Extending the Creation Operation in the Schematic Protection Model

P.E. Ammann

R.S. Sandhu

Department of Information Systems and Systems Engineering
George Mason University
4400 University Drive
Fairfax, VA 22030-4444

Abstract

Protection models provide a formalism for speci-
fying control over access to information and other
resources in a multi-user computer system. Useful pro-
tection models must balance expressive power with the
complexity of safety analysis, i.e. the determination of
whether or not a given subject can ever acquire access to
a given resource. We argue that, in terms of expressive
power, a joint creation operation is a natural candidate
for inclusion in a access control model, particularly in
the context of integrity considerations. We extend the
Schematic Protection Model (SPM) [15] to allow for
groups of subjects to jointly create other subjects and
objects. We show that the extended model, which we
call ESPM, is equivalent in expressive power to the
monotonic access matrix model of Harrison, Ruzzo, and
Ullman (6]. Additionally, in contrast to [16], we conjec-
ture that SPM is in fact less expressive than the mono-
tonic access matrix. Thus the joint creation operation
appears to have fundamental expressive power lacking
in the SPM model. We discuss the safety properties of
ESPM. Despite the increase in expressive power, ESPM
retains tractable safety analysis for many cases of practi-
cal interest.

1. INTRODUCTION

The protection problem is how to control access to
information and other resources in a multi-user computer
system. Protection models provide a formalism for
specifying this control. Protection models must satisfy
two conflicting requirements:

(1) The need for expressive power sufficient to
describe authorization schemes of practical
interest.

(2) The need for tractable safety analysis of the pro-

pagation of access rights, i.e. the determination
of whether or not a given subject can ever
acquire access to a given resource.

TH0351-7/90/0000/0340$01.00 © 1990 IEEE

340

One tolerable restriction on expressive power that can
have substantial benefits for safety analysis is that of
monotonicity. Since monotonic models do not permit
the deletion of access privileges, backtracking in
analysis can be avoided.

It should be noted that a strictly monotonic model
is too restrictive to be of much practical use, since the
ability to delete access privileges is an important
requircment. We are really interested in models which
can be reduced to monotonic models for purpose of
safety analysis. In particular, we can ignore deletion of
an access privilege P whenever the deletion can itself be
undone by regranting P. This is by far the most common
form of revocation and it is indeed fortunate that mono-
tonic models can accommodate such deletion.

Monotonicity by itself is insufficient for tractable
safety analysis. The monotonic version of the access
matrix model of Harrison, Ruzzo, and Ullman [6] (HRU)
has very broad expressive power; unfortunately, despite
its monotonicity, it has very weak safety properties [7].
A variety of monotonic’ models with more desirable
safety properties have been proposed [2, 8, 11, 12, 13].
These are all subsumed by Sandhu’s Schematic Protec-
tion Model [15, 16] (SPM). SPM has remarkably strong
safety properties and has been shown to represent a wide
variety of cases of practical interest.

In this paper, we argue for the fundamental impor-
tance of a mechanism by which subjects can jointly
create other subjects and objects. We argue that, in
terms of expressive power, a joint creation operation is a
natural candidate for inclusion in an access control
model, particularly in the context of integrity considera-
tions. We also argue that the inclusion of a joint creation

t These models generally include the kind of revocation
mentioned earlier where the revocation itself can be undone, i.e., they
are monotonic only in the technical sense of being reducible to
monotonic operations for the purpose of safety analysis.

20f9

operation still permits tractable safety analysis for many
cases of practical interest.

The organization of the paper is as follows. In
section 2 we provide practical examples to motivaie the
need for a joint creation operation. These examples are
largely driven by integrity considerations (although
confidentiality does figure in one instance). Then in sec-
tion 3 we extend SPM to allow for groups of subjects to
jointly create other subjects and objects. In section 4, we
show that the extended model, which we call ESPM, is
exactly equivalent in theoretical expressive power to the
monotonic HRU model. In section 5, we conjecture, in
contrast to [16], that SPM is in fact less expressive than
monotonic HRU. Thus the joint creation operation
appears to have fundamental expressive power lacking
in the SPM model. Section 6 concludes the paper.

