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ABSTRACT Modern information systems require fine-grained and flexible
access control policies, which need dynamic and expressive access
control models. Traditional access control models, such as access
matrix [5], mandatory access control (MAC) [1, 3], discretionary
access control (DAC), and role-based access control (RBAC) [15,

The usage control (UCON) model was introduced as a unified ap-
proach to capture a number of extensions for traditional access con-
trol models. While the policy specification flexibility and expres-

sive power of this model have been studied in previous work, as a ) o .
related and fundamental problem, the safety analysis of UCON has4]' have been formulated to meet different application requirements.

not been explored. This paper presents two fundamental safety re_RecentIy, usage .control (UCON) [11] was propqsed as a ggneral
sults for UCON,, a sub-model of UCON only considering autho- and comprehensive model to extend the underlying mechanism of

rizations. In UCON, an access control decision is based on the traditional access control models. In [11, 19], the policy specifi-

subject and/or the object attributes, which can be changed as thecation flexibility and expressive power of UCON has been shown

side-effects of using the access right, resulting in possible changes!"' 3¢C€SS control systel_ms,_dlgltal rights rrrl]anagement (DRM), and
to future access control decisions. Hence the safety question int"USt management applications, among others. ,
UCONy is all the more pressing since every access can potentially A different but related important problem in access control is the

enable additional permissions due to the mutability of attributes !eakage of permissions. In an access control system, a permission

in UCON. In this paper, first we show that the safety problem is is granted or an access is authorized depending on the current state
in general undecidable. Then, we show that a restricted form of of the system. Also, the granting of a permission may consequently

UCON,4 with finite attribute value domains and acyclic attribute change _the state of the system, and this, in_tu_rn,_may enable other
creation relation has a decidable safety property. The decidable P€rmissions. This dynamic property makes it is difficult to foresee

model maintains good expressive power as shown by specifying an? system S“%‘e in Whic.h a subject can have a particular rjght on a
RBAC system with a specific user-role assignment scheme and gparticular object. '_I'hls is referred to as the sz_afety problem in access
DRM application with consumable rights control. The requirement of strong expressive power and that of a

tractable safety property have been conflicting since the introduc-
tion of protection models in 1970’s. It is not a surprising fact that

Categories and SUbjeCt Descriptors for a given access control model, the more expressive power it has,
D.4.6 [Operating System$: Security and ProtectionAccess con-  the harder it is, computationally, to carry out safety analysis, if at
trols; K.6.5 [Management of Computing and Information Sys- all possible.

temg: Security and Protectionnauthorized access Access control in UCON is made by policies of authorizations,

obligations, and conditions (also referred as UC@N model [11]).
In UCONy, the control decision of an access is determined by one

General Terms or more predicates built from the attributes of the subject and the

Security object. A particularly powerful innovation of UCONis that an
access can result in the updates of the subject’s and/or the object’s
Keywords attributes as side-effects. These updates, in turn, may result in
L the changes of the permissions of future accesses. The resultant
access control, usage control, UCON, authorization, safety permission propagations, because of attribute mutability, make the
safety analysis complex and untractable in general UCON models.
1. INTRODUCTION This paper presents two main contributions to the safety anal-

ysis of UCONy. First, we prove that the safety problem in gen-

eral UCON; is undecidable by reduction to the halting problem in

Turing machines. Second, two decidable models of UGGiXe
Permission to make digital or hard copies of all or part of this work for obtained with some restrictions in the general model. Specifically,
personal or classroom use is granted without fee provided that copies arethe safety problem is decidable for a UC@NKhodel with finite at-
not made or_distributed for profi_t or comme_rcial advantage and that popies tribute domains and without “creating” policies. Also, the safety
bear this notice and the full citation on the first page. To copy otherwise, t0 . pjam is decidable for a UCONmodel with finite attribute do-
republish, to post on servers or to redistribute to lists, requires prior specific . u - s . .
permission and/or a fee. mains e}nd creating” policies, where the gttrlbute creation graph
ASIACCS06 March 21-24, 2006, Taipei, Taiwan. is acyclic. We then show that these restricted forms of UGON
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are practically useful by specifying policies for RBAC systems and (ongoing conditions). We mention obligations and conditions for

DRM applications. completeness, but do not consider them any further in this paper.
The rest of the paper is organized as follows. Section 2 con- In this paper we focus on the safety analysis of UC@NA
tains an introduction to and a formal definition of UC@QNSec- models. Since an authorization decision is determined by subject’s

tion 3 presents the undecidability result of the safety problem in and object’s attributes, and these attribute values can be updated as
general UCON systems. We then present two decidable models side-effects of the authorization, the safety problem in authoriza-
with some restrictions on the general UC®Nh Section 4, and tion models is more pressing than that in obligation and condition
their expressive power in Section 5. Section 6 gives some relatedmodels. For UCONon A models, the system state changes non-
work on safety analysis in access control models. Section 7 con- deterministically, depending on concurrent accesses and reasons
cludes the paper and presents some further directions of research. for attribute updates (e.g., ended access vs. revoked access). We
leave the safety analysis ofi A models for future work. For the

2. USAGE CONTROL MODEL sake of simplicity in this paper we refer UCQNas UCONpreA
In this section, first we briefly review the main components of the models.

UCON model in [11], and then we present a policy-based formal
UCON. model. 2.2 A Formal Model of UCON,
A logical model of UCON is presented in [19] to capture the new

2.1 A Brief Introduction features of UCON, such as the attribute mutability and the decision
A UCON system consists of six components: subjects and their continuity, but it is not appropriate to study the safety problem. The
attributes, objects and their attributes, generic rights, authoriza- main reason is that the logical model focuses on the specification
tions, obligations, and conditions, where authorizations, obliga- Of the detailed state change of the system in a single usage process,
tions and conditions are the components of usage control decisions While for safety analysis, the overall effect of a usage process and
An attribute is regarded as a variable with a value assigned to it in the permission propagation as the cumulative result of a sequence
each system state. Authorizations are predicates based on subjec®f usage processes need to be formulated. Therefore a new for-
and/or object attributes, such as role name, security classificationmal model is developed in this paper to capture the global effect
or clearance, credit amount, etc. Obligations are actions that are0f & usage process and the cumulative result of a sequence of us-
performed by subjects or by the system. For example, playing a age processes. Specifically, in this model, a single usage process is
licensed music file requires a user to click an advertisement, and atomic, and all usage processes are serialized in a system. By seri-
downloading a white paper requires a user to fill out a form. Con- alized processes we mean that there is no interference between any
ditions are system and environmental restrictions such as system{Wo usage processes, so that the net effect is as though the individ-
clock, location, system load, system mode, etc. ual usage processes executed serially one after another. We don't
In UCON, a complete usage process consists of three phasesspecify precisely how the serialization is achieved, since there are
before-usage, ongoing-usage, and after-usage. The control decimany known standard techniques for this purpose. The details of
sion components are checked and enforced in the first two phaseshow to achieve serialization is an implementation-level issue as op-
called pre-decisions and ongoing-decisions respectively, while no posed to a model-level issue. Focusing on model-level issues, we
decision check is defined in the after-usage phase (since there is ndlefine a set of policies to specify the authorization predicates for us-
control after a subject finishes an access on an object). The pres-2ges, and sequences of primitive actions as the side-effect results.
ence of ongoing decisions is called the continuity of UCON. Also, policies for creating and destroying subjects and objects are
Another important property of UCON is attribute mutability. Mu-  defined.
tability means that one or more subject or object attribute values can
be updated as the results of an access. Along with the three phases2.2.1  Subjects, Objects, and Rights
there are three kinds of updates: pre-updates, ongoing updates, and The subject, object and right abstractions are well known in ac-
post-updates. All these updates are performed and monitored bycess control. Generally speaking, a subject is an active object that
the security system. The updating of attributes as side-effect of can invoke some access requests or execute some permissions on
subject activity is a significant extension of classic access control another object, such as a process that opens a file for reading. A
where the reference monitor mainly enforces existing permissions. subject, in turn, can be accessed by another subject, e.g., a process
Changing subject and object attributes has impact on the future us-can be created, stopped or killed by another process. Following the
age of permissions involving this subject or object. This aspect of general concepts in traditional access control models, we consider
mutability makes UCON very powerful as discussed in [11, 19] but the set of subjects in UCONto be a subset of the set of objects.
also makes the safety question much more important. The objects that are not subjects are called pure objects. We require
For each decision component (authorizations, obligations, and that each object be specified with an identity, called name, which
conditions) in UCON, a number of core models are defined based js unique and cannot be changed, and cannot be reused after the
on the phase where usage control is checked and updates are pegbject is destroyed in the systém
formed. For example, in authorization core models, usage con- Rights are a set of privileges that a subject can hold and execute
trol decisions are dependent on subject and object attributes, whichgn an object, such asead, write, pause, etc. In access control
can be checked and determined before or during a usage processsystems, a right enables the access of a subject to an object in a

