
Role-Based Delegation Model/ Hierarchical Roles (RBDM1)

 Ezedin Barka
College of Information Technology

University of the United Arab Emirates
Al Ain, United Arab Emirates

ebarka@uaeu.ac.ae
 And

 Ravi Sandhu
Laboratory for Information Security Technology

Information and Software Engineering Department, MS 4A4
George Mason University, Fairfax, VA 22030, USA

Sandhu@gmu.edu

Abstract

The basic idea behind delegation is that some
active entity in a system delegates authority to
another active entity in order to carry out
some functions on behalf of the former. User
delegation in RBAC is the ability of one user
(called the delegating user) who is a member
of the delegated role to authorize another
user (called the delegate user) to become a
member of the delegated role. This paper
introduces a new model, which we consider it
to be an extension of RBDM0 [BS2000].

The central contribution of this paper is to
introduce a new model, referred to as
RBDM1 (Role-Based Delegation Model/
Hierarchical Roles), that uses the details from
RBDM0, which was described in the
literature by barka and Sandhu [BS2000] to
address the temporary delegation based on
hierarchical roles. We formally defined a
role-based delegation model based on
hierarchical relationship between the roles
involved. We also identified the different
semantics that impact the can-delegate

relation, we analyzed these semantics to
determine which ones we consider as more
appropriate in business today, thus allowed in
our model, and provided a justification to
why those selections are made

1. Introduction

This paper describes the ways by which RBDM0
is extended to address more complicated issues that
come along with hierarchical roles.

Hierarchies are natural means for structuring roles
to reflect an organization’s lines of authority and
responsibility (figure 1). By convention, more
powerful (senior) roles are shown toward the top of
these diagrams, and less powerful (junior) roles toward
the bottom. In figure 1.a, the junior-most role is that of
the health-care provider. The physician role is senior
health-provider and thereby inherits all permissions
from health-care provider. The physician role can have
permissions besides those it inherited. Permission
inheritance is transitive. So, for example, in figure 1.a,
the primary-care physician role inherits permissions
from both the physician and health-care provider roles.
The primary-care physician and the specialist
physician both inherit permissions from the physician
role, but each will have different permissions directly

 2

assigned to it. Figure 1.b illustrates multiple
inheritances of permissions, where the project
supervisor role inherits from both the test engineer and
the programmer role.

Mathematically, these hierarchies are partial order.
A partial order is a reflexive, transitive, and anti-
symmetric relation. Inheritance is reflexive because a
role inherits its own permissions, transitivity is a
natural requirement in this context, and anti-symmetry
rules out roles that inherit from one another and would
therefore be redundant.

 Primary-Care Specialist Project supervisor

 Physician physician

 Test engineer Programmer
 physician

 Health-care provider Project member

 (a) (b)

 Test engineer Project supervisor Programmer

 Test engineer Programmer

 Project member
 (c)

 Figure 1. Example of Role Hierarchy

When we extend RBDM0 model to capture

the role-to-role delegation using hierarchical roles, we
add more complexity to the flat roles model. Here, we
have to deal with different kinds of delegations, some
of which are not very useful, and some which carry
more risk than others.
To appreciate the reason behind doing delegation in
hierarchical roles, let us consider a typical example
from the office context. Suppose that we have a
department whose manager (DM) has access to view
and modify the overall departmental portfolio (DP).
Now, let us suppose that the department has several
projects, each of which has an individual portfolio
(Dpi). A project manager (PM) can view or modify the
project’s portfolio if and only if the departmental
manger (DM) has delegated the appropriate right to it.
In this case, the project manager (PMi) is acting on
behalf of the departmental manager. On some
occasions, the departmental manager may only wish to
give the project manager the right to view another
project’s budget without allowing him to perform any
modifications. So, a user in a role may delegate all or
only a subset of his role to another user who belongs to
another role. Furthermore, a department manager may
delegate the membership of one project manager to a

project member, or to another project manager. Also, a
project manager may delegate his delegated rights over
the budget to a project member (this is known as two
step delegation and is not allowed in our model). These
types of situations are common in many business
organizations.

