
The ARBAC99 Model for Administration of Roles

Ravi Sandhu and Qamar Munawer

Laboratory for Information Security Technology (LIST)
George Mason University, ISE Department MS 4A4, Fairfax, VA 22030

sandhu@gmu.edu, www.list.gmu.edu

Abstract

Role-Based Access Control (RBAC) is a
exible

and policy-neutral access control technology. For

large systems|with hundreds of roles, thousands of

users and millions of permissions|managing roles,

users, permissions and their interrelationships is a

formidable task that cannot realistically be centralized

in a small team of security administrators. An appeal-

ing possibility is to use RBAC itself to facilitate decen-

tralized administration of RBAC. The ARBAC97 (ad-

ministrative RBAC '97) model was recently introduced

for this purpose. ARBAC97 has three sub-models

called URA97 (for user-role administration), PRA97

(for permission-role administration) and RRA97 (for

role-role administration).

In this paper we de�ne enhancements to ARBAC97

to give us the new ARBAC99 model. Speci�cally the

URA and PRA sub-models of ARBAC99 introduce sig-

ni�cant new features relative to their counterparts in

ARBAC97 (while RRA is left unchanged). ARBAC99

incorporates the concept of mobile and immobile users

and permissions for the �rst time in this arena. This

paper gives a formal de�nition of ARBAC99, moti-

vates these enhancements and analyzes several subtle

issues that arise in this context.

1 Introduction

Role-based access control (RBAC) is a promising

access control technology for the modern comput-

ing environment (for recent literature, see [BFA99,

GGF98, FBK99, NO99, SCFY96, San98, SBM99,

ZSS99]). In RBAC permissions are associated with

roles, and users are assigned to appropriate roles

thereby acquiring the roles' permissions. This greatly

simpli�es management. Roles are created for vari-

ous job functions in an organization and users are

assigned roles based on responsibilities and quali�ca-

tions. Users can be easily reassigned from one role

to another. Roles can be granted new permissions as

new applications come on line, and permissions can be

revoked from roles as needed. Role-role relationships

can be established to lay out broad policy objectives.

RBAC is policy neutral and
exible. The policy en-

forced is a consequence of the detailed con�guration

of various RBAC components. RBAC allows a wide

range of policies to be implemented. Administration

of RBAC must be carefully controlled to ensure the

policy does not drift away from its original objectives.

In large systems the number of roles can be in the hun-

dreds or thousands, users can be in the tens or hun-

dreds of thousands and permissions in the millions.

Managing these roles and users, and their interrela-

tionships is a formidable task that cannot realistically

be centralized in a small team of security administra-

tors. Decentralizing the details of RBAC administra-

tion without loosing central control over broad policy

is a challenging goal for system designers and archi-

tects. There is tension here between the desire for

scalability through decentralization and maintenance

of tight control.

Since the main advantage of RBAC is to facilitate

administration, it is natural to ask how RBAC itself

can be used to manage RBAC. The use of RBAC

for managing RBAC will be an important factor in

its long-term success. There are many components

to RBAC. RBAC administration is therefore multi-

faceted. In particular we can separate the issues of as-

signing users to roles, assigning permissions to roles,

and assigning roles to roles to de�ne a role hierar-

chy. These activities are all required to bring users

and permissions together. However, in many cases,

they are best done by di�erent administrators or ad-

ministrative roles. Assigning permissions to roles is

typically the province of application administrators.

Thus a banking application can be implemented so

credit and debit operations are assigned to a teller role,

whereas approval of a loan is assigned to a manage-

rial role. Assignment of actual individuals to the teller

and managerial roles is a personnel management func-

tion. Assigning roles to roles has aspects of user-role

and permission-role administration. More generally,

role-role relationships establish broad policy.

An administrative model called ARBAC97 (ad-

ministrative RBAC '97) was recently introduced by

Sandhu et al [SBM99]. ARBAC97 has three compo-

nents: URA97 is concerned with user-role administra-

tion, PRA97 is concerned with permission-role admin-

istration and is a dual of URA97, and RRA97 deals

with role-role administration.

