difficult
to maintain, because an important consideration to achieve its trust-
worthy status is to make it as simple and small as possible.

3. OVERVIEW OF SECUREBUS DESIGN
Figure 1 shows the architecture of a SecureBus-enhanced platform.
On this platform, the hardware layer (comprising a TCG-compliant
TPM and other necessary hardware such as LT-enabled CPU and
chipset) provides the root of trust for TC. The secure kernel (SK)
provides a protected runtime environment for SB.

SB is the middle layer between kernel space and user space. SB
allocates isolated memory space for each process before the pro-
cess starts to run. With SB, all interactions between a process and
the OS are conducted through SB. Interactions between two iso-
lated processes are monitored by areference monitorin SB and are
controlled according to pre-defined policies (see Section 5). Other
related services can be in user space for the security management
purpose, such as policy definition and administration.

One of SB’s design goals is that it should be transparent to applica-
tions and OS, which enables most existing legacy software to run
on commodity OS without changes. This requires that SB should
provide the same interface as a normal OS does. When a process
uses the interface, it is transparent to the process that now the inter-
face is provided by SB instead of the OS. For each access request
from one process to another, SB validates the access by querying
pre-defined access control policies. If this access is allowable, SB
forwards it to the OS silently. If this access is denied, an excep-
tion is returned to the requesting process. Thus SB works like a
middleware such as Java Virtual Machine (JVM), which provides
a transparent interface to applications and controls their accesses
to underlying OS resources. However, since SB does not provide
other complex functionalities such as a platform-independent run-
time environment, its properties and behaviors can have high assur-
ance and possibly even be formally verified.

Note that for platform management, there are applications and sys-
tem services that run in user space without the involvement of SB.
Typically, these applications, such as installing/updating system
software and patching the system kernel, are “trusted” by the plat-
form administrator such that they have administrative privileges.

Under this architecture, we now present our trust model and the
primitive functions of SB.

3.1 The Trust Model
The integrity of SK is measured by TPM when the system starts.
Also, SK is protected in memory space by hardware so that its in-
tegrity is guaranteed at runtime.

For local applications, before SB is started, SK measures SB’s in-
tegrity and stores its hash value locally. In turn, when a program is

119

TPM
 Device
 Device
 Hardware

OS
Secure Kernel

Secure

Bus

Reference

Monitor

Operating System

Security

Services

Process

1

...
Process

2

...

Figure 1: Platform architecture with SB

loaded, SB measures the integrity of the program (binary code) and
allocates some separate memory space for it by utilizing functions
of SK. The separation is enforced by SK during the entire running
period of the application.

For remote attestations, a hash chain is constructed to establish the
trust of SB and the upper level applications based on the root of
trust provided by the hardware. Specifically, SK has a public-
private key pair generated by TPM when the platform is initial-
ized, where the public key is certified by the attestation identity key
(AIK) of TPM. SK also generates a public-private key pair for SB,
where the public key is certified by SK by signing with its private
key and the private key is protected by SB with the sealed stor-
age function of TPM. The key pair for SB is generated at the first
time when SB is installed on the platform. For the attestation of
a running process state, TPM signs a set of platform configuration
register (PCR) values with its AIK key,1 and SK signs the integrity
value of SB with its private key, while SB signs the integrity value
of the application code. These three signatures are then sent to the
attestation challenger. The challenger verifies all these signatures
and the public key certificates of AIK, SK, and SB, respectively.
If all are valid and the integrity values match, the application is
trusted.

Note that the “trust” of an application does not imply any extra
privileges. The trust verification provides high assurance that it be-
haves as expected, but does not make any decision as to whether it
is guaranteed to be safe. This is why access control mechanisms are
needed to confine application activities, as illustrated in Section 5.

To support the remote attestation and sealed storage, a basic au-
thentication infrastructure is needed to support our trust model.
For simplicity we assume that necessary components for TC, such
as privacy certificate authority (PCA) (to certify the AIKs of each
platform), are available.

1We do not explicitly specify what PCR values are included in an
attestation, since the required properties of a platform (including
hardware, BIOS, and OS configurations) are application-specific.

3.2 Primitive Functions of SB
To provide transparent services to processes, SB implements an
identical interface that a legacy OS provides to applications. When
SB receives a system call from an application process, the call is
checked by SB according to pre-defined policies based on the at-
tributes of the caller and callee processes, the calling method, as
well as possible context information (see Section 5 for more de-
tails). If the call is allowed, SB forwards it to the underlying OS. To
provide a protected runtime environment for a process and enable
trust verification by other components, SB provides the following
primitive functions.