For each object involved in a delegation, there are
certain requirements that have to be met. The
originator, or delegator, may wish to give only a part of
its overall rights, or even just a single right.
Furthermore, he may only want to grant these rights for
a limited duration. Also he should be able to identify
each of his delegations so that he may at some stage
attempt to revoke one or all of these delegations.

The needs above can be justified by explaining
delegation as a particular mechanism for collaborative
working. Suppose a group of employees need to work
together. In delegation, the members of the group do
not work in tandem; their rights are used by delegates
of the group without their participation. This results in
a need for trust between members. This trust can be
limited in scope by limiting the rights contributed by
delegator to delegate.

The most familiar form of collaborative working is
hierarchical in nature, as shown in the office example
above. In such hierarchical cooperation, the superior
might not take part in the details of a task, but he or
she is the instigator of the task, and participates
through granting authority, and even talking to users
who are his junior.

In this paper, we formally defined a role-based
delegation model based on hierarchical relationship
between the roles involved. We also identified the
different semantics that impact the can-delegate
relation, we analyzed these semantics to determine
which ones we consider as more appropriate in
business today, thus allowed in our model, and
provided a justification to why those selections are
made.

The rest of this paper is organized as following:
Section 2 provides assumptions and basic elements that
are specific to the role-based delegation models in
hierarchical roles. Section 3 discusses delegation in
RBDM1, and analyzes the deferent semantics of
delegation in hierarchical roles. This is addressed in
the sub-section 3.1 Section 4 addresses revocation of
delegation within RBDM1. Finally, Section 5 provides
a summary of the RBDM1 model.

 3

2. Assumptions and Basic Elements

In addition to the elements discussed in the

RBDM0 (delegation in flat) this model adds the
following assumptions and basic elements that apply
specifically to the delegation model using hierarchical
roles:

• Delegation can only be either downward or
cross. Upward is useless because senior roles
inherit all the permissions of their junior roles.

• Downward delegation means that a user who
is an original member of a role delegates his
role to other users who are original members
of roles that are junior to the delegation role.

• Cross delegation means that the delegation
takes place between users who are members
of incomparable roles. For example, a
manager in the sales department can delegate
his role membership to an auditor from the
auditing department in order to do auditing on
the sales department.

Unlike RBDM0, in RBDM1 partial downward

delegation is allowed because members of senior roles
can delegate only subsets of their permissions (only
enough to accomplish the task).

Original members of senior roles are also original
members of the roles that are junior to their roles, and
delegate members of senior roles are also delegate
members of the roles that are junior to their roles.
However, this type of membership is considered an
implicit membership.

The addition of role hierarchy to RBDM0
introduces a new notion for a user membership in a
role (explicit and implicit memberships). The explicit
role membership grants a user the authority to use the
permissions of that role because of his/her direct
membership to that role. The implicit role membership,
on the other hand, grants a user the authority to use the
permissions of that role because of the user’s
membership in a role that is senior to that role.

Combining the two new types of role
memberships with the original two types (original
memberships and delegate memberships) produces
four different combinations of user memberships in a
role at any given moment. These combinations are:
original/explicit, original /implicit, delegate/explicit,
and delegate/implicit. These combinations will have a
major impact on the semantics of the can-delegate
relation in this model.

Revocation issues become more complicated when we
deal with hierarchical roles. This is because of the
involvement of many different roles and their
hierarchical relationships.

The following section formally defines the role-
based delegation model in hierarchical roles:

To flow the natural progression from RBAC to
RBDM1, we refer to the definitions of RBAC96 and
RBDM0 listed below:

Definition 1: The following is a list of the original
RBAC96 components:

• U and R and P are sets of Users, Roles, and
Permissions, respectively.