In this paper we introduce and formalize a signif-

icant enhancement to ARBAC97 to give us the new

ARBAC99 model. Changes are speci�cally made to

the URA97 and PRA97 models, while RRA97 remains

unchanged. In other words, URA99 and PRA99 are

respectively di�erent from URA97 and PRA97 while

RRA99 is identical to RRA97. The important di�er-

ence between ARBAC99 and ARBAC97 is the con-

cept of mobile and immobile users and permissions.

We explain and motivate this distinction informally in

the next section. Following this intuitive explanation

we discuss the URA97 model and its enhancement to

URA99. PRA99 is a dual of URA99 and is de�ned in

this paper in this manner rather than being evolved

from PRA97. We assume the reader is generally fa-

miliar with RBAC concepts. Our underlying RBAC

model is the so-called RBAC96 model [SCFY96].

2 Mobility and Immobility

We now informally motivate the intuition behind

URA97 and the notion of mobility and immobility of

users introduced in URA99. Consider the role hierar-

chy of �gure 1(a) and the administrative role hierarchy

of �gure 1(b). We will use these hierarchies in our ex-

amples throughout this paper. Figure 1(a) shows the

regular roles that exist in an engineering department.

In these diagrams senior roles shown towards the top

inherit permissions from junior roles shown towards

the bottom. Equivalently junior roles inherit mem-

bers from senior roles. Thus permissions assigned to

E1 are also available to members of PL1 but not vice

versa. Alternately, members of PL1 are also members

of E1 but not vice versa.

Figure 1(a) has a junior-most role E to which all

employees in the organization belong. Within the en-

gineering department there is a junior-most role ED

and senior-most role DIR.1 In between there are roles

for two projects within the department, project 1 on

the left and project 2 on the right. Each project has

a senior-most project lead role (PL1 and PL2) and a

junior-most engineer role (E1 and E2). In between

each project has two incomparable roles, production

engineer (PE1 and PE2) and quality engineer (QE1

and QE2). The role hierarchy can, of course, be ex-

tended to dozens or hundreds of projects within the

engineering department. Moreover, each project could

have a di�erent structure for its roles. The example

can also be extended to multiple departments each

with di�erent structure and policies.

Figure 1(b) shows the administrative role hierarchy

which co-exists with �gure 1(a). The senior-most ad-

ministrative role is the senior security o�cer (SSO).

The administrative roles junior to SSO consist of two

project security o�cer roles (PSO1 and PSO2) and a

department security o�cer (DSO) role with the rela-

tionships illustrated in the �gure.2

There are two issues that need to be addressed in

decentralized administration of user-role membership.

Firstly we need to control the roles that an administra-

tive role has authority over. We would like to say, for

example, that the PSO1 administrative role controls

membership in project 1 roles, i.e., E1, PE1, QE1 and

PL1. Secondly, it is also important to control which

users are eligible for membership in these roles.

URA97 addresses these two issues respectively by

means of a role range and a prerequisite role (or more

generally a prerequisite condition). A role range is

speci�ed by a junior and senior role. The range in-

cludes all roles between these two endpoints. The [

and] brackets indicate that respectively the junior

and senior end point is included in the range, whereas

the (and) brackets indicate the end point is ex-

cluded. Thus [E1,PL1] consists of E1, PE1, QE1 and

PL1, while [E1,PL1) omits PL1.3 The prerequisite

role speci�es which users can be assigned by PSO1

to roles in the authorized range. For example, if a

prerequisite role of ED is speci�ed for PSO1 and role

range [E1,PL1] then only those users who are already

members of ED are eligible to be assigned to a role

in [E1,PL1] by the PSO1 role. This simple idea is

1It is not necessary to have a junior-most role or senior-most

role in every role hierarchy, so this is just an artifact of our

example.
2In addition we assume there is a chief security o�cer who

is authorized to make any change in the system, and as such is

outside the purview of these administrative models.
3The reader may recognize this as standard mathematical

notation for open and closed intervals.