• SB allocates and maintains isolated memory space before
launching a process, by utilizing the memory management
functions provided by SK. This prevents interference between
processes at runtime.

• SB provides integrity check and verification by measuring
a process code’s hash value and combining it with the hash
value of any output data that it generates. This enables data
and process authenticity verification on a local platform.

• SB enables process-based remote attestation by digitally sign-
ing the hash value of a process as well as its input. The re-
mote attestation enables data and process authenticity verifi-
cation across platforms.

• SB enforces flexible access control and information flow poli-
cies between processes on local platforms or between remote
platforms based on the authenticity verification of data and
processes.

Based on this trust model and primitive functions, in the following
sections, we focus on the mechanisms of integrity measurement
and authenticity verification in SB in Section 4 and access control
through SB in Section 5.

4. PROCESS AND DATA AUTHENTICITY
The isolation provided by the hardware and SK can prevent ma-
licious modification to the binary code of a running process. But
protecting the integrity of the running code is not sufficient. At-
tacks can be mounted via other approaches, such as through input
to a process. For example, a malicious entity can easily send or
inject fake or erroneous data to a process and compromise its run-
time integrity via buffer overflow. For a collaborative computing
task like SETI@Home [2], a fraud peer can report fake results to
the server without really performing the computation and get cred-
its. Thus, it is essential to guarantee the authenticity of a process at
runtime and the data it generates.

In our proposed architecture, the authenticity of a process and its
generated data is achieved through a hash chain signed by SB. Fig-
ure 2 shows an example. Suppose processP1 takes primitive input
D0 and generates outputD1, which is the input of processP2. The
output (D2) of P2 can be the input of another process, or it can be
returned toP1. Without loss of generality, we assume that interac-
tions betweenP1 andP2 are on two different platforms, enhanced
with SB1 andSB2, respectively. To ensure the authenticity of the
process and its data, the following protocol is enforced.

1. P1 takes primitive inputD0 and generates outputD1 and
sends it to the local SB (SB1). Note thatSB1 has verified

120

P
1

D
0

P
2
 D
2

...

D
2

SB
1
 SB
2

D
1
, V
1

D
1

D
2
, V
2

1

2
 3
 4

5

Figure 2: Integrity chain and verification

1 P1 → SB1: (D0, D1)
2 SB1: V1 = {H(H(D0)||H(P1)||H(D1))}Kpr1 , whereKpr1 is the private key ofSB1.
3 SB1 → SB2: (D1, V1,H(D0),H(P1))
4 SB2: verify the signature and integrity ofD0||P1||D1 with Kpb1 (SB1’s public key).
5 SB2 → P2: D1

Figure 3: Integrity measurements and verification

the source and integrity ofD0, either from local platform or
from network resources.

2. SB1 generates individual hash values forD1, and concate-
nates with the hash value ofD0 andP1 (measured whenP1

is launched), hashes the total and signs it with its private key.
The result isV1 as shown in Figure 2.

3. After SB1 andSB2 build a secure communication channel
following remote attestation,SB1 sendsD1 andV1 toSB2.2

4. SB2 verifies the signature and the hash values, and makes
decisions on the integrity and authenticity ofP1 andD1.

5. Upon successful verification,SB2 sendsD1 to P2.

With the sealed signature capability of TC, SB can generate a valid
digital signature only if it is loaded without modification, i.e., its in-
tegrity value matches what is sealed with its private key or any other
key that protects the private key. Thus, the digital signature can be
trusted by the applications on the local platform. Furthermore, with
the remote attestation capability of underlying TC hardware, the
trust of SBs on different platforms can be built, which enables the
digital signature verification between applications across different
platforms. Ideally, the remote attestation betweenSB1 andSB2

(required for step 3 in Figure 3) is a one-time operation between
platforms whenever both of them are active can be reused.

As the above example demonstrates, from the process’ viewpoint,
only input/output data are transferred along the dashed lines shown
in Figure 2. Thereby SB enforces the security mechanisms trans-
parently to applications.

Note that SB does not detect attacks according to software vulnera-
bilities in the process code, such as buffer overflow with malicious
inputs. Typically, “trusted computing cannot guarantee that soft-
ware executed on a computer system is free of programming errors
(vulnerabilities) that could be exploited” [22]. However, when the
input of a process can be trusted (e.g., signed by a trusted party),

2The remote attestation is either challenged bySB1 or SB2, or
both depending on application and trust requirements.

