Implementing Transaction Control Expressions by
Checking for Absence of Access Rights

Paul E. Ammann & Ravi S. Sandhu*

Center for Secure Information Systems and
Department of Information and Software Systems Engineering

George Mason University Fairfax, VA 22030

Abstract

Separation of duties is an important, real-world re-
guirement that access control models should support.
In [13], Sandhu introduced the transaction control ez-
pression (TCE) for specifying dynamic separation of
duties. In this paper we consider the implementation
of TCEs in the typed access matriz model (TAM) re-
cently proposed by Sandhu [16]. We show that TAM
requires eztension for satisfactory handling of dynamic
separation of duties. In particular, dynamic separa-
tion requires the capabilily to ezplicitly test for the ab-
sence of rights in cells of the access matriz. We il-
lustrate how TAM, eziended to incorporate such tests,
can implement TCEs. We also discuss the impact of
checks for absence of rights on safety analysis (i.e.,
the determination of whether or not a given subject
can acquire a given right to a given object).

1 Introduction

The need for access controls arises in any computer
system that provides for controlled sharing of informa-
tion and other resources among multiple users. Access
control models (also called protection models or secu-
rity models) provide a formalism and framework for
specifying, analyzing and implementing security poli-
cies in multi-user systems. These models are typically
defined in terms of the well-known abstractions of sub-
jects, objects and access rights with which we assume
the reader is familiar.

Access controls are useful to the extent they meet
user’s needs. In this paper we consider the implemen-
tation of separation of duties. Separation of duties is

*The work of both authors is partially supported by National
Science Foundation grant CCR-9202270. Ravi Sandhu is also
supported by the National Security Agency through contract
MDA904-92-C-5141.

1063-9527/92 $3.00 © 1992 IEEE

131

an important real-world requirement that useful ac-
cess control models need to support. The particu-
lar separation of duties mechanism we implement is
the transaction control expression (TCE), introduced
in [13). It was shown in [11, 13, 15] that TCEs could
easily specify typical transactions in which both sep-
aration and coincidence of duties were clear require-
ments. In particular, TCEs go beyond the static sep-
aration of duties stipulated by Clark and Wilson [5].
Static specification of separation of duties is too re-
strictive. For example, in modeling the common real
world scenario in which a subject takes one role with
respect to object A but another role with respect to
object B, completely static specification of separation
of duties is inadequate.

The principal contribution of this paper is that
it (informally) demonstrates that specifying dynamic
separation of duties requires expressive power beyond
that found in classical access control models. Specif-
ically, the ability to test for the absence of a right is
needed to ensure that a given subject does not perform
two conflicting operations on the same object.

In this paper we show how to implement TCEs
by augmenting the access control model known as
TAM, or typed access matrix, recently proposed by
Sandhu [16]. TAM was selected because of its expres-
sive power and conceptual simplicity. In order to ac-
commodate TCEs, TAM needs to be augmented to
allow for checking the absence of access rights. Most
access control models proposed to date do not al-
low such checks. The original access matrix model
of Lampson [9] took the position that access should
be based on presence of access rights and not on their
absence. This viewpoint was reiterated as a basic prin-
ciple of protection by Saltzer and Schroeder [12]. Sub-
sequently models such as take-grant [10}, SPM [14],
ESPM (1, 2, 3] and TAM [16] have followed this ap-
proach. As such, these models are incapable of ex-

pressing the dynamic separation of duties embodied
in TCEs. Although the Orange Book [6] calls for the
ability to specify discretionary denial of access, TCEs
require non-discretionary denial of access based on the
past history of an object, and thus go beyond Orange
Book requirements.

The paper’s organization is as follows. Section 2
briefly summarizes TAM and the extensions to it re-
quired for testing for the absence of a right in a cell
of the access matrix. We call the resulting model aug-
mented TAM. Section 3 translates the TCE examples
given in [13] into an augmented TAM implementa-
tion. Section 4 summarizes the important points for
implementing general TCE expressions in augmented
TAM by automated translation. Section 5 addresses
the safety problem (i.e., the determination of whether
or not a given subject can acquire a given right to a
given object), and gives one approach to making safety
analysis feasible for TCEs. Section 6 summarizes the
paper.

2 The Typed Access Matrix Model

_In this section we briefly review the typed access
matrix model [16], and identify the extensions required
to accommodate dynamic separation of duties. For
readers familiar with HRU [7], we note that the essen-
tial difference between TAM and HRU is that TAM
subjects and objects are strongly typed, whereas in
HRU they are not. Strong typing means that each
subject or object is created to be of a specific type,
which thereafter cannot change.