2. MOTIVATION FOR JOINT CREATION

In this section we motivate the utility of a joint
create operation from a practical point of view by show-
ing how this operation naturally supports a range of pro-
tection policies that have been proposed in the literature.
These policies have mostly been proposed in the context
of integrity considerations, although there are some
aspects that are concerned with confidentiality issues.

Our first example is that of mutual suspicion. This
was one of the earliest protection problems identified in
the literature [5]. The problem arises whenever two
users, say A and B, who do not trust each other have to
cooperate in achieving some task. The task requires that
B has the ability to exercise a subset of A’s privileges,
and vice versa. The standard solution to this problem (5]
is as follows.

. (i) A creates a subject A”,
(ii) A gives A " the privileges that B needs, and
(iii) A gives B " the indirect privilege for A"
Similarly:
. (i) B creates a subject B,
(ii) B gives B " the privileges that A needs, and
(iii) B gives A " the indirect privilege for B”.
At this point A” and B~ act as agents for A and B in
achieving their cooperative objective. The idea is that
A’ can indirectly exercise the privileges of B” and vice
versa.

This solution depends critically on indirect
privileges and as such requires a new concept and
mechanism for its implementation. This concept is not
particularly easy to formalize, e.g., we must consider
whether or not the indirect privilege can itself be
indirectly exercised? The solution is correct only with
the specific assumption that chaining of indirection is

341

disallowed. It is clear that weak restrictions on the
indirect privilege have disconcerting implications for
access review and safety analysis, but strong restrictions
amount to building more policy into our model than we
really wish. Moreover, the algorithm described above
does not give B any unique access to A “ since A is free to
send indirect privileges for A “ to some other subject C.

On the other hand, the joint create operation pro-
vides an ideal solution for the mutual suspicion problem.
A and B can jointly create a subject C such that A and B
become the joint owners of C. Any pattern of communi-
cation from A and B to C and from C to A and B can then
be specified. In the case of the mutual suspicion prob-
lem, A and B can be allowed to contribute privileges to C
freely, but must be restricted in their ability to take
privileges from C.

It is important to appreciate that once the joint
create operation has occurred, the restrictions needed to
solve the mutual suspicion problem can all be stated in
terms of an operation which copies privileges from one
subject to another. Since the copy operation is one of
the fundamental operations that any access control
model must support, the required ability to specify res-
trictions on the copy operation is independent of the
mutual suspicion problem and joint creation.

Our second application of joint creation is in solv-
ing the well-known protected subsystem problem [4,10].
In this problem we again have two parties A and B,
where A is a user and B is a service that A wishes to use
for some purpose. We model the invocation of B by A as
the joint creation of subject C by A and B. Note that B is
a passive participant in this act, while A and C are active
subjects. Our requirements are as follows:

(1) A can only give data to C and receive results
from C. In particular A cannot obtain the rights
to directly modify the internal data structures of
C (i.e., we have information hiding in the sense

of data abstraction).

(2) C can obtain data and code from B.

This differs from our mutual suspicion problem only in
regard to what C can obtain from A and B. That is we no
longer have a symmetry between A and B. Given the
ability to restrict the copy operation it is a simple matter
to specify these constraints in a sufficiently general
access control model.

The confinement problem as originally formulated
by Lampson [9] gives us our next application. This
problem is actually a particularly stringent variation of
the protected subsystem problem with the following
added requirement.

30f9

©))

This is clearly a confidentiality requirement. Since the
code executed by C can only be obtained from B, A is
threatened by Trojan Horses in B’s code that might leak
A’s confidential data. To solve this problem we need to
ensure that C cannot write to any object other than its
internal data structures and objects provided by Al

From the joint creates perspective the three exam-
ples above are all variations of the same requirement.
The joint child C of A and B is restricted with respect to
privileges it can obtain from A or B as well as privileges
A or B can obtain from it. In general the restrictions
applied to parent A are different from those applied to
parent B. A key point is that these restrictions are
specified in terms of the copy operation to move
privileges from one subject to another. The facility to do
so should certainly be available in any access control
model that claims generality.

C cannot leak to anyone the data given it by A.