and are callegreA (pre-authorizations) andnA (ongoing au- particular mode, referred to as a permission. Formally, a permis-
thorizations), respectively. Based on possible updates in all threesion is a triple(s, o, ), wheres, o, r are a subject, object, and right,
phases, each sub-model has four core models. For exapnplé, respectively. In UCON, a permission is enabled by an authoriza-

is the core model with pre-authorizations and without updates, and tion rule in a policy.
preAi, preAs, andpre Az are core models with pre-authorizations,
and pre-updates, ongoing updates, and post-updates, respectivelyiThis unique name in many cases will not be the identity of a user.

Similar core models have been definedderd, preB (pre-obliga- For example, a process executing on behalf of a user will have a
tions),on B (ongoing obligations)yreC (pre-conditions), andnC process identity and not a user identity.




The set of subjects, objects, and rights are denote$, 6y, and
R, respectively, wheré C O.

2.2.2 Attributes, Values, and States
Each object is specified with a non-empty and finite set of at-

e.g., s.cleareance > o.classification, s.credit > o.value,
(s,7) € o.acl, whereo.acl is the objecto’s access control list.
Note that the attributes in a predicate can be from a single subject

or object, or one subject and one object.

tributes, such as group membership, role, security clearance, credit 2-2-4 ~ Primitive Actions

amount, etc, defined by the system designer. An attribute of an ob-

ject is denoted as.a whereo is the object name (i.e., the object’s
unique identity) and: is the attribute name. Without loss of gen-

A protection system evolves by the activities of the subjects, such
as requesting and performing one or a sequence of accesses, which
in turn may generate new objects in the system, or update the val-

erality, we assume that in a system, each object has the same fixedies of attributes corresponding to a set of usage control policies

set of attribute namedT'T.

(defined shortly). Three kinds of primitive actions are defined in

Each attribute name is treated as a variable of a specific datatype UCON,4.

which determines the attribute’s domain and the set of functions
that can be used with the attribute values. The domain of the at-
tribute a is denoted agom(a), and we assume that for eache
ATT, null ¢ dom(a).

ExamMPLE 1. Each subject (user) in an organization has the
same set of attribute name$TT" = {adminRole,regRole},
where theadmin Role’s value is an administrative role name and
theregRole’s value is a regular role name. An administrator in the
organization has no-null values for both attributes, while a regular
employee’ssdmin Role is null, which is set when the subject is
created and cannot be updated. |

An assignment of an attribute maps its attribute name to a value
in its domain, denoted asa = v, wherev € dom(a) U {null}.
The set of assignments for all objects’ attributes collectively con-
stitute a state of the system.

DEFINITION 1. Asystem stateor state is a pair(O, o), where
O is a set of objects, and : O x ATT — dom(ATT) U {null}
is a function that assigns a value ol to each attribute of each
object.

ExamMPLE 2. Consider an organization in which RBAC [15] is
enforced. Each subject has an attribute, which stores all the
roles explicitly assigned to this subject by the security officer, and

whose domain consists of all possible subsets of roles in the system

Another attributedev_ua is defined to store a single role that an

employee (say Alice) can be assigned to within the development de

partment. IfR4.., = {roles within the development departmgnt
thendom(dev_ua) = Rgev U {null}. For Bob, who is in the test-
ing department, théev_ua value is alwayswull. A possible sys-
tem state (if no other objects and attributes exist in the system) is
t = {Alice.ua = {p1,p2}, Alice.dev_ua = {p1,p2}, Bob.ua =
{ps}, Bob.dev_ua = null}, wherep:, p2, ps are role names, and
P1,P2 € Rieo. o

2.2.3 Predicates
DEFINITION 2. A predicatep(s, o) is a boolean-valued poly-

nomially computable function built from a set of a subjgstand
an objecto’s attributes and constants.

DEFINITION 3. A primitive action(or simplyaction) is a state
transition of a system. Three primitive actions of UCQAake de-
fined as in the Figure 1, wherte= (O, o) andt’ = (O’,0") are
the states before and after a single primitive action.

A createObject action introduces a new object into the sys-
tem, and requires that the new object not be in the system before
the creation. Each attribute of the newly created object has the
default value ofnull. Normally acreateObject is followed by
update Attribute actions to assign values to its attributes. The
destroyObject removes an existing object and its attributes from
the system. For simplicity we assume that the identity of an object
is unigue during the system’s life cycle, and cannot be reused even
after the object is destroyed. Thedate Attribute action updates
the value of an attribute.a from v to the new value’’ which can
be a constant, or the result generated by a polynomially computable
function built from the old value and other attribute values of the
subject and object parameters of the policy.

Although all these primitive actions are actually performed by
the system, they are the results of the accesses performed by sub-
jects. External actions or events of a system are not directly cap-
tured in UCON,. For example, in an online reading application,
the decrease of a credit after a user reads a chapter is an update
action captured by the UCONmodel, while the increase of the
user’s total credit amount with a credit card payment is an exter-
hal event, and is not regarded as an action in the system. To capture
these external events, UCQNvill need to be extended with an ad-

‘ministrative model. The safety question investigated in this paper

is therefore in absence of an explicit administrative model.