• UA ⊆ U × R is a Many to Many, User to
Role assignment relation

• PA ⊆ P × R is a Many to Many,
Permission to Role assignment relation

• Users: R→2U is a function derived from UA
mapping each role r to a set of users where
Users(r) = {U | (U, r)∈UA}

• Permissions: R→2P is a function derived from
PA mapping each role to a set of permissions
where Permissions (p) = {P | (P, r) ∈ PA}

Definition 2: The RBDM0 model adds the following
components:

• UAO ⊆ U × R is a Many to Many, Original
Member to Role assignment relation

• UAD ⊆ U × R is a Many to Many, Delegate
Member to Role assignment relation

• UA = UAO ∪ UAD
• UAO ∩ UAD = ∅ Original members and

delegate members in the same role are disjoint
• Users_O(r) = {U | (U, r)∈UAO}
• Users_D(r) = {U | (U, r)∈UAD}
• All members Users_O(r) ∪ Users_D(r) in a

role receive all of the permissions assigned to
that role

• Note that Users_ O(r) ∩ Users_ D(r) = ∅
because UAO ∩ UAD = ∅

• T is a set of durations
• Delegate roles: UAD → T is a function

mapping each delegation to a single duration

Definition 3: The following is a formal definition of
RBDM1:

 4

The definition of RBDM1 is the same as RBDM0, with
the following elements added (see figure 2):

• RH ⊆ R × R is a partially ordered role
hierarchy (this can be written as ≥ in infix
notation). Also, the less familiar symbol is used
to denote non-comparability: we write x y if
x¬≤ y and y¬≤ x.

 RH

 UAO

 UAD

 Figure 2: RBDM1

3. Delegation in RBDM1

In RBDM1 our goal is to define a model by
extending the RBDM0 model in order to capture the
notion of delegation in the case of hierarchical roles
and to show how the model handles the impact of the
changes to the user-role assignment.

In RBDM1, authorization of delegation depends
on the semantics of the can-delegate relation. These
semantics become specially complicated when the
membership statuses of the delegating and the
delegated roles vary from one situation to another. For
example, the delegation by an original explicit
delegating role to an original implicit delegated role
will carry a different meaning than a delegation by an
original implicit role that delegates to an original
explicit role, and so on.

 In this section, we address how the semantics of
delegation in RBDM1 impact the can-delegate relation.
We list a number of semantics for the can-delegate
relation in RBDM1, we analyze these semantics and
identify the ones that make more sense for business
today, thus allowed by our model, and we justify our
selections by giving some examples. Furthermore, in
this section, we address how revocation is handled
under the new conditions.

The addition of role hierarchy to RBDM0
introduces a new notion for a user membership in a
role (explicit and implicit memberships). The explicit
role membership grants a user the authority to use the
permissions of that role because of his/her direct
membership to that role. The implicit role membership,
on the other hand, grants a user the authority to use the

permissions of that role because of the user’s
membership of a role that is senior to that role.

The following is a formal definition of an implicit
membership:

Definition 4: Let us a say a user U is an explicit
member of role x if (U, x) ∈ UA, then a user (U) is
considered to be an implicit member of x if for some
x’> x, (U, x’) ∈ UA

Definition 5: The user-role assignment is authorized
in RBDM1 by the following relation: Can-delegate ⊆
R × R

In RBDM1, expressing and enforcing the
delegation between users is done through the different
semantics of the can-delegate relation. The following
section introduces and explains the semantics used by
this model to enforce the delegation between users that
belong to different roles.

3.1 Semantics of Delegation in RBDM1

The semantics of the delegation relation become
especially complicated when the relation between the
roles involved is hierarchical. This is because along
with the hierarchical relation comes an additional type
of roles memberships (explicit, implicit), which makes
the meaning of the can-delegation dependent on the
membership status of each of the delegating and the
delegated roles in any given situation.

In this section, we list and analyze the different
semantics that impact delegation in RBDM1 and
explained the approach our model takes towards
allowing the appropriate semantic of delegation.

Figure 3 depicts organizational role hierarchy and
users’ role memberships. To illustrate the different
semantics of delegation in RBDM1, we use this
example in the rest of this section.