In these examples the critical role of joint creation
lies in binding C to its parents A and B at the moment of
creation. The question naturally arises whether or not
joint creation can be reduced to more primitive opera-
tions. In section 4 we will present formal arguments
which strongly indicate that joint creation is fundamen-
tally more powerful than the usual single-parent creation
employed in access-control models. To appreciate why
this happens consider an attempt to mimic the effect of
joint creation of C by A and B as follows.

(1) Let A create C (using the usual single-parent
creation). This binds A and C in a unique
manner.

(2) Establish the B to C binding by copying

privileges for C to B and/or vice versa.

The problem with this approach is that the means to
achieve step 2 inevitably implies that a similar binding
can also be established between C and, say, B". In other
words it appears impossible to uniquely bind C to B
without introducing some new mechanism, such as joint
create,* for this purpose.

Our final example of joint creation stems from the
separation of duties concept of Clark and Wilson [3].
Joint creation turns out to be a particularly effective way
of specifying separation of duties with respect to

t Of course, we also need a covert channel analysis to achieve a
high level of assurance. In other words we need to make sure that not
only the explicit write operations but also the implicit ones have been
accounted for.

We are aware that there are mechanisms other then joint create
which can also give us this effect. See our discussion in section 5.4.

342

creation of new users. As noted in [14, 17] separation of
duties is often best expressed in terms of roles such as
manager, security-officer, clerk, etc. For simplicity
assume that each user has a unique role in the system.
The following rules show how joint creation can specify
the involvement of distinct users with different roles in
the process of enrolling new users in the system.

(1) A manager and a security-officer can jointly
create a new clerk.

(2) A senior-manager and a security-officer can
jointly create a new manager.

(3) Senior-managers and security-officers can only

be created by the system-owner.

In this case the joint creation is more concerned with
involving multiple parties in the decision to effect the
creation, rather than our earlier examples where the
focus was on the unique binding between the child and
its multiple parents. Note that while the joint creation
operation offers an elegant solution for this last example,
it is not strictly necessary. For example, the techniques
described in [18] can be used to achieve separation of
duties within the conventional framework of single-
parent creation.

3. THE ESPM MODEL

In this section we define a formal model which
includes a joint creation operation. The model is based
on Sandhu’s Schematic Protection Model [15] or SPM.
By way of introduction, we first review SPM, and then
we describe the extensions.

3.1. Review of SPM

In response to the relatively weak safety properties
of the access matrix model formalized by Harrison,
Ruzzo, and Ullman [6, 7] (HRU), a number of more res-
tricted models with efficient safety analysis were pro-
posed [2, 8, 11, 12, 13]. However, a substantial gap in
expressive power exists between these models and HRU.
The schematic protection model (SPM) was developed
to fill this gap in expressive power while sustaining
efficient safety analysis.

SPM is based on the key principle of protection
types, henceforth abbreviated as types. SPM subjects
and objects are strongly typed, i.e., the type of an entity
(subject or object) is determined when the entity is
created and does not change thereafter. Types are an
abstraction of the intuitive notion of properties that are
protection relevant. An SPM scheme is to a large extent,
but not exclusively, defined in terms of types. The
dynamic privileges in SPM are tickets of the form Y/r
where Y identifies some unique entity and r is a right.
The notion of type is extended to tickets by defining

40of 9

type(Y /r) to be the ordered pair type(Y)/r. That is the
type of a ticket is determined by the type of entity it
addresses and the right symbol it carries.

SPM has only two operations for changing the
protection state, viz., create and copy.’ These operations
are authorized by rules which comprise the scheme
defined by specifying the following (finite) components.

(1) Disjoint sets of subject types TS and object types
T0. LetT =TS U TO.

(2) A set of rights R. The set of ticket types is
thereby T X R.

(3) A can-create function cc : TS — 2.

(4) Create rules of the form cr,(, v) = c/Ry U p/R,
and cr (u, v) =c/R3 Up/R,

(5) A collection of link predicates {link;}

(6) A filier function f;:TSXTS —2T%® for each

predicate link;.
An SPM scheme is itself static and does not change.

The Create Operation. Creation is authorized
exclusively by types. Subjects of type u can create enti-
ties of type v if and only if v € cc(u). Tickets intro-
duced as the side effect of creation are specified by
create-rules. Each create-rule has two components
shown above, where p and ¢ respectively denote parent
and child and the R; are subsets of R. When subject U of
type u creates entity V of type v the parent U gets the
tickets V/R, and U/R,. The child V similarly gets the
tickets V/IR5 and U/R,. For example, file € cc(user)
authorizes users to creates files. And cr,(user, file)
= c/rw and cr (user, file) =D gives the creator r and w
tickets for the created file.