2.2.5 UCON Palicy

Satisfied predicates on attributes in UC@Mffect the system
in two ways. First, a set of satisfied predicates can authorize a
permission so that a subject can access an object with a particular
right. Second, a set of satisfied predicates may authorize the system
to move to a new state with a sequence of actions, e.g., by creating a
new object, or updating attribute values. These actions, in turn, may
make other predicates satisfied, and then enable other permissions
and system state changes. The safety analysis of UCfoblses
on the interactions between these two aspects, e.g, the permissions
authorized by a system state and the state changes caused by the

The semantics of a predicate is a mapping from system statesactions.

to boolean values. A state satisfies a predicate if the attribute val-

Access authorizations and the state transitions are specified by a

ues assigned in this state satisfy the predicate. For example, theset of pre-defined policies.

predicates.credit > $100 is true in the current state of a sys-
tem if s's credit attribute value is larger than $100 in this state.
A predicate can be defined with a number of attributes from a
single object or two objects. For examples, a unary predicate is
built from one attribute variable and constants, esgeredit >
$100.00, o.classification = “supersecure”. A binary pred-
icate is built from two different attribute variables and constants,

DEFINITION 4. A policy of UCON, consists of a name, two
parameter objects, an authorization rule, and a sequence of primi-
tive actions as follows:

policy_namés, o):
p1 Ap2 A+ A p; — permit(s,o,r)
acty; acta; ..., acty



Actions [ Conditions [ New States

createObject o’ | o ¢ O O'=0uU{d}
Yo € O,a € ATT,c'(0.a) = o(0.a)
Va € ATT, o' (0'.a) = null

destroyObjecto | o € O 0" =0 — {0}

updateAttribute: | o € O,a € ATT 0O'=0

o.a=1' v € dom(a) U {null} | Vent € O, att € ATT, o'(ent.att) = o(ent.att) if ent # o andatt # a
o'(0.a) =0

Figure 1: Primitive actions in UCON 4

wheres ando are the subject and object parameteps; p2, . . -
are predicates based of's ando’s attributes and constants;
permit(s,o,r) is a predicate which indicates that a permission
(s,0,r) is authorized by the systemtifue; act1, acta, ..., acty
are primitive actions that are performed anor o or their at-
tributes.

single update with the value in the last one. Negation is not explic-
itly required since we can always define a new predicate equivalent
to a negated one. For example, instead-0f.credit > $1000),
we use(s.credit < $1000). Similarly, disjunction of predicates is
not explicitly required since it can be expressed by a set of individ-
ual policies, one for each component of the disjunction.

A policy is enforcedby replacing the two parameters with a pair
of actual subject and object names when the subject generates an
access request on the object with a particular right. If the condi-
tion of the policy and all conditions for each primitive action are
satisfied, then the permission is granted, and all the primitive ac-
tions are performed. Otherwise, the permission is not granted, and
the system does not change state. As we assume that all accesses
are serialized, and the enforcement of each policy is atomic, either
an access is granted and all primitive actions are completed, or the
system state does not change.

y Di

We assume that is the active object in a policy, so it is the
subject that attempts an operation requiring the right the target
objecto.

A policy includes two parts. The first part is an authorization
rule consisting of a conjunction of attribute predicates, called the
conditionof the policy, followed by aermit predicate implied by
the condition. The second part is a sequence of primitive actions,
called thebodyof the policy. The first part specifies a permission
authorized by the state of the system, while the second part is the
side-effect of executing this permission, thereby changing the state
of the system. Note that there may be policies that have no actions
but only authorization rules, which cause no state transitions. |
any state, a permission that is mrmitted explicitlyby a policy
is denied by default. In general the UCQNnodel only considers
positive permissions.

Instead of specifying the individual state changes in a single us-
age process, the policy-based formalization specifies the overall ef-
fects on the system state for a usage process. This approach cap-
tures the essential aspect of system state transitions and permission
propagations caused by the attribute mutability of UCON, while
maintaining the simplicity of policy specifications.

Note that by the policy definition we assume that all the autho-
rization predicates in a policy are considered as pre-authorizations,
and all the updates as post-updates. That is, the UC@Ndel de-
fined in this section ipreAs. As all usage processes are serialized
in a UCON, system, and a policy captures the overall effects of
the system state after a usage process, the updates in a policy can
also be considered as pre-updates or ongoing updates, which would

n EXAMPLE 3. Suppose that a document can only be issued by a
scientist(with role sci). For anonymousisers, this document can

only be read 10 times. We define the available timesd1imes)

as an object attribute. Each time an anonymous user is authorized

to read a document, this attribute is updated by decreasing it by

one. The policies in this application are:

create_doc(s, doc):

(s.role = sci) — permit(s, doc, create)
createObject doc

update Attribute: doc.readTimes = 10

read_doc(s, doc):

(s.role = anonymous) A (doc.readTimes > 0) —
permit(s, doc, read)

update Attribute:

doc.readlimes = doc.readlimes — 1

make the modebre A, or preAs, respectively. All safety results in
this paper derived fopre As also hold forpreA; andpreAs. For

the sake of simplicity, we assume, without loss of generality, that
the UCON4 model considered in this paper igaec A3 model.

The first creating policy specifies that a subject with rolesaf
can createa new document, and theadTimes attribute of this
new object is set ta0. In the second policy, a subject with role
anonymous can be authorized teead a document ifitgeadTimes

attribute is positive; as a result of this permissioradTimes is
decreased by one. |

A policy is enforced when an access requested is generated. Then;'z'6 UCON Protection System
fore, at least one of its parameters exists in the system before the A formal representation of a UCONsystem can be defined with
request, and a creating policy can contain eneateObject ac- the basic components that we have introduced.
tion at most. Without loss of generality, we assume that in a creat-
ing policy, the first parameter, which is theunique parenbbject, DEFINITION 6. AUCON, schemés a4-tuple(ATT, R, P, C),
must exist before the actions, anis created as ehild object. where ATT is a finite set of attribute names; is a finite set of
Without loss of generality, we can also assume that in a policy, fights, P is a finite set of predicates, ard is a finite set of poli-
there is at most one update action for any attribute of an object, cies. A UCON protection systenfor simplysystem is specified
since multiple updates on the same attribute can be reduced to &Y & UCONy scheme and an initial stat&o, oo).

DEFINITION 5. A policy is acreating policyif it contains a
createObject action in its body; otherwise, it ison-creating



DEFINITION 7. Given a UCON system, th@ermission func-
tion of a statet = (0, o) isp; : O x O — 2T, andifr € p.(s,0),
then in the state, the subjects can access the objeetwith the
right r.

The functionp, maps a pair (subject, object) to a set of generic
rights, according to their attribute-value assignments in the state

4.1 Stafety Analysis of UCON without Cre-
ation

In a UCON4 system, if the value domain for each attribute is
finite, then each object has a finite number of attribute-value as-
signments. Furthermore, if the system does not have any creating
policies, then the set of all possible objects in a system state is also
finite and fixed, and therefore the total number of possible states of

and the set of policies in the scheme. In a particular state, the value,q system is finite, and the safety problem can be checked in the

of p:(s, 0) can be determined by trying each policy in the scheme
with the attribute-value assignments ofand o. With the finite
number of predicates in a policy and the finite number of policies
in a scheme, the complexity of computipgfor each pair(s, o) is
o(P| x |C)).

DEFINITION 8. Fortwo stategOy, 0+) and (O, o4/ ) of a sys-
tem:

et . t' (c € O)if there exist a pair of objectéor, 02)
(01 € O¢) such that the policy(o1, 02) can be enforced in
the statet and the system state changes'to

o t »¢ t'ifthere exist ac € C such thatt —. t';

e t ~¢ t' if there exist a sequence of statgst,, . .
thatt »c t1 —c ta- - —»c tn »c t'.

., tn such

A transition historyfrom statet to statet’ is denoted ag ~¢ t/,
or simplyt ~ t'.

3. SAFETY UNDECIDABILITY IN UCON ,

In a UCON4 system, the safety question asks whether or not,
from an initial state of the system, a subject can obtain a permission
on an object after a sequence of enforced policies, i.e., by updating
attributes and creating/destroying objects. In this section we show
that the safety problem for a general UC@Ihodel is undecidable
by reducing it to the halting problem of a general Turing machine.