SB can verify the execution status of the running code and the in-
tegrity of the output. For example, with a SB-enabled client, a
SETI@Home server can verify the trust of the computed result
from the client since the input of the client is generated by the
server itself or trusted parties for task assignments.

The combined integrity verification of input/output data and pro-
cess code can be used in many traditional communication mech-
anisms on a single platform or between platforms, such as pipe,
signal, and remote procedure call (RPC). For process communi-
cations through shared memory and files, shared components also
need to be protected by SB when loaded or created, and similar
mechanisms can be used for secure communications between pro-
cesses. Providing details of these mechanisms is beyond the scope
of this paper.

5. ACCESS CONTROL ENFORCEMENT
The goal of access control through SB is to control the information
flow between isolated processes. Information can flow during inter-
actions between processes (e.g., call interfaces and return results),
or accessing shared resources on the computing platform (e.g., read
or write local files, network resources).3 As aforementioned, with
the runtime process integrity and the authenticity of process com-
munications and input/output, we still cannot guarantee overall se-
curity. To ensure the overall security of a process, it is also es-
sential to control information flow between processes according to
application or organization specific policies. Beyond preserving a
binary code’s integrity with runtime space isolation and integrity
verification with a hash chain, our architecture integrates applica-
tion semantics into the integrity consideration, by introducing an
application context-aware access control model enforced by SB.

Figure 4 sketches the access control architecture with SB, where
the policy manager is launched whenever SB is loaded, with which
the platform owner or system administrator define access control
policies. The policy manager mainly consists of a policy decision
point (PDP) and a policy database, of which the integrity can be
verified by SB before any access control decision is made. When-
ever a process needs to access another one (e.g., read data from or

3Note that we do not address the covert channel problem, which is
generally considered to be beyond the scope of TC technologies.

121

write data to this process), the reference monitor evaluates the re-
quest by querying the policy manager, which in turn queries a pol-
icy database or another decision point (e.g., a higher level PDP in
an organization). If the access is allowed, SB forwards the request
to the destination process and returns the result to the requesting
process. That is, SB acts as both a policy enforcement point (PEP)
and a communication proxy for access control between applica-
tions. This makes it transparent to upper layer applications.

The additional advantage of this architecture is the separation of
policy management and enforcement, which is a general require-
ment for modern complex computing systems. This feature makes
our approach policy-neutral. That is, different types of security
policies can be supported according to specific application require-
ments, such as role-based, domain/type-based, and history-based
access control policies. In addition, the separation of policy man-
agement and enforcement makes SB small and simple, and enables
parallel involvements of individuals.

Secure

Bus

Reference

Monitor

Process 1
 Process 2

Policy

Manager
 Other

Security

Services
PDP

Figure 4: Access control architecture

5.1 Access Control Model
In our access control model, the process of an application is a sub-
ject, and resources are objects. Since a process can be accessed by
another process, e.g., to build a connection to send or receive data,
or to suspend/resume/kill the other, a process can be both a subject
and an object.

An access control policy specifies whether an access can be al-
lowed, by checking some context conditions about the requesting
subject and the target object. Logically, a permission is defined
as a triple(s, o, r), wheres is the accessing subject,o is the ob-
ject, andr is the access right. An access control decision is deter-
mined by security attributes of the subject and the object, such as
security clearance/classification, types, etc., which are initially as-
signed by the security administrator, and can be updated during the
lifetime of the system as the side-effect of the subjects’ accesses.
For a process, its attributes also include the context information of
the user that launches the application, such as the user id, security
classification, role, group, domain, etc. In this work we assume
that only one user is involved in a process at a time.4 On a single
platform, the process ID can be used to identify the process. In a
distributed computing environment, a globally unique process ID
can be constructed through the hash of its code signed by SB. Ac-
cess control policies can be specified and stored in a database or by
XML files [21]. Also, there are several formal policy specification
languages [9, 11, 17] that can be used. As we focus on high-level

4In reality there may be multiple users executing an application
simultaneously, with each user having different security attributes.
A simple policy may require that each user must satisfy the access
control policy for the access request. We leave the details of multi-
user access control for future work.

platform architecture and security enforcement mechanisms, we do
not discuss how to specify policies in this paper.