The Copy Operation. A copy of a ticket can be
transferred from one subject to another leaving the origi-
nal ticket intact. Permission to copy a ticket Y/r depends
in part on possession of the SPM copy flag, ¢, for that
ticket, denoted Y/rc. Possession of Y/rc implies posses-
sion of Y /r but not vice versa. It is possible to copy Y/r
only, or to copy Y/rc, in which case the ticket may be
further copied. Let dom (U) signify the set of tickets
possessed by U. Three independent pieces of authoriza-
tion are required to copy Y/r from U to V.

(1) Yirc € dom(U), i.e., U must possess Y/rc for
copying either Y/rcor Y/r.
(2) There is a link from U to V. Links are esta-

blished by tickets for U and V in the domains of

i We note that the original definition of SPM [15] included a
third operation called demand that has since been shown to be
redundant [19].

343

U and V. The predicate link;(U, V) is defined as
a conjunction or disjunction, but not negation, of
one or more of the following terms for any
reR: Ul/r e dom(U), Ulr € dom(V),
Vir € dom(U), Vir € dom(V), and true . Some
examples from the literature are given below
[11, 13, 16, respectively]:

link,, (U, V)=V ig € dom(U) v U/t € dom(V)

link, (U, V) = U/t € dom(V)

link, (U, V)=Vis € dom(U) AUlr € dom(V)

link, (U, V) = true
(3) The last condition is defined by the filter func-
tions f;, one per predicate link;. The value of
fi(u, v) specifies types of tickets that may be
copied from subjects of type u to subjects of type
v over link;. Also f; determines whether or not
the copied ticket can have the copy flag. Exam-
ple values are TR, TOXR, and & respectively
authorizing all tickets, object tickets and no tick-
ets to be copied.

In short Y/r can be copied from U to V iff there exists
some link; such that:

Yirc € dom(U) A link;(U, V) Ayir € fi(u, v)

where the types of U, V and Y are respectively u, v and
y. To copy Y/rc from U to V, it must also be the case that
yirc € fi(u, v).

3.2. Adding Joint Creation to SPM

We extend the creation operation in the SPM
model above to enable groups of subjects to jointly
create new subjects and objects. We call the extended
model ESPM, and we refer to the extended creation
operation as joint creation, or simply creation in those
cases where no confusion arises. Joint creation includes
the SPM creation operation as a special case. In all other
respects, ESPM is identical to SPM.

The (joint) can-create function for ESPM is a map-
ping:
cc: TSXTSX - - - XTS — 2T

In ESPM the domain of cc is an N-tuple of subject types
as opposed to a single subject type in the SPM case.
ESPM imposes no bound on the maximum value of N,
although for any given scheme this value is of course a
constant. Further, if type constraints are met, we allow a
subject to redundantly participate as more than one
parent in a joint create operation. The option of forcing
the parents to be unique was rejected because it is con-
trary to the tone of the SPM copy operation where the

S5of9

same subject can participate as the source, destination
and reference of the transported ticket. It also seems
natural to follow the lead taken in programming
languages, where it is the usual practice to allow a single
object to replace multiple formal parameters.

It remains to extend the create rules cr, and cr, of
SPM to describe the distribution of tickets that results
from joint creation. We have a variety of choices as to
which tickets parents are allowed to acquire as a result of
a joint create operation. The most general choice is to
allow the cr, function to supply a parent with arbitrary
tickets, not only for itself and the child, but also for any
other parent. This option has the undesirable side effect
of duplicating the functionality of the links and filter
functions. Since we do not want the joint create opera-
tion to be a substitute for the copying of tickets, we res-
trict the cr, operation such that a parent X does not
acquire tickets of the form Y/r for any other parent Y.