THEOREM 1. The safety problem of a UCQNsystem is unde-
cidable.

Proof Sketch A general Turing machine with one-directional sin-
gle tape [17] can be simulated with a UCQISystem, in which a

particular permission leakage corresponds to the accept state of the

Turing machine. A construction similar to the undecidability proof
of the access matrix model [5] is used. Specifically, the tape in a
Turing machine is simulated with a set of objects, and a set of ob-
ject attributes is defined to indicate the Turing machine’s state, the
content in each cell, and the cell that the head is scanning. A set of
UCON4,4 policies is defined to simulate the state transition function
of the Turing machine. As for a Turing machine, it is undecidable
to check if its accept state can be reached from the initial state.
Therefore, with the scheme of simulating UC@Nhe granting of

the particular permission of a subject to an object is also undecid-
able. This proves the safety undecidability of UC@NThe full
construction is presented in the Appendix. a

4. SAFETY DECIDABLE UCON 4, MODELS

Since the safety of the general model is undecidable, in this sec-
tion we study the safety property of UCQNnodels with some re-
strictions. First we prove that a model with finite attribute domains
and without creating policies is safety decidable. Then we relax
this restriction by allowing restricted creating policies and obtain a
more general decidable model. Finally we illustrate the expressive
power of these decidable models.

finite set of system states. This leads to the following result.

THEOREM 2. The safety problem of a UCONsystem is decid-
able if:

1. the value domain of each attribute is finite, and

2. there are no creating policies in the scheme.

Proof. The total number of states of the system is finite and
bounded a-priori since there are no new created objects and each
object has only a finite number of attribute-value assignments. The
safety problem is reduced to the reachability problem of a finite
state machine, which is decidable.

Let the system be specified by a sche(@&'T", R, P,C) and
an initial stateto = (Oo, 00). We consider the safety check of a
permission(s, o, ) in the following analysis.

A system state is characterized by a set of attribute assignments
{o.a = vlo € O,a € ATT,v € dom(a) U {null}}, where
O C Oy. (Note that destroy actions are allowed, heftis a sub-
set ofOy.) SinceO is finite, and all the domains for the attributes
in AT'T are finite, the sef) of all possible states of the system is
finite. With this state set, we construct a deterministic finite au-
tomatonFA = (Q, %, d, g0, Q) to show that the safety problem
is decidable. TheF A consists of:

the finite set of state = {t|t = (0,0),0 C O¢}.
the alphabeE = C' x Og x Og.

.
.
the transition functiod : Q x ¥ — Q.
the start statgo = to.

e the accept state@; = {t|r € p:(s,0)}, a (sub)set of states
in which (s, o, 7) is authorized by a policy with the corre-

sponding attribute values efando.

The state transition function if A can be constructed through
the following algorithm:

1. For a staté = (O, o), an object pail(o1, 02), and a policy
¢, if o1 € O andoz € O, and the all the predicates inare
true with the attribute-value assignmentsagfandos in ¢
(that means, the permission dnis authorized in this state),
and all the conditions of the actionsdrare satisfied, do the
following:

(a) Perform all the actions in, if there are any. Define
a state transition from to ¢’ with input c(o1, 02) if
t = c(01,00) t'- That is,t’ is the state derived fromby
enforcing the policy: with objectso, ando, as param-
eters. If the update actions do not change the attribute
values (i.e., the new value in a update action is the same
as the old value) and there is no destroy action, define
a state transition fromto itself with inputc(o1, 02).

(b

~

If the body ofc is empty, define a state transition from
t to itself with inputc(o1, 02).



2. If any one of the predicates iris not true with the attribute- 4.2.1 Grounding Policies
value assignments ef, ando: in ¢, define a state transition For safety analysis, we generate a segmfund policies with
from ¢ to itself with inputc(o1, 02). a groundingprocess, for each policy in a UCONscheme. Intu-
itively, grounding a policy is to evaluate the policy with all possible
3. Ifo1 ¢ Ooroz ¢ O (i.e.,01 0r 0z is destroyed in previous  attribute tuples of the object parameters, and only those satisfying

states), define a state transition franto itself with input the predicates in the policy are considered in the safety analysis.
c(o1,02). Consider the following generic UCONpolicy
4. Repeat above steps in the initial state and every derived state c(s, 0):
of the system with every policy and every possible pair of p1Ap2 A+ Api — permit(s,o,r)
objects in the initial state. [createObject ol;
UP1; ...y UPm,
This algorithm terminates since there is only a finite number of UPm+1; - - -5 UPn;
states, policies, and pairs of objects. Through this algorithm, all [destroyObject o],
the state transitions and accept statesFid have been defined. [destroyObject s,

The accept states are those that authorize the permigsion).

By the construction, for each history ~» ¢ of the UCONy
system, there is an input, the sequence of instantiated non-creatin
policies inty ~» ¢, with which the 7.4 moves from the initial
statet, to ¢. Also, for each state reachable from the initial state in
F.A, we can construct a history of the UCQNsystem from the
initial state to this state by using the policies and object pairs in
each transition step. TherefafeéA can simulate any history of the
UCON,4 system.

It is a known fact that the problem of determining whether an
accept state can be reached or not is decidable in a finite state ma
chine. This proves that the safety problem in the UCQO8ystem
is decidable.

where thecreateObject anddestroyObject actions are optional,
andpi,...,p; are predicates or’s and o’s attributes. Ifc is a
gizreating policy, these predicates are only based’srattributes.
Without loss of generality, we assume that,, ..., up,, are up-
date actions ow’s attributes, andip,,+1, .. ., up, are update ac-
tions ons’s attributes, and for any attribute of an object there is at
most one update in the policy. In a real command, any of the ac-
tions can be optional. For example, for a command that includes a
destroyObject o action, all update actions ancan be removed
since they have no effect on the new system state.

" The grounding process works as follows. For any two attribute
tuplesrs, 7, € AT P, if all the predicate., ..., p; are true with

s’s attribute tuplers ando’s attribute tupler,, then a ground policy

) ) c(s : 15,0 : 7o) is generated with the following format:
COROLLARY 1. The complexity of safety analysis fora UC®N

system without creating policies and with a finite domain of each c(s: 75,01 7o)

attribute is polynomial in the number of possible states in the sys- true — permit(s,o,r)

tem. [createObject o];
updateAttributeTuple o : To — T);

Proof. Consider the finite automaton in Theorem 2 as a directed update AttributeTuple s : 75 — 7;

graph. The safety check for a permissigno, r) is to find a path [deswoyoz’i@d of;

from the initial state to an accept state, which is called as the PATH [destroyObject sl;

problem. It is known that the PATH problem of a graph is poly- wherer, is the attribute tuple of after the update actiong, . . . ,
nomial in the number of nodes. That means, the complexity of the 4, . and r/ is the attribute tuple of after the update actions

safety problem is polynomial to the size of all possible states of the ..., ... up,. If cisa creating policy, the predicatgs, . . ., p;
system. O are evaluated with; only, and we can considet(a) = null for
alla € ATT.