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

(a) Roles

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

(b) Administrative Roles

Figure 1: Example Role and Administrative Role Hierarchies

surprisingly powerful as demonstrated in [SBM99].

In URA97 there are two consequences of assign-

ing a user to a role. Firstly the user is authorized to

use the permissions of that role and its juniors. Sec-

ondly, the user also becomes eligible for assignment to

other roles by appropriate administrative roles. These

two aspects of role membership are tightly and inex-

tricably coupled in URA97. The main innovation in

URA99 is to decouple these two aspects.

URA99 distinguishes two kinds of membership in

a role. Immobile membership grants the user the au-

thority to use the permissions of a role but does not

make that user eligible for further role assignments.

Thus immobile members of a role only get the �rst

aspect of role membership identi�ed above. Mobile

membership on the other hand covers both aspects.

This distinction between mobile and immobile users

can be very useful in practice. For example, a user un-

der training can be assigned to the ED role and thus

participate in the engineering department while pre-

venting junior administrators from assigning this user

to projects. After completion of training the user's

membership in ED can be upgraded to be mobile. An-

other example is a visitor who can be granted immo-

bile membership in a junior role as an observer but

cannot get assigned to more senior roles. Yet another

example is a consultant who might be assigned to the

E2 role as an immobile member. The consultant can

participate in project 2 and use the general resources

of the engineering department due to inherited mem-

bership in ED. At the same time the immobility of the

consultant prevents junior administrators from assign-

ing the consultant to project 1 roles.

There is a dual notion of mobility for permissions

introduced in PRA99. PRA97 allows us to give PSO1

the authority to take a permission assigned to PL1

and grant it to roles in the range [E1,PL1). The idea

is that each project can delegate permissions of the

project lead role to more junior project roles as the

project security o�cers deem appropriate. While this

may be acceptable for most permissions of the project

lead role it is likely that some permissions are not

suitable for such delegation. These permissions can

be assigned to PL1 as immobile while the others can

be assigned as mobile.

It is possible that this distinction between mobile

and immobile users and permissions can be simulated

in some way in ARBAC97 without directly incorporat-

ing it in the extended model ARBAC99. This would

be an interesting theoretical exercise which is beyond

the scope of this paper. Our objective in this paper is

to understand the semantics of mobility and immobil-

ity and its interaction with the role hierarchy. As we

will see there are a number of subtle issues that arise

in formalizing this intuition.

3 The URA97 Model

In this section we brie
y review the formal de�ni-

tion of the URA97 model. Our discussion is necessar-

ily brief and the reader is referred to [SB97, SBM99]

for detailed motivation and rationale for the design

of URA97. URA97 was introduced by Sandhu and

Bhamidipati [SB97] and was later incorporated in AR-

BAC97 [SBM99]. A number of implementations of

URA97 on various platforms have also been reported

in the literature [SA98a, SA98b, SP98, SB99].

URA97 has two components, one dealing with as-

signment of users to roles (the grant model) and the

other with revocation of user membership (the revoke

model).

3.1 URA97 Grant Model

The notion of a prerequisite condition is a key part

of URA97.

De�nition 1 Let R be the set of regular roles, U the

set of users and UA � U �R the user-role assignment

relation. A prerequisite condition is a boolean ex-

pression using the usual ^ and _ operators on terms of

the form x and x where x 2 R. For a given set of roles

R let CR denotes all possible prerequisite conditions

that can be formed using the roles in R.

De�nition 2 A prerequisite condition is evaluated

for a user u by interpreting x to be true if (9x0 �

x)(u; x0) 2 UA and x to be true if (8x0 � x)(u; x0) 62

UA where � is the senior relation in the role hierarchy.

User-role assignment is controlled in URA97 by the

can-assign relation as follows.

De�nition 3 User-role assignments are authorized

by the relation, can-assign � AR � CR � 2R where

AR is the set of administrative roles and subsets of

the roles R are identi�ed using the range notation dis-

cussed in section 2. (URA97 requires thatAR\R = ;.)