As each process corresponds to a user, the authentication of the
user is a prerequisite for access control, so as to obtain the security
attributes of the user. Our architecture does not explicitly include a
user authentication mechanism. Instead, SB only measures the in-
tegrity of processes, and forwards access requests to the PDP, which
verifies the attributes of subjects and makes access control deci-
sions according to specified security policies. However, existing
user-based authentication mechanisms can be easily integrated into
our architecture seamlessly. For example, in an enterprise environ-
ment, SB can accept the authentication ticket of a user provided by
a trusted Kerberos server and determine his/her permissions based
on group and domain names.

5.2 Enforcing Mandatory Access Control
To demonstrate the power of SB, we illustrate how mandatory ac-
cess control (MAC) policies, which most commodity OS cannot
enforce natively, can be enforced with SB. By assigning different
levels of labels to computing entities, MAC controls one-way in-
formation flow for integrity or confidentiality. There are several
approaches to support MAC. Among them, the Chinese Wall pol-
icy [10, 26] supports controlled information flow according to dy-
namic properties of the accessing subject or user, which can be used
to enforce history-based MAC policies. We study how the Chinese
Wall policy can be supported in our architecture as an example.

In the Chinese Wall policy, objects are categorized into mutually
disjoint conflict-of-interest classes, and a user cannot access more
than one object in a single class. The Chinese Wall policy can be
described with a lattice-based access control policy as described
in [26], where a user is assigned a label indicating the objects that
s/he can access, and the set of all possible labels forms a lattice ex-
cept that the topmost label is not assigned to any user. A user or a
subject’s security label can be updated according to his/her access
history, which determines its further access permissions to other
objects. This dynamic property makes it useful to express informa-
tion flow control in collaborative computing systems. For example,
a subject who participates in a collaborative project cannot write
the data of the project to any file or container that is readable by
a subject outside of the project. That is, once the subject joins a
project, it cannot access the object of another project that conflicts
with the one it joins.

A user in our Chinese Wall policy is a human being that obtains
information by launching processes, which are represented as sub-
jects of the user. A user can have multiple subjects, each of which
is assigned with a label dominated by the label of the user in the
lattice. Information flow between these subjects may or may not be
allowed, depending on the relationship between their labels. Each
useru has a maximum security labelLm(u) in a Chinese Wall lat-
tice, which is pre-determined by the system administrator.

To enforce the policy between processes for different rights, a set
of rules are defined forread, write, andcreate rights as follows.
Each rule specifies where a permission can be granted by check-
ing the subject’s and object’s label relationship, and if necessary
updates the subject label as the result of granting the permission.

(1). (u, s, create) ⇒ L(s) ≤ Lm(u), whereLm(u) andL(s)
are the labels of useru and subjects, respectively. This pol-

122

icy indicates that a useru cancreate a subject (process)s
and the subject’s label is lower than or equal to the user’s
label. By “create” a process we mean the user invokes a pro-
gram which the new process tuns.

(2). (s, o, create) ⇒ L(o) ≤ L(s), wheres is subject process
of a user, ando is be another process or other general object
(file, directory, etc.) This policy specifies that a subjects can
create a passive object (e.g., a file or directory) or invoke a
processo, and the new object’s label is lower than or equal
to the subject’s label.

(3). (s, o, read) ⇒ L(s) ≥ L(o). A subjects canread an ob-
jecto only if s’s label dominates (higher than or equal to)o’s
label. This is referred as the read-down or simple-property
of MAC.

(4). (s, o, write) ⇒ L(s) ≤ L(o). A subjects canwrite an
objecto only if o’s label dominates (higher than or equal to)
s’s label. This is referred as the write-up or star-property of
MAC.

(5). If L(s) andL(o) are notcomparablein the lattice, then
(s, o, read) ⇒ �L(s)′ = L(s)⊕L(o)

�∧�L(s)′ ≤ Lm(u)
�
,

whereu is the user represented bys. This policy indicates
that whenever a subjects wants toread an objecto and their
labels are not comparable, then the label of the subject is up-
dated to the least upper bound of their labels through the⊕
operation, and this label must be lower than or equal to the
label that its user can have, otherwise the access is denied.
This is referred as the high-watermark property of MAC.