4.2 Safety AnaIyS|s of UCON with Creation This process is repeated with every possible attribute tuple

The decidable model introduced above does not allow the cre- and,. Since each object has a finite number of attribute tuples,
ation of new objects in a system. In this section we relax this as- for any policy this grounding process is guaranteed to terminate,
sumption and allow a restricted form of creation. Intuitively, if the and a finite number of ground policies is generated. The set of
subject’s attribute values have to be updated in a creating policy, ground policies is denoted &5,.
and there is no policy that can update this subject’s attribute values  With this grounding process, the predicate evaluation in each
to its previous values, then there is a finite number of objects that policy is pre-processed by considering all possible attribute tuples
can be created in the system, and the safety is decidable by tracingn a system. This simplifies the subsequent safety analysis.
all possible system states. We will see in Section 5 that there are ) ) .
examples of useful systems that meet this requirement. We keep EXAMPLE 4. This example illustrates the grounding process

the assumption of finite value domain for each attribute. for a policy and does not necessarily have a practical interpre-
tation. For simplicity letATT = {a} anddom(a) = {1, 2, 3}.
DEFINITION 9. Anattribute-value assignment tugler simply The policy
attribute tuplg is a functionr : ATT — dom(ATT) U {null} c(s,0):
that assigns a value agull to each attribute inAT'T. (s.a > o.a) — permit(s,o,r)

updateAttribute : 0.a = o.a + 1,
For a system with a finite domain for each attribute, there is only
a finite set of attribute tuples, which is denoted 4&7P. In any
system state = (O, 0:), for each objecb € O, its attribute c(s:(a=2),0:(a=1))
tuple 7, in this state is the attribute-value assignments in this state. true — permit(s,o,r);
SpecificallyVa € ATT, 04(0.a) = 7,(a), Wwherer, € ATP. update AttributeTuple o : (a = 1) — (a = 2);

generates the following three policies in the grounding process.



c(s:(a=3),0:(a=1))
true — permit(s,o,r);
update AttributeTuple o : (a
c(s:(a=3),0:(a=2))
true — permit(s,o,r);
update AttributeTuple o : (a = 2) — (a = 3);

1) — (a=2);

For other attribute tupless and 7, as attribute-value assign-
ments ofs and o respectively, ifs.a > o.a is not true (e.g.s.a =
1,0.a = 2), no ground policy is generated. Here by definition we
assume that the predicaten > o.a is false if eithers.a = null or
o.a = null. a

Our goal is to use the finite set of ground policies to study the
safety property of a UCON system. With the following result, the

Induction step: Assume that for every histagy~c t’ with k
steps, there is a history, ~¢, t'. Consider a historyg ~»c t
of lengthk + 1 and lett’ —»(s,0) L D€ the last step. Sinaecan
be enforced int’, according to Lemma 1, there is a ground policy
cn € C, such thatt’ —c, (sirs,0im0) - BY induction hypothesis,
there exists a history ~»¢,, t. This completes the induction step
and the proof of the first case. A similar approach can be used for
the proof of the second case. |

With this lemma, we can conclude that for a UC@Nystem,
the set of all states reachable from the initial state using the original
policies can be reached using the ground policies, and vice verse.
Therefore we can study the safety property of the system with the
set of ground policies.

4.2.2 Attribute Creation Graph

change of the system state caused by enforcing an original policy The basic idea of our safety analysis is to allow a finite number

can be simulated by enforcing a ground policy.

LEMMA 1. Given two states = (O, 0) andt’ = (O’,0')ina
UCON,4 system,

1. if ¢ —»(s,0) t', Wherec € C, then there is a ground pol-
icy ¢, generated frone such thatt —., (s.r, 0:r) t', where
Tsy, To € ATP.

2. ift =, (siry,00m0) t', wherec,, € C,, then there is a policy
c € C suchthat — (s, t', wherers, 7, € ATP.

Proof. For the first case, let;(a) = o(s.a) andr,(a) = o(0.a)

for eacha € ATT. Sincet —»(s,o) t’, all the predicates in are
satisfied withs ando’s attribute values in the state According to
the grounding process, trivially, (s : 75,0 : 7o) is a valid ground
policy generated from. Also based on the grounding process, for a
primitive action inc, if it is not an update action, then it is included
in c,,; if it is an update actiompdate Attribute : s.a = v’, where

a € ATT,v'" € dom(a), thenupdate AttributeTuple : 75 — T4

is included inc, (s : 75,0 : 7,), andti(a) = v’. Therefore with
the actions irc,,(s : 75,0 : 7,), the system state changes to the
same state as witt(s, o).

In the second case, suppases.,, (s:r, o:r,) t', wherec,, € C,,.
Sincec,, can be enforced in, the attribute-value assignmentssof
ando arets andr, in t, respectively. According to the grounding
process, this implies that all the predicates in the poticfrom

which ¢,, is generated, are satisfied by these assignments. There-

fore the policyc can be applied irt. Also, bothc andc¢,, have
the same non-update actions, and all the update action®idve
the same effect with thepdate AttributeT uple action(s) inc,,
hencet —(s,0) t'.

This lemma shows that from the same system state, a single ste

by enforcing a policy can be simulated with a single step with a
ground policy, and vice versa. The following shows that a history of
the system with the original policies can be simulated by a history
with ground policies.

LEMMA 2. For a UCONy4 system with initial statey,
1. ifto ~¢ t, then there is a transition history ~»c,, t.

2. ifto ~¢, t, then there is a transition histoy ~¢ t.

of creating steps from any subject in the initial state. This requires
that in a creating ground policy, the child’s attribute tuple must be
different from the parent’s attribute tuple, so that if the creating
relation is acyclic, there only can be finite steps of creating from
the original subject.

DEFINITION 10. A ground policy is areating ground policyf
it contains acreateObject action in its body; otherwise, it is a
non-creating ground policy

DEFINITION 11. In a creating ground policy, (s : 7s,0 : 7o),
Ts is thecreate-parent attribute tupland 7, is thecreate-child at-
tribute tuple

This definition implicitly requires that in each creating ground
policy, the child’s attribute tuple is updated. Without loss of gener-
ality, we assume that if there is no update action for the child in a
creating policy, therr, = 7, in all the ground policies generated
from this creating policy; that is, they are both null-valued attribute
assignments.

DEFINITION 12. Thegeneration valuef an objecb is defined
recursively as follows:

1. ifo € Oy, its generation value is 0;

2. if o is created in a creating ground poliay(s : 75,0 : 7o),
its generation value is one more than the generation value of
its parents.

DEFINITION 13. For a UCON4 system with finite attribute do-
mains, theattribute creation graph (ACG$ a directed graph with
nodes all the possible attribute tuple&7 P, and an edge from,

Ro T, if there is a creating ground policy in which, is the create-

parent attribute tuple and, is the create-child attribute tuple.

LEMMA 3. In a UCON4 system, if the ACG is acyclic and in
each creating ground policy the child’s attribute tuple is updated,
then the set of all possible generation values is finite, and the max-
imal generation value ifA7 P|.