 U

Users

 R

Roles

 5

 Director
 (D)

 D

 Project Lead 1 PL1

 (PL1)

 PE1 QE1
 Production Quality

 Engineer 1 Engineer 1

 (PE1) (QE1)

 E1
 Engineering 1

 (E1)

 Employee (b) Users with role memberships

 (E) in role hierarchy

 (a) Role hierarchy

 Figure 3: An Example of Organizational Role Hierarchy and Its Users

Alice

Bob

Dan

Charlie

Frank

The following is a list of the semantics that control
the authorization of delegation in RBDM1. The first
three semantics are general semantics, and the fourth is
a set of semantics that result from the different
membership status in the delegating and the delegated
roles at any given time.

1) (x, y) ∈ can-delegate means that original

members, explicit or implicit, of x can make an
original member, explicit or implicit, of y an
explicit delegate member of any other role junior
or equal to x.

2) For x >y ⇒ (y, x)∉ can-delegate

 (x, y)∉can-delegate means that a member of a
role cannot delegate his role membership to
another user who is a member of another role
senior to his role. For example, in Figure 3, Alice
who is a member of (PL1), cannot delegate PL1 to
Frank who is a member of the role director,
because by definition, Frank inherits the
permission of role PL1.
This semantic is very useful, because it prevents
the delegation from being upward.

3) (x, y), (y, x) ∈ can-delegate → x y

(x, y), (y, x) ∈ can-delegate means that users that
belong to different roles can delegate to one
another only if the roles to which they belong are
non-comparable.

This semantic is also useful, because in some
cases, in the office context, there is a need for a
manager from one department to assume the

responsibilities of the manager of another
department and vice versa.

For example, Bob who is a member of PE1 can-
delegate his role to Charlie who is a member of
QE1 and vice versa.

4) The following sets of semantics are based on the

statuses of both the delegating role and the
delegated role (explicit/implicit) at the time of
delegation.

For the sake of illustration we use Table 1, in

conjunction with Figure 3, to describe the derived
semantics of the can-delegate relation. We used all
possibilities that result from testing the delegating
role/delegated role memberships at any given time.

As the case in RBAC96 and RBDM0, in RBDM1,
delegating role members and delegated role members
are assumed to be original members. Moreover,
through out this discussion, we assumed that all the
members shown in figure 3 to be original-explicit
members.

We used OE to denote original explicit members
and OI to denote original implicit members. Hence the
four possibilities are (OE, OE), (OE, OI), (OI, OE),
and (OI, OI), where the first item of each tuple
represents the delegating role member and the second
represents the delegated role member.

In the table below, we list all different semantics
that resulted form the above conditions.

Status of the role memberships Total

Delegating
role

Delegated role

Given that (PL1, E1) ∈ Can-delegate
Semantics of can-delegate relations

RBDM0
(Flat roles)

OE OE Alice can-delegate PL1 to Dan, and Dan can-
delegate to Alice

OE OE
Alice can-delegate PL1 to Dan
Alice can-delegate PE1 to Dan
Alice can-delegate QE1 to Dan
Alice cannot-delegate PL1 to Bob
Alice cannot-delegate PL1 to Charlie

OE OI
Alice can-delegate PL1 to Dan
Alice can-delegate PL1 to Bob
Alice can-delegate PL1 Charlie
Alice can-delegate PE1 to Charlie
Alice can-delegate QE1 to Bob

OI OE
Frank can-delegate PL1 to Dan
Frank can-delegate PE1 to Dan
Frank can-delegate QE1 to Dan
Frank cannot-delegate PL1 to Bob
Frank cannot-delegate PL1 to Charlie

RBDM1
Hierarchical
oles)

OI OI
Frank can-delegate PL1 to Dan
Frank can-delegate PL1 to Bob
Frank can-delegate PL1 Charlie
Frank can-delegate PE1 to Charlie
Frank can-delegate QE1 to Bob

 Table 1: Examples of Authorization Functions

 6

The table above showed that in RBDM1 the
meaning of the can-delegate relation changes
depending on the explicit/implicit status of the
(delegating and the delegated) roles involved in the
delegation process.