(6). If L(s1) andL(s2) are notcomparablein the lattice, then
(s1, s2, write) ⇒ �L(s2)

′ = L(s1)⊕L(s2)
�∧ �L(s2)

′ ≤
Lm(u2)

�
, whereu2 is the representing user ofs2. This pol-

icy indicates that whenever a subject processs1 wants to
write an object (another subject process)s2 and their labels
are not comparable, then the label ofs2 is updated to the least
upper bound ofs1 ands2, and this new label must be less
than or equal to the label that its user can have, otherwise the
access is denied. This is another form of the high-watermark
property. Note thats1 ands2 may or may not be the subjects
of the same user.5

In the first two rules, the label of a created object is not specified.
Two options can be considered here: the new object’s label is de-
termined at the discretionary of the user, or by some other organi-
zational or administrative policies. In rule (5) and (6), a subject’s
label is updated as the least upper bound of the two labels, which
results in that this subject can read from any object with the same
label or any label that the subject’s label dominates, but can only
write to objects with higher or equal labels. If the least upper bound
is higher than the user’s assigned maximum label, the update can-
not be performed and the access is denied. Since there is no policy
to downgrade a subject’s label, once a subject is assigned a higher
level label, it cannot write to lower level objects. For example, a
process with a label of its domain name originally can read and

5Note the asymmetry between rules 5 and 6. In both cases only the
label of a subject can change. In rule 5 it is the label of the subject
doing the read that changes, whereas in rule 6 it is the subject being
written to whose label changes. Hence in 5 the target objecto may
be a passive object or an active subject, but in rule 6 the targets2

must be an active subject and cannot be a passive object.

write within the domain. For the collaboration purpose it reads ob-
jects in another domain, and its label is updated to the compartment
of both domain names as the result of the accessing. This prevents
the process from writing the joined data into any object with a label
of its original domain.

It is important to understand that a user may run the same program,
such as a text editor, as a high level subject (process) or a low level
subject. Even though both subjects run the same program on behalf
of the same user, they obtain different privileges (e.g., to read from
or write to other objects) due to their different security labels. Due
to the dynamic transitions of a subject’s label according to its access
history, our model isnon-tranquil.

6. PROTOTYPE IMPLEMENTATION AND
EVALUATION

To study the feasibility and performance overhead of our proposed
architecture, we have implemented a prototype. In this section, we
present the details of implementation and the evaluation results.

6.1 Prototype Overview
In our prototype, the isolation of running processes is achieved
through application-level virtualization technology. Specifically,
user-model Linux (UML) [13] is used to provide isolated runtime
environments for individual processes. UML is a ported Linux ver-
sion that can run in a Linux host’s user space. A process running
in a UML is a normal process in the host operating system, but is
contained in UML by tracing and diverting all of its system calls
to a user space kernel (UML kernel). Underlying hardware re-
sources are virtualized by the host OS. Therefore a UML is a user
space sandbox and existing programs can run in a UML without
any changes. The memory space of processes in different UMLs on
a single platform is strongly separated by a virtual machine monitor
(VMM) running in the host OS.

Figure 5 shows the architecture of our prototype. The inter-process
communication is implemented with Unix sockets. A UML pro-
cess communicates with the host and external platforms with uni-
versal TUN/TAP driver [4], which provides packet reception and
transmission for user space programs. The reference monitor is
implemented as a user space daemon in the host OS. As the labels
of objects like files and directories arestatic, they are stored with
the object itself. Specifically, a directory is labelled if there is a
SB LABEL file in the directory, and the label name is the content
of the file. Each file under this directory is assigned with the same
label. For processes, their labels dynamically change. To improve
the performance, the reference monitor maintains a table with tu-
ples(pid, label), wherepid is a unique process identity.

Access control policies are stored in a file accessible to the refer-
ence monitor. Each policy entry includes the label of the requesting
subject and the label of the target object, and the allowed action as
the result of the access request. There are two types of actions,
one is the generic rights of a system such as read and write, and
the other is the update of the subject or the object label as the re-
sult of allowing an access. For an update action, the access control
decision is made only after a successful update action, i.e., the cor-
responding label has been changed in the table. Also, the reference
monitor maintains another file storing the maximum labels of users.
Note that since all labels form a lattice, there is a finite number of
labels and domination relationships between them.

123

UML1

Tun
/tap

Reference Monitor

Tun
/tap

UML2

token

send/
recv

VMM
 Host OS

User space

s
 o

Policy

Figure 5: Platform architecture of SB prototype

Our prototype runs on a Pentium III 666MHz machine with 256
MB memory, Debian Linux with kernel 2.4.27. UML also uses a
patched Linux kernel 2.4.27.