The meaning of can-assign(x; y; fa; b; cg) is that a

member of the administrative role x (or a member

of an administrative role senior to x) can assign a

Admin. Role Prereq. Condition Role Range

PSO1 ED [E1, PL1)

PSO2 ED [E2, PL2)

DSO ED ^ PL2 [PL1, PL1]

DSO ED ^ PL1 [PL2, PL2]

SSO ED (ED, DIR]

SSO E [ED, ED]

Table 1: Example of can-assign in URA97

Admin. Role Role Range

PSO1 [E1, PL1)

PSO2 [E2, PL2)

DSO (ED, DIR)

SSO [ED, DIR]

Table 2: Example of can-revoke in URA97

user whose current membership, or non-membership,

in regular roles satis�es the prerequisite condition y to

be a member of regular roles a, b or c.

An example of can-assign is given in table 1. PSO1

can assign membership in E1, PE1 or QE1 to mem-

bers of ED. Similarly, for PSO2 with respect to E2,

PE2 and QE2. DSO can assign users in ED to PL1

provided the user is not already a member of PL2.

Similarly for PL2 with respect to PL1. SSO can as-

sign members of E to ED and members of ED to any

role in the engineering department.

3.2 URA97 Revoke Model

In classical discretionary access control the source

(direct or indirect) of a permission and the identity of

the revoker is typically taken into account in interpret-

ing the revoke operation. URA97 takes a role-based

approach to revocation so authority to revoke is inde-

pendent of who actually assigned a user to a role, as

follows.

De�nition 4 The URA97 model authorizes user-role

revocation by means of the relation can-revoke � AR�

2R.

The meaning of can-revoke(x; Y) is that a member of

the administrative role x (or a member of an adminis-

trative role that is senior to x) can revoke membership

of a user from any regular role y 2 Y . Y is speci�ed

using the range notation. We say Y de�nes the range

of revocation.

An example of can-revoke is given in table 2. The

role ranges in tables 1 and 2 are closely related. This

is likely to be the common case but URA97 does not

require that can-assign and can-revoke have correlated

role ranges.

To understand the semantics of revocation we in-

troduce the following distinction.

De�nition 5 Let us say a user u is an explicit member

of role x if (u; x) 2 UA, and that u is an implicit

member of role x if for some x0 > x, (u; x0) 2 UA.

For example, an explicit member of DIR in the

engineering department role hierarchy is an implicit

member of all other roles. It is possible for a user to

simultaneously be an explicit and implicit member of

a role.

Revocation in URA97 has impact only on explicit

membership and is said to be weak. Thus a user may

be revoked explicitly from E1 but continue to be an

implicit member due to explicit membership in, say,

PL1. Strong revocation requires revocation of both

explicit and implicit memberships. So a user who is

strongly revoked from E1 will be weakly revoked from

E1 and all roles senior to E1. Strong revocation there-

fore has a cascading e�ect upwards in the role hierar-

chy. Of course, each of the weak revokes required for

this purpose must be authorized. Strong revocation

can be de�ned to have an all-or-nothing semantics (so

no revocation takes place if even one of the required

weak revokes fails) or a best-e�ort semantics (so all re-

quired weak revokes within the authorized revocation

range take e�ect, while those outside the authorized

range fail). In the formal URA97 model strong revo-

cation is de�ned to be a series of weak revocations (al-

though in an implementation direct support for strong

revocation would be more e�cient).

4 The URA99 Model

URA99 builds upon the URA97 model by intro-

ducing the following concept, motivated earlier in sec-

tion 2. A user's membership in a role can be mobile

or immobile. Mobile membership of user u in role x

means that u can use permissions of role x and mem-

bers of administrative roles can use this membership

to put user u into other roles. Immobile membership

of user u in role x means that u can use permissions

of role x but members of administrative roles cannot

use this membership to put user u into other roles.

To formalize this distinction we consider each role

x as consisting of two sub-roles Mx and IMx. Mem-

bership in Mx is mobile whereas membership in IMx

is immobile. For compatibility with URA97 we de�ne

the set of roles R to consist of the mobile and immobile

sub-roles as follows.

De�nition 6 For a given set of roles R1 we de�ne the

roles for URA99 to be R = fMx; IMx j x 2 R1g.