With the above restriction in mind, the most gen-
eral choice for specifying the distribution of tickets as a
result of creation is to give a separate cr, rule for each
parent-child pair and a single cr, rule that allows the
child to acquire a different set of tickets from each
parent. Formally, we define N create rules of the form:

Cpltpys tpgsenns tpwolc) = CIRY U pi/RS fori = 1.N
and one rule of the form:

Cre(tp,s tpysens bpyole) =
¢/R4 Upl/R‘l; Upz/R% o UPN/RIX.

The t,, are the types of the N parents, and the f. is the
type of the child. In all of the create rules c is the name
of the jointly created entity and p; is the name of the ith
parent. For the ESPM create rules, note that the sets
R,,R,, and R, from the SPM create rules have each
been expanded into N sets, RY, RS, and R}, for i = 1.N.
The set R is unchanged.

4. EXPRESSIVE POWER OF ESPM

We now turn to evaluation of the expressive
power of ESPM. The most general monotonic protection
model to date is the monotonic access matrix model of
Harrison, Ruzzo, and Ullman [6], which we refer to as
monotonic HRU. It turns out that ESPM is precisely
equivalent to monotonic HRU in its expressive power.

The equivalence result is established by simulating
monotonic HRU in ESPM and vice versa. The simula-
tion of HRU in ESPM is by far the more difficult part of
this proof. The details are intricate and inevitably tedi-
ous and lengthy [1]. Here we only outline the construc-
tion, paying special attention to the key role played by
the joint creation operation. Because it is straight-

forward to implement ESPM in HRU, we do not discuss
the reverse construction.

4.1. The Monotonic HRU Access Matrix Model

In the monotonic HRU scheme that we model, we
consider I HRU commands, each denoted HRU;,i = 1..1,
structured as follows.

HRU; Py, ... P, Prve s Pross)
if T\ AT3 A -+ ATk, then
Ci
Ch

end

in which:

(1) The P;, where j = 1..J;, are formal parameters
representing existing HRU entities. The P;
where j = J;,,..J;+M;, are the names of entities
to be created by the HRU command.

(2) The Ti, where k = 1..K;, are terms of the form
“‘r € [Py, Py]”’. Note that [Py, Py] is the HRU
matrix entry for row Py and column Py. X and Y
are in the range 1..J;. The absence of disjunc-
tions in the conditional entails no loss of general-
ity since disjunctions can be simulated with mul-
tiple HRU commands. Note, however, that nega-
tion is disallowed.

(3) The Ci,, where m = 1..M;, are HRU primitives
of the form ‘‘Create Py’’, where X =J;+m.
Since we consider only the monotonic access
matrix model, there is no ‘‘Delete Py’ opera-
tion, and we are free to order the HRU primitives
so that all ‘‘Create’’ operations precede all
‘‘Enter’’ operations.

(4) The E:, where n = 1..N;, are HRU primitives of
the form *‘Enter right 7 in [Py, Py]”’. X and Y are
in the range 1..J;+M;.

4.2. Reduction of HRU to ESPM
There are three basic problems in implementing
HRU in ESPM. They correspond to the various parts of
the HRU command:
(1) Parameter List Generation: HRU commands are
invoked with a particular set of entities as
parameters. For a valid simulation, it must be

60f9

possible to manipulate exactly the set of entities
that correspond to any possible HRU parameter
list. Thus one task for any simulation of HRU is
to mimic the gathering of arbitrary existing HRU
entities into sets of cardinality J;." However, the
joint creation operation of ESPM is ideally
suited for the task.

Validating the Conditional: The basic process of
an HRU command is to permit the specified
operations only if the conjunction of certain con-
ditions is evaluates to true. A mechanism is
required to determine the validity of each term in
the conditional. Another mechanism is required
for combining the values of the individual terms.
Implementing Primitive HRU Operations: Simu-
lating ‘‘Enter”” operations is straightforward in
ESPM; it is easy to arrange that the ticket simu-
lating the right in question only be copied only if
the conditional evaluates to true. However,
‘“‘Create’” operations are another matter. ESPM
does not contain a conditional creation opera-
tion. Therefore, in showing that an ESPM
scheme can simulate an HRU scheme, we must
simulate conditional creation. Simulating condi-
tional creation can be accomplished in various
ways; we do it by augmenting the HRU scheme
with an additional right that indicates that an
entity is ‘‘alive’’. Thus, even though we cannot
conditionally control the creation of ESPM enti-
ties, we can conditionally control the presence of
tickets indicating liveness. We must also ensure
that entities not marked as being alive do not
participate in changing the protection state.
Again, various options are available; we choose
to augment the conditional expression in an
HRU command to ensure that all relevant enti-
ties hold a *‘live’’ ticket.