6.2 Implementation of Chinese Wall Policy
To enforce the Chinese Wall policy in our proposed architecture,
the subject and object security labels must be identified by the ref-
erence monitor before allowing an access. Therefore we need to
determine theeffective userof a process. A user can create a pro-
cess, which in turn can create other processes. Recursively, the ef-
fective user of a process is that of itsparentsubject (the user or the
process from which it is created). As UML is a user space process
in the host OS, we assume that for each process there is only one
user involved. Therefore the effective user of a process in a UML
is the effective user of the UML process in the host OS, which can
be obtained withgetuid in Linux. In Linux file systems, file
permission bits provide discretionary access control (DAC), while
we implement a parallel label-based MAC mechanism in our pro-
totype. In a real system these two mechanisms can be enforced
concurrently.

In our implementation, a security label is defined as a set of group
names in the Linux system. According to the Chinese Wall policy,
a user can be in only one group of a set of conflicting groups, and
its maximum security label (Lm(u)) is the set of all group names
that it belongs to. The domination relationship between labels is
the subset relation between group sets. When a user or a process
creates another process (refer to rules 1 and 2 in Section 5.2), the
security label of the new process can be set by the user or the pro-
cess as a parameter of the invocation. By default, if no parameter
is present, the new process is assigned with the same label as its
parent and so recorded by the reference monitor.

The read and write permissions (refer to rules 3 to 6 in Sec-
tion 5.2) are implemented withsend and recv of TCP socket,
which are used to send and receive messages through a socket con-
nection between two processes. To support the method-level con-
trol, we use atokenassociated with each socket connection to spec-
ify allowed information flow directions. Logically, a token maps a
socket connection to a right set of{read, write}, where a socket
connection has a source (subject) IP/port and a destination (object)
IP/port. For example, a token withread indicates that the subject
can receive messages from the object, and the object can send mes-
sages to the subject. All other permissions are denied.

The following describes the general procedure we implement for
an access control request(s, o, r), wheres is the subject process
ando is the object process. Similar procedure happens wheno is a
static object such as file and directory.

1. Befores wants to connect too (without loss of generality,
we assume the subject always actively generates the request),
it sends the request to the reference monitor with the target
object’s information.

2. The reference monitor obtains the security labels ofs ando
(recorded by SB when the processes are created), and queries
the access control policies. A token is issued to specify al-
lowed access permissions.

3. Before any ofsend andrecv methods is called, the token is
checked if the method can be activated, otherwise an access
control exception is generated.

6.3 Performance Results
We measured the communication and access control overhead be-
tween two processes in the same host OS (without isolation en-
forced) and in two different UMLs isolated with VMM in the host
OS, respectively. Under each case we measured the average over-
head with and without access control between the subject and ob-
ject processes. We measured the time for the access control deci-
sion check and the actual communication time. Since extra per-
formance overhead is introduced with access requests from a sub-
ject process and the decision making from the reference monitor,
denying and allowing an access result in the same performance
overhead.6 So an access is always allowed when the access con-
trol decision is checked in our performance study. Table 1 shows
the average values of 50 measurements. Since the communication
that we implemented in the prototype is through simple query-and-
response messages between processes, the overhead introduced by
the access control enforcement is comparable to the communica-
tion overhead. While the overhead significantly increases from the
control within the same OS to that between UMLs in the same host
OS, the access control enforcement overhead is still less than 2.0
ms (less than 1/3 of the total overhead), which is acceptable for
most applications.

6Normally denying and allowing an access may result in different
overhead if different number(s) of policies are evaluated. Here we
only consider a small number of total policies such that the differ-
ence can be ignored.

124

no isolation isolation with VMM
no control with control no control with control

access control (ms) - 0.465 - 1.926
communication (ms) 0.372 0.369 4.484 4.551
total (ms) 0.372 0.834 4.484 6.477

Table 1: Access control and communication overhead

Strategies can be used to further reduce the access control over-
head. For example, the reference monitor can cache a finite number
of tokens it has issued. If the security labels of the communicating
parties in a token have not updated upon the latest access, the to-
ken can be reused without querying the policy decision point (the
policy file in our prototype). This is useful for real applications
with complex access control policies and in distributed computing
environments.

7. RELATED WORK
Considerable research has been conducted to provide application
level security based on TC technologies. In [25], a security kernel
is used beyond hardware to provide separated runtime space for the
legacy operating system and “secure applications” (e.g., DRM ap-
plications). But communications between legacy applications and
these secure applications are not supported, as this architecture is
for multilateral security policies, e.g., platform owner’s security
and DRM policies. Similarly, a language-based virtual machine is
proposed in [16] to provide trusted services, which is only for ap-
plications developed with a Java-like program language. It does not
support communications between general processes and processes
in a virtual machine.