With this de�nition the user-assignment relation of

URA97, UA � U�R essentially remains unchanged in

URA99. Assignment of a user toMx signi�es that the

user is a mobile member of x. Similarly, assignment

of a user to IMx signi�es that the user is an immobile

member of x.

Combining mobile and immobile membership with

the previously de�ned notion of explicit and implicit

membership gives us four distinct kinds of role mem-

bership in URA99, as follows.

De�nition 7 There are four kinds of user-role mem-

bership in URA99 for any given role x.

� Explicit Mobile Member EMx

u 2 EMx � (u;Mx) 2 UA

� Explicit Immobile Member EIMx

u 2 EIMx � (u; IMx) 2 UA

� Implicit Mobile Member ImMx

u 2 ImMx � (9x0 > x)(u;Mx0) 2 UA

� Implicit Immobile Member ImIMx

u 2 ImIMx � (9x0 > x)(u; IMx0) 2 UA

It is possible for a user to have all four kinds of

membership in a role at the same time. However, we

will de�ne the semantics of URA99 so that there is

strict precedence amongst these four kinds of mem-

bership as follows.

EMx > EIMx > ImMx > ImIMx

So even though a user can have multiple kinds of mem-

bership in a role, at any time only one of those is ac-

tually in e�ect.

To explain the inheritance of mobile and immobile

memberships of a role we �rst consider the hierarchy

of two roles shown in �gure 2(a) where role x1 is senior

to role x2. User Alice who is an explicit mobile mem-

ber of role x1 (Alice 2 EMx1) is an implicit mobile

(b) Multiple Inheritance (c) Divergent Inheritance(a) Single Inheritance

x2

x1

x3

x1 x2 x3

x1 x2

Figure 2: Inheritance of mobility and immobility

member of x2 (Alice 2 ImMx2). Similar inheritance

applies to immobile memberships as well. Therefore,

if Bob is an explicit immobile member of role x1 (Bob

2 EIMx1) he is also an implicit immobile member of

role x2 (Bob 2 ImIMx2).

Next, consider the role hierarchy of �gure 2(b). Let

Bob be an explicit mobile member of role x1 and ex-

plicit immobile member of role x2. Now Bob is an

implicit mobile member of x3 (because of his explicit

mobile membership in x1) and is an implicit immobile

member of role x3 (because of his explicit immobile

membership in x2). According to the precedence rule

mobile membership is stronger than immobile mem-

bership. This means that Bob will e�ectively have

implicit mobile membership in role x3.

Finally consider the role hierarchy of �gure 2(c).

Say that Bob is an explicit mobile member of role

x3. Therefore Bob is an implicit mobile member of

roles x1 and x2 in the hierarchy. Let us also suppose

that Bob is an explicit immobile member of x2. Then

according to our precedence rule Bob will be immobile

in x2 whereas mobile in x1. Bob's explicit immobile

membership overrules implicit mobile membership.

The meaning of a prerequisite condition in URA97

is quite straightforward, because the notion of role

membership is simple. In URA99 we need to interpret

a prerequisite condition in terms of mobile-immobile

and explicit-implicit memberships. URA99 prerequi-

site conditions are de�ned in terms of x and x as in

URA97 (rather than in terms of Mx, IMx, Mx and

IMx). Membership and non-membership in a role is

then interpreted as follows.

De�nition 8 In the URA99 grant model a prerequi-

site condition is evaluated for a user u by interpreting

x to be true if

u 2 EMx _ (u 2 ImMx ^ u 62 EIMx)

and x to be true if

Admin. Role Prereq. Role Role Range

PSO1 ED [E1, PL1)

PSO2 ED [E2, PL2)

DSO ED ^ PL2 [PL1, PL1]

DSO ED ^ PL1 [PL2, PL2]

SSO ED (ED, DIR]

SSO E [ED, ED]

Table 3: Example of can-assign-M

Admin. Role Prereq. Role Role Range

PSO1 ED [E1, PL1)

PSO2 ED [E2, PL2)

DSO ED ^ PL2 [PL1, PL1]

DSO ED ^ PL1 [PL2, PL2]

SSO ED (ED, DIR]

SSO E [ED, ED]

DSO E [ED, ED]

Table 4: Example of can-assign-IM

u 62 EMx ^ u 62 EIMx ^ u 62 ImMx ^ u 62 ImIMx

In other words x denotes mobile membership (ex-

plicit or implicit) and x denotes absence of any kind

of membership. Note that it is not possible for x and

x to be simultaneously true. They can however be si-

multaneously false (when u 2 EIMx and u 62 EMx).