Proof. With an acyclic ACG, in each creating ground policy the
create-child attribute tuple is different from the create-parent at-
tribute tuple, otherwise there is a self-loop with this attribute tu-

Proof. The first case can be proved by induction on the number of ple and the ACG is not acyclic. If the maximal generation value

steps inty ~¢ t.
Basis step: Supposk —».(s,.) t, Wherec € C. Accord-
ing to Lemma 1, there is a ground poliey, € C,, such that

t() Pen (8:75,0:T0) t.

is more than|.A7 P|, then there exist two creating ground poli-
cies,c1(s1 : Ts1, 01 @ To1) With create-child attribute tuple); and
ca(s2 @ Ts2, 02 : Toz) With create-child attribute tuple),, andr);
is 752 or an ancestor of, andr., is 751 Or an ancestor ofs; in



ACG. Therefore there is a cycle in the ACG, which is in conflict DEFINITION 16. A descendanbf an object is defined recur-
with the acyclic ACG property of the system. Therefore the set of sively as either itself or a child of a descendant of this object.

all possible generation values is finite, and the maximal generation o
value is| AT P|. O THEOREM 3. The safety problem of a UCONsystem with fi-

) nite attribute domains is decidable if:
4.2.3 Attribute Update Graph

As a subject can create an object, which in turn can create an-
other object, an acyclic ACG ensures that the “depth” of these cre- o the AUG has no cycle containing a create-parent attribute
ation chains is bounded. At the same time, a subject can have an tuple, and
unbounded number of direct children, which allows the system to ] ) .
have an arbitrary large number of objects. With some restrictions ~ ® in each creating ground policy(s : 75,0 : 7,), both the
on the attribute update relation, a system can allow only a finite parent's and the child's attribute tuples are updated.
number of creations with a single subject as parent. Specifically, if
the subject’s attribute tuple has to be updated in a creating policy,
and there is no policy in the scheme that can update the subject’s
attribute tuple to a previous one, then the number of the subject’s
direct children is finite.

e the ACG is acyclic, and

Proof. We first prove that the set of all possible objects that can
be created in the system is finite. Consider a subjeet Oy. If

there are any creating ground policies that can be appliedsndth
parent, then, according to Lemma 4, the number of creating polices
with s as parent is finite, and the maximal number of children cre-
DEFINITION 14. In a ground policyc,, (s : 7s, 0 : 7), ated withs is | A7 P|. On the other hand, according to Lemma 3,
for each object, there is only a finite number of generation values,
therefore the number of descendants @ finite. Since the set of
objects in the initial state is finite, and each object created in the
system is a descendant of an object in the initial state, then there is

o if there is anupdate AttributeTuple s : 7, — 7. ac-
tion, then, is an update-parent attribute tupland 7; is
an update-child attribute tuple

o if there is anupdateAttributeTuple o : 7o — T, ac- only a finite number of objects that can be created in the system.
tion, then, is an update-parent attribute tuplandor’ is The safety analysis needs to check if a particular permission
an update-child attribute tuple ? (s,0,7) can be authorized in any reachable state of the system.

For this purpose we use the recursive algorithm shown in Figure 2

Note that in a creating ground policy in whighis the parent to search for a state that enables the permis&ion, ) in all the
andr, is updatedy is both a create-parent attribute tuple and an states of the system reachable from the initial state. The algorithm
update-parent attribute tuple. starts from the initial state of the system, and checks all reachable
states with the non-creating ground policies. If there is no state
where the permission is enabled, from every state of the reachable
states, the algorithm generates a new object and recursively does a
similar check. This step is repeated with all possible sequences of
creations until all reachable states are checked.

First we prove that this algorithm terminates. Since in each call

LEMMA 4. In a UCON; system, if the AUG has no cycle con- of SafetyCheck(), there are finitely many reachable states, and
taining a create-parent attribute tuple, and in each creating ground ©ch state has a finite number of objects, then the number of loops
policy the parent's attribute tuple is updated, then the number of N each call is finite. According to the properties of the systems,

children of a subject is finite, and the maximal number of children the set of all objects that can be created is finite, hence the num-
is | ATP|. ber of callingSafetyCheck() is finite. Therefore the algorithm

terminates in a finite number of steps.
Proof. Since AUG has no cycle containing a create-parent attribute ~ Then we show that all the reachable states of the system are vis-

DEFINITION 15. For a UCON4 system with finite attribute do-
mains, theattribute update graph (AUG$ a directed graph with
nodes all possible attribute tuple$7 P, and an edge from,, to 7,
if there is a ground policy in which,, is an update-parent attribute
tuple andr, is an update-child attribute tuple.

tuple, then in any creating ground poliey(s : 75,0 : 7o), 75 IS ited by this algorithm if the permissiofs, o, r) is not enabled in
different fromr, otherwise there is a self-loop on the create-parent any state. In each call &fa fetyCheck(), all possible states with-
attribute tuple since in a creating ground polieyjs both a create- out creating new objects are checked in the first loop (line 3-4). For

parent attribute tuple and an update-parent tuple. If the number of a particular subject and a particular creating ground policy, the pol-
creating ground policies which can use the same subject as the paricy can be applied with the subject at most once because the AUG
ent is more thaf A7 P|, then there are at least two creating poli- has no cycle containing any create-parent attribute tuple. In line 7
cies in which the update-parent attribute tuple are the same. Thatevery possible creating policy is applied for a subject as parent at
means, there is a policy that updates the subject’s attribute tuple toleast once. So in the loops of 5-6 all possible sequences of creating
this create-parent tuple, which implies a cycle which contains this policies are applied, and the reachable states with created objects
create-parent attribute tuple. This is in conflict with the property are also visited until no object can be created. Therefore the algo-
of AUG in the system. Therefore the set of all possible creating rithm checks all the possible reachable states in the system.
ground polices that can use this subject as parent is finite, and the So if a state is reached where the permisgigmw, r) is enabled
maximal number of its children isA7 P|. o according to a policy, the algorithm returtsie. By checking
. all possible non-creating policy sequences (line 2-4) for reachable

4.2.4 Safety Analysis states and trying all possible sequence of creating policies in each

Consider a system with satisfies the requirements in Lemma 3 reachable state, if the algorithm reaches a state in which the permis-
and 4. For a subject in the initial state of the system, the number sion(s, o, ) is enabled, then there is a sequence of policies leading
of direct children of this subject is finite, and the creation “depth” the system from the initial state to this state. This proves that this
from this subject is also finite. These two aspects ensure that in thealgorithm can perform the safety analysis. a
system there is a bounded number of objects that can be created, From Lemma 3 and 4, it is known that the maximum number
and the safety can be checked with the finite states of the system. of all possible descendants of an objectA7 P| x | AT P|. For



Safety Check Algorithm

/l'input: UCONy4 system with initial stateég = (O, 0o) and a finite set of ground policies

1) SafetyCheck(Og,to)

2) Construct a finite state automat®hA with objectsOg and the set of non-creating ground
policies. (refer to the proof in Theorem 2.)

3) foreachty ~+ tin F.Ado

4) if r € pt(s,0), return true

5) foreachty ~~ tin FA, wheret = (O, o), do

6) foreach subjects in t do

7 foreach creating ground policy(s : 7s,0 : 7o), Wwhererg(a) = o(s.a) do

8) enforcec(s : 75,0 : 7o);

9) create objeat and update its attribute tuple tg;

10) updates’s attribute tuple tor’;

11) the system state changegtovith new objecto and updated attributes efando;
12) SafetyCheck(Og U {o},t');

13) return false

Figure 2: Safety check algorithm

a UCON;4 system with initial statéy = (Oo, 0¢), the maximum [16]. An RBAC system state consists of a set of subjetitsB,
number of all possible created objectg@| x | A7 P|*. On the a set of permission® ER, a set of user-role assignmerifsA C
other hand, for each object, the maximum number of its attribute- SU B x RR, a set of user-administrative role assignméntsA C
value assignments {sA7 P|. According to the safety check algo- SUB x AR, and a set of permission-role assignmeftd C

rithm, the maximum number of stepSd fetyCheck) is PER x RR. The permissions are defined by objects and rights,
(|00| % |.ATPD % ((|00| + 1) % |ATP|) % ((|OO| + PER C OBJ x RT, whereOB/J is a set of objects. Note that
2) x |ATP|) * -+ ((|Oo| + N) x JATP|) here we simply consider a user in the original RBAC as a subject

in UCON,4 and do not account for role activation explicitly. The
construction can be easily extended to do this.
For each RBAC system, we construct a UCQMNystem with
scheme(ATT, R, P,C), whereATT = {ua,uaa,acl}, ua and
5. EXPRESSIVE POWER OF DECIDABLE uaa are subject attributes to store the user-role assignments and
UCON, MODELS user-administrative role assignments in RBAC, respectively, and