@

©)]

4.2.1. Construction Outline

The entities used in the ESPM simulation can be
grouped into various categories. Each category is used
to mimic part of the evaluation of an HRU command.
The categories are defined below.

(1) Entities that mimic HRU entities. We call these

entities proxies. The simulation amranges that a
proxy Py can hold a ticket of the form Py/r for

 we conjecture that SPM is unable to provide this grouping
operation; hence, in comparing the expressive power of SPM 1o ESPM,
this is the key stage in the simulation of HRU. This point is discussed
further in section 5.2.

345

some HRU right r iff the HRU access matrix
entry [Py, Py] can contain r. The single proxy
type is p.
Entities to represent existing proxies in each
possible parameter position of a single HRU
command. We call these entities agents. The
number of types of agents is J .y, Which is the
maximum value over the J;, where i = 1..1. The
set of agent types is {a; | j = 1..J nay/}.
Entities to represent the collection of J; existing
HRU entities in the HRU; command. We call
these entities validators. The creation of vali-
dators is the step that requires the joint creation
operation. validators assume a coordinating
role in the simulation; they are responsible first
for overseeing the simulation of HRU condi-
tional evaluation, and then for enabling the simu-
lation of ‘‘Create’’ and ‘‘Enter’’ primitives.
There are I types of validators, one for each
HRU command, HRU;. The set of validator
typesis {v' 1§ =1..1}.
Entities to collectively determine the truth of the
entire conditional expression in an HRU com-
mand by examining each conjunct of the condi-
tional in turn. We call these entities terms. For
each command HRU;, there are K; types of
terms. The set of. term types is
iV k=1.K;,i=1.1}.
Entities to implement the HRU primitive
“Create Pyx’’. We call these entitics creates.
For each command HRU;, there are M; types of
creates. The set of create types is
{ct Im=1.M;,i=1.1}
Entities to implement the HRU primitive ‘‘Enter
r in [Py, Py]’’. We call thesc entities enters.
For each command HRU;, there are N; types of
enters. The set of ESPM types for creates is
{1 n=1.N;,i=1.1}.
The simulation operates informally as follows.
Existing proxies create agents to represent them in vari-
ous parameter positions. For each HRU command HRU;,
groups of J; agents jointly create a validator; the effect
is to gather agents for existing proxies into sets of cardi-
nality J;. These two actions simulate the invocation of
an HRU command.

It remains to implement the execution of the HRU
command. Each validator creates a set of terms to
determine the validity of the HRU conditional with the
selected set of parameters. In addition, the validator
creates creates and enters to simulate, respectively, the
HRU “‘Create’” and ‘‘Enter’’ primitives. The enters are

2

©)]

(C)

®

©®

7of9

enabled only if the entire conditional (comprised of the
individual terms) evaluates to true. For each create,
there is an enter whose responsibility it is to copy the
Pyle enabling ticket to Py.

In suommary, the types required are
TS = {p, a;, v', 1}, ci,, €.}. Without loss of generality,
we may ignore passive objects and only consider active
subjects, and thus set TO =@. The creation relations
among these types of entities is shown in fig. 1. Arrows
in fig. 1 point from parent types to child types. Formally:

ccp)={a;l j= L J mad)

cc(ay, az, ..., a;)={v'},fori = 1.1

cc@W)={}ufch Im=1.MJU{ei | n=1.N}
fori =1..1

ce(ty) = {ti,), fork<K;andi = 1.1

ce(ct) ={p).form=1.M;andi =1..1.

Note that the joint create operation is only required for
the construction of the validators.