The can-assign relation of URA97 is replaced by

two relations as follows.

De�nition 9 User-role assignments as mobile mem-

bers are authorized by the relation, can-assign-M �

AR�CR� 2R and user-role assignments as immobile

members are authorized by the relation, can-assign-

IM � AR � CR� 2R.

The meaning of can-assign-M(x, y, Z) is that a

member of administrative role x (or a member of ad-

ministrative role senior to x) can assign a user whose

current membership, or non-membership, in regular

roles satis�es the prerequisite y to a regular role z 2 Z

as a mobile member. Whereas the meaning of can-

assign-IM(x, y, Z) is that a member of administrative

role x (or a member of administrative role senior to x)

can assign a user whose current membership, or non-

membership, in regular roles satis�es the prerequisite

y to a regular z 2 Z as an immobile member.

Examples of can-assign-M and can-assign-IM are

respectively shown in tables 3 and 4. Table 3 is iden-

tical to table 1. Of course, the prerequisite condi-

tion is now interpreted di�erently as discussed above.

The top six rows of table 4 are identical to table 3.

This means that mobile or immobile membership is

granted at discretion of the individual administrators.

URA99 requires that authorization for granting mo-

bile or immobile membership be explicitly speci�ed in

this manner. There is no implication in general that

authority to grant mobile membership implies author-

ity to grant immobile membership (although this may

be a common case). The last row of table 4 authorizes

DSO to enroll any employee as an immobile member

of ED. DSO does not have the power to enroll employ-

ees as mobile members of ED. That power is con�ned

to SSO. In this example DSO can enroll an employee

as a immobile member of ED and later the SSO can

upgrade the membership to be mobile.

4.1 URA99 Revoke Model

The URA99 revoke model �xes a lack of symme-

try between the grant and revoke models of URA97

which is quite independent of the issue of mobility.

It also deals with revocation of mobile and immobile

membership.

In URA97 the relation can-assign involves the pre-

requisite conditions but can-revoke does not. To see

the utility of prerequisite conditions in this context

consider that PSO1 controls user role assignments in

project 1 roles. If Bob is a member of E1 then PSO1

can assign Bob to any role of project 1, namely E1,

PE1, and QE1. These assignments are governed by

the relation can-assign. Suppose PSO1 does not want

Bob to be a member of any role outside project 1 be-

cause his membership in other roles may a�ect his

performance in project 1. If Bob is assigned to a role

that falls outside project 1 roles then PSO1 should

have authority to revoke him from that role. URA97

does not provide this conditional authority to revoke

a role. Prerequisite conditions in can-revoke are one

means to provide this facility.

Following the approach of the grant model in

URA99 we introduce two relations to authorize revo-

cation of mobile and immobile membership as follows.

De�nition 10 The URA99 model authorizes revo-

cation of mobile membership by the relation can-

revoke-M � AR � CR � 2R and revocation of im-

mobile membership by the relation can-revoke-IM �

AR � CR� 2R:

Admin. Role Prereq. Role Role Range

PSO1 E [E1, PL1)

PSO2 E [E2, PL2)

DSO E (ED, DIR)

SSO E [ED, DIR]

PSO1 E1 [E2, PL2)

PSO2 E2 [E1, PL1)

Table 5: Example of can-revoke-M

Admin. Role Prereq. Role Role Range

PSO1 E [E1, PL1)

PSO2 E [E2, PL2)

DSO E (ED, DIR)

SSO E [ED, DIR]

PSO1 E1 [E2, PL2)

PSO2 E2 [E1, PL1)

DSO E [ED, ED]

Table 6: Example of can-revoke-IM

The meaning of can-revoke-M(x, y, fa, b, cg) is

that a member of administrative role x (or a member

of a administrative role senior to x) can revoke mobile

membership of a user from role a, b or c subject to the

prerequisite condition y. Similarly for can-revoke-IM

with respect to immobile membership.