Certain restricted UCON models have decidable safety, so the acl is an object qttribute to record the permission-role assignments.
question does arise whether or not these models can capture pract = £11'U {assign.r|r € RR} U {revoke.r|r € RR}. The set
tically useful access control policies. In this section we use these °f Predicates” consists of:
limited forms of decidable UCON models to express practically
useful policies that have been discussed in the literature. We show
that UCON, without creation can simulate an RBAC96 model with
URA97 administrative scheme, and that UC@QMith restricted
creation can express policies for a DRM application with consum-
able rights. These examples demonstrate that our decidable models
maintain practical expressive power.

where N = |Oo| x |ATP|?>. Therefore the complexity of this
safety check algorithm i€ (((|Oo| + N) x |ATP)Y).

e the predicate: € y to indicate that: is an element of sef;

e the predicatenember to check if a role or any of its senior
roles is assigned to a subject, andmber (r, s.ua) = true
if 3r’ >rp r,r’ € s.ua,

o the predicateiotmember to check that a role or all of its se-
nior roles is not assigned to a subject, andmember(r, s.ua) =

5.1 RBAC Systems trueif Vr' >pp 7' ¢ saua;

In an RBAC system, a subject can be viewed as having a role
attribute whose value is a subset of the roles in the system. Simi-
larly, an object can have a role attribute for each right indicating the
subset of roles for which that right is authorized. In classic RBAC
[15, 4] these role attributes are fixed and changeable only by ad-
ministrative actions, which could themselves be authorized based jth fixed >z and>Agy relations, all these predicates are
on roles. Thus possession of a suitable administrator role would polynomially computable.

enable a subject to change the roles of other subjects and objects, The initial state of the RBAC syste(§U By,0B.Jo,PERo,U Ao,
essentially accomplishing the user-role assignment and permission-UAAO’PAO) is mapped to a UCON state(Oo, o), whereOy =
role assignment which are the basic operations of administrative SUBo, U OB.J, and oy as a set of attribute-value assignments
RBAC (ARBAC). In this section we consider the user-role assign- shown below.

ment (URA97) portion of the ARBAC97 model [16] and express it

e the predicatexdmin_member checks if an administrative
role or any of its senior roles is assigned to a subject, and
admin_member(r, s.uaa) = true if I’ >armg 7,7’ €
s.uaa.

with a decidable UCON system. e so.ua = {r|r € RR,and (s,r) € UAo} for s, € SUBy;
An RBAC scheme consists of a set of regular rd&? and a par-

tial order relation> gy C RR x RR for the role hierarchy, a set of e sp.uaa = {r|r € AR,and (s,r) € UAAy} for s, €

administrative rolest R and a partial order relatioh arr C AR X SU By,

AR for the administrative role hierarchy, a fixed set of generic
rights RT', and a set of rules to change user-role assignments, em- e og.acl = {(r,rt)|r € RR,rt € RT, (00,7t) € PERy,
bodied in thecan_assign and can_revoke relations of URA97 and (r, (0o, rt)) € PAg} for o, € OBJo;



The set of policie€” is defined as follows. First, a set of policies
is needed to specify the original permissions of RBAC in a state of
the UCON4 system. For arole € RR and arightt € RT, the
policy is shown below.

policy_r_rt(s,o):
member(r, s.ua)A((r,rt) € o.acl) — permit(s,o,rt)

Note that roles and rights are not parameters in a policy. With the

RBAC scheme, the upper bound on the number of these policies is

|RR| x |RT| in the simulating UCOIN scheme.
In URA97, a relatiorcan_assign specifies which particular ad-

ministrative role can assign a subject, which satisfies a prerequi-

site condition, to a role in a specified role range. A prerequi-

site condition is a boolean expression generated by the grammal

cr := z|Zler AcrlerVer, wherex € RR. For a subject € SUB
in a state,x is true if 32" >gry w,(s,2’) € UA andz is true
if Vo' >ru x,(s,z') ¢ UA. The set of the prerequisite condi-
tions in an RBAC is denoted aSR. Thereforecan_assign C
AR x CR x 27F,

Consider the rulean_assignl(ar, cr, [r1, r2]), wherear € AR,
cr =x ANy, x,y € RR. It can be expressed by a bounded set of
policies in UCON;, one for eachr; € [ri,r2]:

can_assign_ri(si, $2):

admin_member(ar, s1.uaa) Amember(z, sz.ua) A
notmember(y, s2.ua) — permit(si, Sz, assign_r;)
update Attribute : sa.ua = sa.ua U {r; }

This policy allows a subject; to assign the role; (r; € [r1,r2])
to the subjects; whens; is a member of the administrative role
ar, andss is a member of the role but not ofy. The number of
policies to simulate:an_assignl is bounded, since for fixe® R
and>rx, the number of roles ifr1, r2] is bounded.

Similarly, a revocation relation in URA97 can be expressed with
policies in UCONy. A can_revoke C ARx 2% relation specifies
that a subject with membership in an administrative role can revoke
a subject’s membership in the roléf r is in a particular role range.
This implies that- is assigned to the subject before the revocation.
We can simulatean_revokel(ar, [r1, r2]) with a set of policies,
one for each role; € [ri,7r2]:

can_revoke_ri(s1, s2):

admin_member(ar, s1.uaa) A (r; € s2.ua)
— permit(si, s2, revoke_r;)

update Attribute : so.ua = sa.ua — {r;}

This policy states that in a particular state, a subjgatan ex-
ecute the rightevoke_r; on the subject. by removingr; (r; €
[r1,72]) from s2’s ua attribute, ifar or one of its seniors is in the
s1's uaa andr; is in the subjectss’s ua. Again, the number of
policies to simulatean_revokel is bounded since the number of
roles in[ry, r2] is bounded for fixedRR, >ru, AR, and> sgrmu.

This shows that a UCON system can be constructed to simu-
late an RBAC system with URA97 administrative scheme. In this
UCON,4 system, each attribute’s value domain is finite sifte,
AR, and RT are all fixed sets, and there is no creating policy in
the system. According to Theorem 2, this UC@Nystem has de-
cidable safety, which implies this RBAC system also has decidable
safety.

5.2 DRM applications with Consumable Rights

Consumable access is becoming an important aspect in many
applications, especially in DRM. For example, in a pay-per-use ap-
plication, a user’s credit is reduced after an access to an object,
causing the user to lose the right on the object after a number of
accesses. For another example, if an object can only be accessed
by a fixed number of subjects concurrently, a subject’s access may
revoke the access right of another subject. Most applications with
consumable rights can be modelled by UCON with the mutability
property [12, 11].