The links and filter functions necessary to imple-
ment the scheme are not shown here; the definitions are
available in [1]. Instead we have concentrated on the the
role of the creation operation. Two points warrant
notice: First, a joint creation capability is (apparently)
necessary to achieve the expressive power of monotonic

>

HRU. Second, since the create structure is cyclic (enti-
ties of type p can indirectly create other type p entities),
the safety of the scheme is outside the cases known to be
decidable [15, 20]; this characteristic is consistent with
the weak safety properties of HRU. It should be also
noted that we have sketched theoretical equivalence, but
we have not compared the ease of expressing explicit
policies in the two models. This issue is beyond the
scope of this paper. Finally, no example is given
because the construction is not the most natural way to
implement policies. Due to the general nature of the
construction, even simple policies, such as Take/Grant,
are transformed into lengthy schemes. For instance, a
straightforward implementation of Take/Grant in SPM
requires at most two links [15]. However, defining
Take/Grant in HRU, and then applying the construction
outlined above results in over twenty links.

5. DISCUSSION

In this section we outline some important ques-
tions regarding ESPM in particular and joint creation in
general. We summarize our results and conjectures
which are reported in further detail in [1].

J,

aj,

n

Fig. 1. Create And Joint Create Graph

80of9

5.1. Safety Properties of ESPM

Safety analysis for ESPM is similar to safety
analysis for SPM. Most of the techniques in [15] can be
applied directly, and, even where the machinery of [15]
is inadequate, the underlying ideas remain valid. As in
SPM, the basic result of our safety analysis for ESPM is
that safety is decidable for attenuating acyclic schemes.
Attenuating acyclic schemes for ESPM are schemes in
which the create and joint create graph is acyclic, except
for cycles of length one in which the child entity
receives a subset of the tickets that each parent receives.
Attenuating acyclic schemes appear to be adequate for
expressing practical access control policies. A further
result is that safety analysis is prohibitively expensive if
the use of joint create operation is not carefully con-
trolled. The cost of analyzing joint creation is exponen-
tial in the size of the initial state. Thus the expressive
power of joint creation in the ESPM model carries a sub-
stantial cost in computational complexity.

5.2. Expressive Power of SPM vs. ESPM

In [16], it was conjectured that SPM has
equivalent expressive power to monotonic HRU based
on the fact that both allow schemes with undecidable
safety. In this paper, we have implicitly argued that
SPM is less expressive than monotonic HRU, and have
shown that the joint create operation of ESPM is a
sufficiently expressive mechanism to yield equivalence
with monotonic HRU. We conjecture that SPM and
ESPM have different expressive power for undecidable
schemes. At present, we are unable to prove this conjec-
ture. There is no difference in expressive power between
SPM and ESPM for decidable schemes. For schemes in
which safety is known to be decidable, any ESPM
scheme can be simulated by an SPM scheme by the addi-
tion of a suitable number of types. In essence, the
unique type names can be used instead of unique entity
names if only a finite number of entities need be created
for safety analysis. We note that for practical purposes,
the ESPM joint create operation clearly cannot be simu-
lated directly by an SPM scheme. At the very least,
simulating ESPM’s joint create in SPM requires an addi-
tional number of types that is exponential in the size of
the initial state.

5.3. Binary vs. N-ary Joint Creates

As it turns out [1], any multiple joint creation can
be implemented by a set of pairwise joint creates and the
introduction of a fixed number of additional types, rights,
links and filter functions. Thus, an ESPM model with
N-ary creation is no more expressive than one with
binary creation. However, the implementation of N-ary

347

joint creation with binary joint creates has undesirable
effects on safety analysis; when N-ary ESPM schemes
with tractable safety analysis are converted to binary
ESPM schemes, the constraints required by our safety
analysis algorithm are no longer satisfied.

5.4. Other Mechanisms

Joint creation is not the only mechanism that can
be added to SPM to achieve the expressive power of
monotonic HRU. For example, a mechanism that allows
a ticket to be copied only some fixed number of times
before it expires can be used to implement the parameter
selection mechanism of HRU. Our choice of joint
creates in preference to this alternate mechanism is
motivated by our strong desire to stay within a mono-
tonic framework.

6. CONCLUSIONS

In this paper we have shown that a joint create
operation is a useful abstraction from a pragmatic point
of view, since it provides for convenient solution of a
variety of protection problems taken from the existing
literature. Our examples cover a range of classic prob-
lems such as mutual suspicion, protected subsystems,
confinement and separation of duties. These problems
are motivated by integrity considerations, although
confinement does concern confidentiality.