An example of these relations is given in tables 5

and 6. The �rst four rows of tables 5 are essentially

the same as table 2. The prerequisite condition E will

evaluate to true for all employees so is redundant. It

can equivalently be replaced by any predicate that is

always true. The last two rows allow PSO1 to revoke

project 1 users from project 2 roles and vice versa. Th

top six rows of table 6 are identical to table 5, so in

this example authority to revoke mobile membership

also implies authority to revoke immobile membership.

The last row of table 6 authorizes DSO to remove im-

mobile users from ED (which DSO has the power to

assign as per table 4).

The evaluation of a prerequisite condition for the

revoke model of URA99 is di�erent from the grant

model. For the revoke model we do not distinguish

mobile and immobile membership. Thus we have the

following interpretation.

De�nition 11 In the URA99 revoke model a prereq-

uisite condition is evaluated for a user u by interpret-

ing x to be true if

u 2 EMx _ u 2 EIMx _ u 2 ImMx _ u 2 ImIMx

and x to be true if

u 62 EMx ^ u 62 EIMx ^ u 62 ImMx ^ u 62 ImIMx

Note that unlike in the grant model x and x cannot

be false at the same time. As in URA97 they are

logical complements of each other.

4.2 URA97 as a Special Case of URA99

If all membership is restricted to being mobile than

URA99 is identical to URA97. This can be achieved

by setting can-assign-IM and can-revoke-IM to be

empty. In this manner there is a simple relationship

between URA97 and URA99.

5 The PRA99 Model

The PRA99 model deals with assignment and revo-

cation of permissions to and from the roles. Like users,

permissions can also be assigned to roles as mobile and

immobile. Just as PRA97 relates to URA97, we have

PRA99 as an exact dual of URA99. For sake of com-

pleteness we give a complete de�nition of PRA99 here.

The main di�erence between PRA99 and URA99 is

that in PRA99 implicit membership of a permission

in a role is inherited upwards in the hierarchy. We

give the de�nitions below without further commentary

since they are so closely related to URA99 de�nitions.

De�nition 12 The roles in PRA99 are the same as

in URA99, that is, R = fMx; IMx j x 2 R1g. The

permission role assignment relation is PA � U �R.

De�nition 13 There are four kinds of permission-

role membership in PRA99 for any given role x.

� Explicit Mobile Member EMx

p 2 EMx � (p;Mx) 2 PA

� Explicit Immobile Member EIMx

p 2 EIMx � (p; IMx) 2 PA

� Implicit Mobile Member ImMx

p 2 ImMx � (9x0 < x)(p;Mx0) 2 PA

� Implicit Immobile Member ImIMx

p 2 ImIMx � (9x0 < x)(p; IMx0) 2 PA

De�nition 14 Permission-role assignments as mobile

members are authorized by the relation, can-assignp-

M � AR � CR� 2R and permission-role assignments

as immobile members are authorized by the relation,

can-assignp-IM � AR� CR � 2R.

De�nition 15 The PRA99 model authorizes revo-

cation of mobile membership by the relation can-

revokep-M � AR � CR � 2R and revocation of im-

mobile membership by the relation can-revokep-IM

� AR � CR� 2R:

De�nition 16 In the PRA99 grant model a prereq-

uisite condition is evaluated for a permission p by in-

terpreting x to be true if

p 2 EMx _ (p 2 ImMx ^ p 62 EIMx)

and x to be true if

p 62 EMx ^ p 62 EIMx ^ p 62 ImMx ^ p 62 ImIMx

De�nition 17 In the PRA99 revoke model a prereq-

uisite condition is evaluated for a permission p by in-

terpreting x to be true if

p 2 EMx _ p 2 EIMx _ p 2 ImMx _ p 2 ImIMx

and x to be true if

p 62 EMx ^ p 62 EIMx ^ p 62 ImMx ^ p 62 ImIMx

6 Discussion and Conclusion

We have described the new ARBAC99 model for

role-based administration of role-based access con-

trol. ARBAC99 is the �rst model that incorporates

the notion of mobile and immobile users and permis-

sions in administrative RBAC. It has three compo-

nents: URA99 (user-role administration '99), PRA99

(permission-role administration '99) and RRA99 (role-

role administration '99). It is an extension of AR-

BAC97 obtained by adding the concept of mobile users

and permissions in the URA and PRA models. The

RRA model is unchanged.

The basic intuition of ARBAC97 is not altered in

this paper, that is, the decentralization of administra-

tion of user-role assignments, permission-role assign-

ments and role-role hierarchies by means of adminis-

trative roles, prerequisite conditions and role ranges.

Administrative roles are given autonomy within their

administrative ranges as constrained by prerequisite

conditions.

References

[BFA99] Elisa Bertino, Elena Ferrari, and Vijay

Atluri. Speci�cation and enforcement of

authorization constraints in work
ow man-

agement systems. ACM Transactions on

Information and System Security, 2(1),

February 1999.

[FBK99] David F. Ferraiolo, John F. Barkley, and

D. Richard Kuhn. A role based access con-

trol model and reference implementation

within a corporate intranet. ACM Transac-

tions on Information and System Security,

2(1), February 1999.

[GGF98] Virgil D. Gligor, Serban I. Gavrila, and

David Ferraiolo. On the formal de�nition of

separation-of-duty policies and their com-

position. In Proceedings of IEEE Sympo-

sium on Research in Security and Privacy,

pages 172{183, Oakland, CA, May 1998.

[NO99] Matunda Nyanchama and Sylvia Osborn.

The role graph model and con
ict of inter-

est. ACM Transactions on Information and

System Security, 2(1), February 1999.

[SA98a] Ravi Sandhu and Gail-Joon Ahn. Decen-

tralized group hieraches in unix: An ex-

periment and lessons learned. In Proceed-

ings of 21st NIST-NCSC National Infor-

mation Systems Security Conference, Ar-

lington, VA, October 5-8 1998.

[SA98b] Ravi Sandhu and Gail-Joon Ahn. Group

hierarchies with decentralized user assign-

ment in Windows NT. In Proc. Inter-

national Association of Science and Tech-

nology for Development (IASTED) Confer-

ence on Software Engineering, Las Vegas,

Nevada, October 1998.

[San98] Ravi Sandhu. Role-based access control. In

Zelkowitz, editor, Advances in Computers,

Volume: 46. Academic Press, 1998.

[SB97] Ravi Sandhu and Venkata Bhamidipati.

The URA97 model for role-based adminis-

tration of user-role assignment. In T. Y.

Lin and Xiaolei Qian, editors, Database

Security XI: Status and Prospects. North-

Holland, 1997.

[SB99] Ravi S. Sandhu and Venkata Bhamidipati.

Role-based administration of user-role as-

signment: The URA97 model and its Ora-

cle implementation. The Journal Of Com-

puter Security, 1999. in press.

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and

Qamar Munawer. The ARBAC97 model

for role-based administration of roles. ACM

Transactions on Information and System

Security, 2(1), February 1999.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.

Feinstein, and Charles E. Youman. Role-

based access control models. IEEE Com-

puter, 29(2):38{47, February 1996.

[SP98] Ravi Sandhu and Joon Park. Decentral-

ized user-role assignment for web-based in-

tranets. In Proceedings of 3rd ACM Work-

shop on Role-Based Access Control, pages

1{12, Fairfax, VA, October 22-23 1998.

ACM.

[ZSS99] M. Zurko, R. Simon, and T. San�lippo.

A user-centered modular authorization ser-

vice built on an rbac foundation. In Pro-

ceedings of IEEE Symposium on Research

in Security and Privacy, pages 57{71, Oak-

land, CA, May 1999.