Consider a DRM application, where a user can order a music
CD, along with a license file which specifies that the CD can only

Ibe copied a fixed number of times (say, 10). The license file can

be embedded with the CD or distributed separately, and must be
available and respected by the CD copying software or device. A
subject (user) has an attributeedit with a numerical value of the
user’s balance. Each object (CD) has an attrilagig)license to
specify how many copies that a subject can make with this object.
The policies are defined as follows.

order(s, 0):

(s.credit > o.price) A (o0.owner = null)

— permit(s, o, order)

update Attribute : s.credit = s.credit — o.price
update Attribute : o.owner = s

update Attribute : o.copylicense = 10

allow_copy(s, 0):

(0.owner = s) A (o.copylicense > 0)
— permit(s, o, allowcopy)

update Attribute : o.allowcopy = true

copy(o1,02):

(01.allowcopy = true) — permit(o1, 02, copy)
createObject 02

update Attribute : 03.sm = o1.copylicense
update Attribute :

o01.copylicense = o1.copylicense — 1

update Attribute : o1.allowcopy = false

The first policy specifies that a user can order an object if not
ordered before (the value of attributener is null) and the user’s
credit is larger than the object’s price. As a result of the order,
the user’s credit is reduced, the objectisner is updated to the
user’s ID, and the object’sopylicense is set to 10. The second
policy states that whenever the objectspylicense is positive,
the owner of the object is allowed to make a copy of the object. In
the third policy, if an object is allowed to be copied, a new object
(CD) can be created, it (serial number) is set to be the original
object'scopylicense value, and the original object®pylicense
is reduced by one. As the newly created object does not have any
license information, it cannot be copied.

In a system with a fixed humber of users and objects in the ini-
tial state, the value domain ofvner is finite since no new users
can be created. The set of all possible values:fetlit of a sub-

ject is finite, since the value is set after pre-payment or registra-

Based on the same processes, we can simulate an RBAC systention. Note that the changes of theedit value because of admin-

with PRA97 (permission-role assignment model in ARBAC97) us-
ing UCON4 and show that this RBAC model also has decidable
safety. For an RBAC system with RRA97 (role-role assignment
model in ARBAC97), sinceRR and >y are not fixed, this ap-
proach cannot be used to prove the decidability of its safety prob-
lem.

istrative actions, e.g., credit card payment, are not captured in the
model. The value domains fawpylicense and allowcopy are
obviously finite. Therefore, all the attribute value domains are fi-
nite sets. Furthermore, there is only one creating policy, in which
both the child’s and the parent’s attributes are updated, and there
is no cycle with any create-parent attribute tuples since the value



of copylicense strictly decreases. According to Theorem 3, the These two results lay the groundwork for considerable future work
safety of this UCON model is decidable. on these topics, and hold out the promise for discovery of practi-
cally useful and efficiently decidable cases of UCON.
6. RELATED WORK Ip @his_paper we focus only_on the safety analysis with pre-authorization
) ) ) policies in UCON. For condition core models of UCON, as system
Previous work in safety analysis has shown that, for some gen- state changes caused by environmental information are not cap-
eral access control models such as the access matrix model formalyred in UCON core models, safety is a function of the system
ized by Harrison, Russo, and Ullman (HRU model) [5], safety i environment. For obligation core models, as specified in [19], an
an undecidable problem. That means, there is no algorithm to de-gpjigation of an access is an action that can be related to the sub-
termine, given a general access control matrix system, whether itjact requesting the access, or to some other subjects and, therefore,
is possible to find a combination of commands to produce a state 5 usage policy may include more than two parameters. Analysis of

where a subject has a particular permission. HRU did provide e safety problem with obligations is for future work.

decidability results for special cases with either mono-operational
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APPENDIX

The proof of Theorem 1
We show that a general Turing machine with one-directional sin-
gle tape [17] can be simulated with a UCQIystem, in which a

For the state transitiodi(q, =) = (p, y, L), the following policy
is defined to simulate it:

policy-moveleft(o1,02):

(02.parent = 01) A (02.state = q) A (02.cell = x) —
permit(o1, 02, moveleft)

update Attribute : o2.state = null,;

update Attribute : oz.cell = y;

update Attribute : 01.state = p;

In this policy, the two objects are connected by theent at-
tribute. When the Turing machine isdp, sinceog’s parent value
is null, the left movement cannot happen. In a state when the Tur-
ing machine’s state ig and the cell contains, the left movement
is simulated with a policy with parametess and oz, whereoz's
parent value iso1, and the policy updates their attributes to simu-
late the movement.

If the head is not scanning the right most cell, the state transition

particular permission leakage corresponds to the accept state of theé’(¢: ) = (p, y, 1) can be simulated with theolicy_moveright,

Turing machine. A Turing machingt is a 7-tuple{Q, £, T, , qo,
Qaccept, q'reject}, where:

e (s afinite set of states,

e X is afinite set, the input alphabet not containing the special
blank symbol,

o T'is afinite set, the tape alphabet, wiflank € T"andX C T,
e §:Q xTI'— Q@ xT x{L, R} is the transition function,

® 0, Qaccept, reject € @ are the start state, accept state, and
reject state, respectively, Whefgecept # qreject-

Initially, M is in the statey,. Each cell on the tape holdéank.
The movement ofM is determined by: if (¢, z) = (p,y, L),

M is in the state; with the tape head scanning a cell holding
the head writeg on this cell, moves one cell to the left on the tape,
and M enters the statg. If the head is at the left end, there is no
movement. Similarly fob(q,z) = (p,y, R), but the head moves
one cell to the right.

We construct a UCON system to simulate a Turing machife
introduced above, where the set of objects in a state of the UCON
system is used to simulate the cells in the tapa6fThe UCON,4
schemeisATT, R, P,C), whereR = QU{moveleft, moveright,
create} and ATT = {state, cell, parent,end}. For an object,
the value ofstate is eithernuil or the state of\ if its head is po-
sitioned on this cell, the value etl!l is the content in the cell that
the head is scanning, tharent attribute stores an object identity,

which is similar to thepolicy movele ft; otherwise it is simulated
with thepolicy _create, in which a new object is created.

policy-moveright(o1, 02):

(01.end = false) A (o2.parent = 01) A (o1.state =
q) A (o1.cell = x) — permit(o1, o2, moveright)
update Attribute : o1.state = null,

update Attribute : 01.cell = y;

update Attribute : o2.state = p;

policy_create(o1,02):

(01.end = true) A (o1.state = q) A (o1.cell = x) —
permit(o1, o2, create)
updateAttribute : 01.state = null,;
update Attribute : o1.cell = y;
update Attribute : o1.end = false;
createSubject 02;

update Attribute : o2.parent = o1
update Attribute : 02.state = p;
update Attribute : o2.end = true;
update Attribute : 02.cell = blank;

In a particular state of the UCONsystem, only one of the three
rights (moveleft, moveright, andcreate) is authorized accord-
ing to one of the above policies, since thte attribute is non-
null only for one object. Each policy assigns a neowni value to
an object’sstate, and sets another one taull. The attributeend
is true only for one object. Therefore, this UCQNystem with

andend is a boolean value to show whether the head is on the right these policies can simulate the operationg.of

most cell of the part of the tape used so far. The set of predi¢ates
and policie” are shown in the simulation process.

The initial state{Oo, 0¢) of the UCON,y system includes a sin-
gle objectoy and its attribute assignments:

® 0p.state = qo
e og.cell = blank
e op.parent = null

e og.end = true

We need another policy to authorize a particular permission de-
pending on thetate attribute of an object.

policy_q(o1, 02):
(01.state = q5) — permit(o1,02,qf)

For a Turing machine, it is undecidable to check if the state
can be reached from the initial state. Therefore, with the scheme of
UCON4, the granting of the permissiaep} of a subject to an object
is also undecidable. This completes our undecidability proofl