With the assumption that (PL1, E1) ∈ Can-
delegate, the following semantics were derived:

1. In RBDM0, where the relation between roles is

flat, the can-delegate relation has very clear
meaning: both the delegating and the delegated
roles are original/explicit. Therefore, the can-
delegate relation has one meaning: (PL1, E1) ∈
Can-delegate. This means that any member of
PL1can-delegate to any member of E1 , and vice
versa.

2. In RBDM1, the can-delegate relation has different

meaning depending on
 the status of the delegating and delegated roles.

In the first scenario, where both, the delegating
and delegated roles, are original explicit (OE, OE),
(PL1, E1) ∈ Can-delegate means that Alice can
delegate PL1 to Dan, Alice can-delegate PE1 to Dan,
Alice can-delegate QE1 to Dan. This is because of
Alice’s implicit membership in both PE1 and QE1.
This also means that Alice cannot delegate PL1 to Bob,
and Alice cannot-delegate PL1 to Charlie. This is
because both Bob and Charlie are explicit members in
their respective roles, which means that they are also
implicit members in E1.

This is of course creates an anomaly, because Bob
and Charlie are both senior to Dan, and it does not
make a lot of sense for Alice to be able to delegate PL1
to Dan and not to Bob and not to Charlie.

In the second scenario, where the delegating role
is an original/explicit and the delegated role is an
original/implicit (OE, OI), our table shows that because
Dan is an implicit member of E1, he is also an explicit
member of PE1 and explicit member of QE1. This
means that, in addition to being able to delegate PL1 to
Dan, Alice can delegate PL1 to Bob, and Alice can
delegate PL1 to Charlie. This also means that, Alice
can-delegate PE1 to Charlie, and Alice can-delegate
QE1 to Bob.

In the third scenario, where the delegating role is

an original/ implicit and the delegated role is an
original/ explicit (OI, OE), our table showed that now
Frank can-delegate PL1 to Dan, Frank can-delegate
PE1 to Dan, and Frank can-delegate QE1 to Dan. It

also showed that Frank cannot-delegate PL1 to Bob,
and cannot-delegate PL1 to Charlie

In the last scenario, where both the delegating role
and the delegated role are original/implicit (OI, OI),
our table shows that Frank can-delegate PL1 to Dan,
Frank can-delegate PL1 to Bob, Frank can-delegate
PL1 Charlie, Frank can-delegate PE1 to Charlie
Frank can-delegate QE1 to Bob. This is not desirable,
because it prevents any explicit members from
delegating.

In conclusion, in this model, we have chosen the
most liberal approach of authorizing delegation
between users in different roles. This means that our
model allows all semantics of the can-delegate relation.
This is motivated by the fact that by allowing one
semantic or the other will produce anomalies. For
example, by allowing only (OE, OE) means that Alice
will not be able to delegate PL1 to Bob, and to delegate
PL1 to Charlie. However, Alice is allowed to delegate
the same role to Dan, which is a less powerful role than
that of Bob and of Charlie. Also, by allowing only
(OE, OE) will prevent Frank from delegating PL1 to
Dan. This is not desirable, because Frank is the most
senior role, thus, inherits permission of all other junior
roles. Hence, should be allowed to delegate PL1 to
anywhere Alice can.

Finally, by allowing only (OI, OI) to delegate is

not desirable, because by allowing the implicit
membership to delegate and not the explicit
memberships puts more trust on the memberships that
gained via inheritance than the ones that were
originally assigned by the security officer.

The above semantics of delegation are a result of
having an active/full hierarchy. If the hierarchy is
empty, or collapsed, our model becomes flat and our
can-delegate becomes the same as in RBDM0.

4. Revocation in RBDM1

We now turn our attention to the revocation part of
RBDM1. Revocation in RBDM1 takes the approach of
the classical discretionary access control where the
source of the delegation (explicit or implicit) and the
identity of the revoker are taken into account in
interpreting the revoke operation.