We have also argued that from a theoretical point
of view joint creation appears to confer additional
expressive power not available with the traditional
single-parent creation. In particular we have shown that
extending the create operation of SPM [15] in this
manner gives us a model (called ESPM) which is
equivalent to the monotonic HRU model [7]. We con-
jecture that SPM is strictly weaker than ESPM. Finally,
we have sketched arguments to demonstrate that ESPM
retains the strong safety properties of SPM.

References

{11 Ammann, PE. and Sandhu, R.S. ‘‘The Extended
Schematic Protection Model’’, Technical Report,
George Mason University, 1990.

Bishop, M. and Snyder, L. “*The Transfer of Infor-
mation and Authority in a Protection System’’, 7th
ACM Symposium on Operating Systems Princi-
ples, 45-54 (1979).

Clark, D.D. and Wilson, D.R. “‘A Comparison of
Commercial and Military Computer Security Poli-

cies”’, IEEE Symposium on Security and Privacy,
184-194 (1987).

(2]

(3]

(4]

(51

(6]

(7

(8]

9

(10]

(11]

(12]

90of9

Cohen, E. and Jefferson, D. ‘‘Protection in the
Hydra Operating System.”” Sth ACM Symposium
on Operating Systems Principles, 141-160 (1975).
Graham, G.S. and Denning, P.J. ‘‘Protection -
Principles and Practice.”” AFIPS Spring Joint
Computer Conference 40:417-429 (1972).
Harrison, M.H., Ruzzo, W.L. and Ullman, J.D.
‘‘Protection in Operating Systems, CACM,
19(8):461-471 (1976).

Harrison, M.H. and Ruzzo, WL. ‘‘Monotonic
Protection Systems’’, In Foundations of Secure
Computations, DeMillo, R.A., Dobkin, D.P., Jones,
AK. and Lipton, RJ. (Editors), Academic Press
(1978).

Jones, AK., Lipton, RJ. and Snyder, L., “A
Linear Time Algorithm for Deciding Security’’,
17th IEEE Symposium on the Foundations of Com-
puter Science, 337-366 (1976).

Lampson, B.W. “‘A Note on the Confinement
Problem.”’ Communications of ACM,
16(10):613-615 (1973).

Linden, T.A. ‘‘Operating System Structures to
Support Security and Reliable Software.”” ACM
Computing Surveys, 8(4):409-445 (1976).

Lipton, R.J. and Snyder, L. ‘‘A Linear Time Algo-
rithm for Deciding Subject Security’’, JACM,
24(3):455-464 (1977).

Lipton, RJ. and Budd, T.A. ‘‘On Classes of Pro-
tection Systems’’, In Foundations of Secure Com-
putations, DeMillo, R.A., Dobkin, D.P., Jones,
AK. and Lipton, RJ. (Editors), Academic Press
(1978).

348

(13]

(14]

[15]

[16]

(17]

(18]

(19]

{201

Lockman, A. and Minsky, N. ‘‘Unidirectional
Transport of Rights and Take-Grant Control’’,
IEEE Transactions on Software Engineering, SE-
8(6):597-604 (1982).

Nash, MJ. and Poland, K.R. ‘‘Some Conundrums
Concerning Separation of Duty.”” IEEE Sympo-
sium on Security and Privacy, 201-207 (1990).
Sandhu, R.S. ‘“The Schematic Protection Model:
Its Definition and Analysis for Acyclic Attenuat-
ing Schemes’’, JACM, 35(2):404-432 (1988).
Sandhu, R.S. ‘‘Expressive Power of the Schematic
Protection Model’’, Computer Security Founda-
tions Workshop, 188-193 (1988).

Sandhu, R.S. ‘‘Transaction Control Expressions
for Separation of Duties”’, 4th Aerospace Com-
puter Security Applications Conference, 282-286
(1988).

Sandhu, R.S. ‘‘Transformation of Access Rights.”
IEEE Symposium on Security and Privacy,
259-268 (1989).

Sandhu, R.S. ‘““The Demand Operation in the
Schematic Protection Model’’, Information Pro-
cessing Letters, 32(4):213-219 (1989).

Sandhu, R.S. ‘‘Undecidability of the Safety Prob-
lem for the Schematic Protection Model with
Cyclic Creates’’, JCSS, to appear.