So far only a few researchers have considered the simultaneous
application-level security and flexible communication requirements.
Besides those mentioned in Section 1, Terra [15] and sHype (secure
Hypervisor) [24] use virtual machine monitor (VMM) as the trusted
layer, which can support multiple legacy operating systems on a
single platform. Access control is enforced in the VMM layer for
resource sharing between upper VMs. The main difference from
our approach is that in our approach the security enforcement is
performed in a middle layer, which is above the main OS and below
the applications. That is, our approach can provide finer-grained
security services between applications by integrating application
context information for access control.

Another line of work focuses on securing operating systems, such
as Security-enhanced Linux (SELinux) [19], TrustedBSD [5], and
Linux Security Modules (LSM) [29]. In these systems, the kernel
is extended to include authorization modules and enforce access
control policies. For example, in SELinux, security classes are de-
fined for objects such as files, links, and processes, and accesses
to objects from subjects are controlled by policies. Because of the
complexity and the huge size of a general-purpose OS, it is con-
sidered that purely OS-based security enforcement cannot provide
high assurance security services to applications, which is demon-
strated by the increasing number of kernel-level rootkits in com-
modity OS’s. These studies differ from our architecture in that our
proposed trusted component (SB) is in the middle layer between
the OS kernel and the user space processes, such that it is trans-
parent to existing OS and applications. Furthermore, by leveraging
trusted hardware, our architecture provides high assurance for the
enforcement of policies.

Among these schemes, BIND [27] and KernelSec [23] are closest
to ours. Although BIND [27] also uses the hash chain for integrity
check of a process and its data, our approach is significantly dif-
ferent from that in BIND. First, with SB, both the hash values of
the input/output and the process binary code are included in the
signature that is sent to the downstream process. It is not only the
integrity of the process code. This is practically necessary to ver-
ify that the output of a process is obtained with genuine input. For
example, in collaborative computing systems like SETI@Home, a
server needs to ensure that a peer does the computation with the
input that the server assigns, but not something faked. In BIND,
only the process code and its output data are verified, which cannot
capture the integrity and authenticity of the input. Second, the in-
tegrity verification in our architecture is performed by SB on a plat-
form, which makes this function transparent to applications since
they always go through SB to communicate with each other. While
in BIND, for the purpose of fine-grained attestation, the integrity
measurements and verifications are based on some critical sections
of a process, which calls the corresponding functions provided by
BIND. So the integrity verification is performed by individual ap-
plications, whereby the security functions are not transparent to ap-
plications.

Similar to our approach, KernelSec [23] supports general security
policies such as MAC and information flow control for applica-
tions. But as it is implemented at the OS kernel level without root of
trust, KernelSec cannot provide high assurance of security enforce-
ment. On the other side, SB supports more flexible application- and
organization-specific access control policies with high assurance.

8. CONCLUSIONS
In this paper we propose a novel architecture for trusted computing.
A trusted component called SecureBus is located between the main
OS and applications to provide strong memory space isolation and
secure communication for user applications. SB effectively pre-
serves application integrity by attesting the integrity and authentic-
ity of process and data, and enforcing flexible mandatory access
control policies for information flow between applications, both
of which are required by applications to defend software-based at-
tacks. The major advantage of our architecture is that SB is trans-
parent to both the underlying OS and applications, and can provide
data authentication and flexible access control between processes
simultaneously. In addition, our architecture enables the separa-
tion of security mechanisms from functionality in the design and
development of systems and applications, which is convenient for
legacy applications and OS’s. We have implemented a prototype
system to study its feasibility and the access control performance.
The experimental results show that SB is effective.

In this work we have examined the application of SB through the
Chinese Wall policy implemented using a lattice of security labels.
The architecture is applicable to a much wider range of policies,
details of which will be studied in future work.

125

9. ACKNOWLEDGEMENT
We would like to thank anonymous reviewers for their helpful com-
ments. The work is partially supported by NSF grants CNS-0509061
and CNS-0621631, and by a grant from Intel.

10. REFERENCES
[1] LaGrande Technology Preliminary Architecture

Specification,
http://www.intel.com/technology/security/downloads/PRELIM-
LT-SPECD52212.htm.