Similar to revocation in RBDM0, Our model has
two approaches to implement revocation of previously
delegated roles. In the first approach, it appends a
lifetime to each delegation. Once that time expires, so
does the delegation. The second approach our model

 7

uses to implement revocation is allowing users to
revoke the memberships of delegated roles (human
revocation).

The following sub-sections discuss these types of
revocations and address some of the issues that might
introduce complexity and subtlety to the model.

4.1. Revocation Using Time Outs

In this model, where the delegation is temporary
and expires with time, the length of the delegation
becomes critical to the effectiveness of delegation.
This period, which we refer to in our model as duration
of delegation, must be chosen carefully.
Overestimating the duration of delegation increases
risk by allowing the delegate member to continue to
execute the permissions assigned to the delegated.
Underestimating the duration of delegation might
prevent the delegate member from completing the
assigned task. The concept of delegation duration was
explained in RBDM0.

4.2. Human Revocation

In the cases where revocations are implemented by
humans, our model authorizes revocation under the
following conditions:

 Only the delegator can revoke:

Only the delegating original can revoke. This approach
has some advantages and disadvantages. Among the
advantages are:

- It gives power to the original delegating member

to track and control the behavior of the temporary
delegate member.

- It minimizes the possibility of conflicts between
the original members that might result from
having someone else other than the sponsoring
original member revoking the delegated
membership.

Among the disadvantages of this approach are:

- Protection of the system resources from the

delegate member depends solely on the delegating
role member. If the delegate member behaves
badly in the delegated role, then only the
delegating user can revoke his membership, which
could take a long time before the delegation can
timeout. Allowing any of the original role

members to revoke can help mitigate the risk
resulting from such situations.

This revocation approach raises some issues that

introduce complexity and subtlety. The following
discussion addresses these issues.
For the sake of illustration we used Table 1, in
conjunction with Figure 3, to discuss the revocation
issues associated with the delegation in hierarchical
roles.

Suppose that Alice, who is an original member of
role PL1 (Alice ∈ User_O(PL1)), delegates her
membership to Bob who is an original member of role
PE1 (Bob ∈ User_O(PE1)), (PE1≤ PL1). Thereby
((Bob, PL1) ∈ UADE), and ((Bob, r’) ∈ UADI),
where, r’ is any role that is junior to PL1 (PL1 ≥ r’).
This is done at Alice’s discretion because Alice acts as
an owner of role PL1 because of her original
membership in that role. Alice can later revoke Bob’s
delegate membership of role PL1 (and from any role
that is junior to PL1). Note that, in this case, a member
of any role that is senior to role PL1 cannot revoke
Bob’s membership in PL1. This is because that senior
role is not the actual delegator of role PL1 to Bob. In
our example, this means Frank cannot remove Bob
from PL1.

Now suppose that Bob was made a member of role

PL1 by Alice, and by Dave, who is another member of
PL1, not shown in figure 3. If Alice revokes Bob’s
membership in PL1, then Bob should still continue to
retain his membership in PL1, via Dave. Bob can be
totally revoked from PL1 only if both Alice and Dave
revoke his membership in PL1.

 Cascading Revocation

Cascading revocation refers to the way a delegation of
membership can become automatically revoked as a
result of the revocation of the membership of the roles
involved.

Our model supports the cascading revocation. In
the above example, suppose that Alice’s membership
of role PL1is revoked by a security officer. This will
result in the automatic revocation of Bob’s
membership in role PL1 (and from any roles junior to
PL1). Also, if Bob loses his membership in his
original role (PE1), this will lead to losing his delegate
membership of role PL1 (and any roles junior to role
PL1). However, if Dave’s membership in role PL1
was in turn given by Alice, then if Alice revokes Bob’s
membership of PL1, Bob will also lose his membership
in role PL1 obtained from Dave. Alice can also revoke

 8

the membership of Bob in role PL1 indirectly by
revoking Dave’s membership of PL1.

 Multiple sponsoring / supporting roles

Multiple supporting roles is when a user who is an
original member of more than one role gets delegated
more than once to the same role one for every role
membership. This is also allowed in our model.