[2] SETI@Home, http://setiathome.ssl.berkeley.edu/.
[3] TCG Specification Architecture Overview.

https://www.trustedcomputinggroup.org.
[4] Universial TUN/TAP driver. http://vtun.sourceforge.net/tun/.
[5] TrustedBSD: Adding trusted operating system features to

FreeBSD. InProceedings of the FREENIX Track: USENIX
Annual Technical Conference, pages 15–28, Boston, MA,
USA, June 28 2001.

[6] AMD platform for trustworthy computing. Microsoft
WinHEC,
http://www.microsoft.com/whdc/winhec/pres03.mspx, 2003.

[7] Technical introduction to next-generation secure computing
base (NGSCB). Microsoft WinHEC, 2003.

[8] A. Baliga, L. Iftode, and X. Chen. Paladin: Automated
detection and containment of rootkit attacks. Technical
Report DCS-TR-593, Rutgers University, Department of
Computer Science, 2006.

[9] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical
framework for reasoning about access control models.ACM
Transaction on Information System Security, 6(1):71–127,
2003.

[10] D. Brewer and M. Nash. The chinese wall security policy. In
Proceedings of the IEEE Symposium On Research in Security
and Privacy, pages 206–214, Oakland, California, 1988.

[11] N. Damianou, N. Dulay, E. Lupu, , and M. Sloman. The
ponder policy specification language. InProceedings of the
Workshop on Policies for Distributed System s and Networks,
2001.

[12] Department of Defense National Computer Security Center.
Trusted Database Interpretation of the Trusted Computer
Systems Eval uation Criteria, April 1991. NCSC-TG-021.

[13] Jeff Dike. A user-mode port of the linux kernel. In
Proceedings of the 2000 Linux Showcase and Conference,
October 2000.

[14] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit.International Journal of Supercmputer
Applications, 11(2), 1997.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. InProceedings of the 19th ACM
Symposium on Operating Systems Principles, pages
193–206, Bolton Landing, New York, USA, October 1922
2003.

[16] V. Haldar, D. Chandra, and M. Franz. Semantic remote
attestation - a virtual machine directed approach to trusted
computing. InProceedings of the Third virtual Machine
Research and Technology Symposium, pages 29–41, San
Jose, CA, USA, May 6-7 2004. USENIX.

[17] S. Jajodia, P. Samarati, , and V. S. Subrahmanian. A logical
language for expressing authorizations. InProceedings of the
IEEE Symposium On Research in Security and Privacy,

pages 31–42, Oakland, CA, USA, 1997.
[18] J. F. Levine, J. B. Grizzard, and H. L. Owen. Detecting and

categorizing kernel-level rootkits to aid future detection.
IEEE Security & Privacy, 4(1):24–32, Jan.-Feb. 2006.

[19] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. In
Proceedings of USENIX Annual Technical Conference, pages
29 – 42, June 25-30 2001.

[20] S. Muir, L. Peterson, M. Fiuczynski, J. Cappos, and
J. Hartman. Proper: Privileged operations in a virtualised
system environment. InProceedings of Usenix Annual
Technical Conference, 2005.

[21] OASIS XACML TC. Core Specification: eXtensible Access
Control Markup Language (XACML), 2005.

[22] R. Oppliger and R. Rytz. Does trusted computing remedy
computer security problems?IEEE Security & Privacy,
3(2):16–19, 2005.

[23] M. Radhakrishnan and J. A. Solworth. Application support
in the operating system kernel. InProceedings of ACM
Symposium on InformAtion, Computer and Communications
Security, 2006.

[24] R.Sailer, T. Jaeger, E. Valdez, R. Perez, S. Berger, J. L.
Griffin, and L. van Doorn. Building a mac-based security
architecture for the xen opensource hypervisor. Technical
report, IBM Research Report RC23629, 2005.

[25] A. Sadeghi and C. Stuble. Taming trusted platforms by
operating system design. InProceedings of the 4th
International Workshop for Information Security
Applications, LNCS 2908, pages 286–302, Berlin, Germany,
August 2003.

[26] R. Sandhu. Lattice-based access control models.IEEE
Computer, 26(11), November 1993.

[27] E. Shi, A. Perrig, and L. Van Doorn. Bind: a fine-grained
attestation service for secure distributed systems. In
Proceeedings of IEEE Symposium on Security and Privacy,
pages 154–168, Oakland, CA, USA, May 8-11 2005.

[28] Sean Smith.Trusted Computing Platforms: Design and
Applications. Springer, 2005.

[29] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. InProceedings of the
11th USENIX Security Symposium, 2002.

126