Multiple sponsoring roles is when a user becomes a
delegate member in a role by more then one original
member in that role. This is also allowed in our model.

In both cases, the delegate member in a role is
dependent of both the sponsor and the supporting roles.
If either of these roles is revoked, the delegate
membership will also end up being revoked.

Definition 6: The role-role revocation is authorized in
RBDM1 using the following relation:

Can-Revoke ⊆ R × R

The meaning of can-revoke (x, y) ∈ can-revoke is

that the delegating member of role x (explicit or
implicit) can revoke the membership of the delegate
member y or any subsets of y in the role x. For
example, Alice, who can delegate PE1 to Dan, thereby
((Dan, PE1) ∈ UADE), can also revoke Dan from PE1,
and any roles junior to PE1.

Strong Revocation vs. Weak Revocation

In RBDM1, revocation has impact only on explicit
membership and it is strong. Strong revocation
requires revocation of both explicit and implicit
memberships. A user who is strongly revoked from a
role will also be weakly revoked from all roles junior
to that role. Strong revocation therefore has a
cascading effect downward in the role hierarchy. In
weak revocation, a user may be revoked explicitly
from a role but continue to maintain an implicit
membership in the same role. This situation does not
apply in RBDM1 (as shown in examples above)
because the delegation was done at the delegator’s full
discretion. Thus, when he revokes, every related
delegation gets revoked.

5. Summary of the RBDM1

In this paper we described the motivation,
intuition, and formal definition of a new simple and a
non-trivial model for human-to-human delegation
using roles called RBDM1 (Role-Based Delegation

Model/ Hierarchical Roles) that is based on the Role-
Based Access control (RBAC96) developed by
[SCFY96]. This new model is considered an extension
to the RBDM0, which was a delegation model using
flat roles. In this paper we also identified the different
semantics that impact the can-delegate relation, we
analyzed these semantics to determine which ones we
consider as more appropriate in business today, thus
allowed in our model, and provided a justification to
why those selections are made. We concluded this
paper with an explanation of how our model handles
the revocation of the previously delegated
memberships. Our model has two approaches to
implement revocation of previously delegated roles. In
the first approach, it appends a lifetime to each
delegation. Once that time expires, so does the
delegation. The second approach our model uses to
implement revocation is allowing users to revoke the
memberships of delegated roles (human revocation).

 9

6. References

[ABLP96] Martin Abadi, Michael Burrows, Butler
Lampson and Gordon Plotkin. A calculus for
Access Control in Distributed Systems. ACM
Transactions on Programming Languages and
Systems, Vol. 15, No 4, September 1993,
pages 706-734.

[FK92] David Ferriaolo and Richard Kuhn. Role-

based access controls. In Proceedings of 15th
NIST-NCSC National Computer Security
Conference, pages 554-563, Baltimore, MD,
October 13-16 1992.

 [GM90] Morrie Gasser, Ellen McDermott. An

Architecture for practical Delegation in a
Distributed System. 1990 IEEE Computer
Society Symposium on Research in Security
and Privacy. Oakland, CA. May 7-9, 1990.

[Lamp71] B.W. Lampson, Protection. 5th Princeton

Symposium on information science and
systems. Pages 437-443.

[SB97] Ravi Sandhu and Venkata Bhamidipati. Role-

based administration of user-role assignment:
The UR97 model and its Oracle
implementation. In Proceedings of IFIP
WG11.3 Workshop on Data Security. August,
1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.

Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer,
29(2):38-47, February 1996.

[BS2000] Ezedin Barka and Ravi Sandhu. A Role-based

Delegation Model and Some Extensions.
Proceedings of 23rd National Information
Systems Security Conference, Pages 101-114,
Baltimore, Oct. 16-19, 2000

[BS2000] Ezedin Barka and Ravi Sandhu. Framework for

Role-Based Delegation Models. In
Proceedings of 16th Annual Computer
Security Application Conference, New
Orleans, LA, December 11-15 2000