2.1 Access Rights and Types

There is a finite set of access rights denoted by R.
There is a finite set of object types (or simply types) de-
noted by T'. There is a set of subject types Ts, Ts C T.
The types and rights are defined when a system is ini-
tialized, and thereafter T and R remain constant. For
example, T = {user, so, file} specifies there are three
types, viz., user, security-officer and file, with, say,
Ts = {user,so}. A typical example of rights would
be R = {r,w, e, o} respectively denoting read, write,
execute and own. We emphasize that the types and
rights are specified as part of the system definition,
and are not predefined in the model.

TAM represents the distribution of rights in the
system by an access matrix. The matrix has a row
and a column for each subject and a column for each
object. The [X,Y] cell contains rights which subject
X possesses for subject or object Y.

132

The rights in the access matrix cells serve two pur-
poses. Firstly, presence of a right, such as r, in [X,Y]
may authorize X to perform, say, the read operation
on Y. Secondly, presence of a right, say o, in [X,Y]
may authorize X to perform some operation which
changes the access matrix, e.g., by entering r in [Z,Y].
In other words, X as the owner of Y can change the
matrix so that Z can read Y. The focus of TAM is on
this second purpose of rights, i.e., the authorization
by which the access matrix itself gets changed.

2.2 TAM Commands and Primitives

The protection state of the system is changed by
means of commands defined as follows. A TAM com-
mand has the following format.

command o(X;y : t1, ..., Xi : ti)
ifry € [Xy, Xo, JA .. AP € [X, ., X,]
then op,; ...; op,

end

The name of the command is o, and X, through X;
are formal parameters. In general TAM commands
have a condition part (the if part) and a body (the
then part). The body consists of a sequence of prim-
itive operations, opy; ...; OPy.

There are six primitive operations in TAM. They
come in three pairs of compensating operations, item-
ized below. The first operation in each pair adds some-
thing to the access matrix, whereas the second opera-
tion removes the same thing from the access matrix.

o The enter operation enters a right into an exist-
ing cell of the access matrix. If the right is already
present in the relevant cell, enter has no effect.
The delete operation deletes a right, if present,
from an existing cell of the access matrix.

e The create subject operation introduces an
empty row and column for the newly created sub-
ject into the access matrix. The destroy subject
operation removes the row and column for the de-
stroyed subject from the access matrix.

The create subject operation requires that the
subject being created does not previously ex-
ist. The destroy subject operation similarly
requires that the subject being destroyed should
exist.

e The create object and destroy object oper-
ations are much like their subject counterparts,
except that they work on a column-only basis.

A TAM command is invoked by substituting actual
parameters of the appropriate types for the formal pa-
rameters. The condition part of the command is eval-
uated with respect to its actual parameters. The body
is executed only if the condition evaluates to true, and
the pre-conditions for all create and destroy opera-
tions are satisfied. The commands are executed atom-
ically, i.e., there is no interleaving of operations from
different commands. Alternately, we can assume an
interleaved model of execution with a serializability
requirement. Note that if the pre-condition for any
create or destroy operation in the body is false, the
entire TAM command has no effect.

A TAM authorization scheme consists of a finite
set of rights R, a finite set of types T, and a finite
collection of commands. A TAM system is defined by
giving an authorization scheme and the initial access
matrix.

2.3 Augmented TAM

For the purposes of this paper, we define augmented
TAM to be TAM with the addition that it is pos-
sible to test for the absence of a right in a cell of
the access matrix. In other words, a test of the form
r; ¢ [X,,, X,,] may be present in the condition part of
augmented TAM commands.

2.4 Command Invocation

The formal TAM model makes no statement about
who initiates a command. A command invocation is
simply taken to be a substitution of actual parame-
ters for the formal parameters of the command def-
inition. Although this is consistent with worst-case
safety analysis, for many applications, including the
one discussed in this paper, it is clearly important to
identify who initiates each command for a given col-
lection of actual parameters.

For purpose of this paper, we assume that a subset
of the subjects are designated as the principals. This is
achieved in augmented TAM by explicitly specifying
the principal types as a subset of the subject types.
Principals are the unit of accountability in the sys-
tem. Every command must be initiated by one or
more principals. In most cases there will be only one
principal involved in a command. Occasionally we will
use commands involving more than one principal. In
such cases we require that all principals involved as
actual parameters in the command agree to the com-
mand invocation.

3 Transaction Control Expressions

In this section we show how the examples of trans-
action control expressions given in [13] can be ex-
pressed in augmented TAM. A transaction control ex-
pression represents the potential history of an informa-
tion object. Sandhu [13] distinguished two kinds of in-
formation objects: transient objects which can have a
bounded number of operations applied to them, versus
persistent objects which can potentially have an un-
bounded number of operations. Transient objects are
intuitively modeled on forms, which are filled out and
after appropriate approvals lead to some action such
as issuing a check. Persistent objects intuitively model
books in which account balances are maintained.

3.1 Transient Objects

The classic example of a transient object is a
voucher that ultimately results in a check being is-
sued. The potential history of a voucher is represented
by the following transaction control expression [13].

prepare o clerk;
approve e supervisor;
issue o clerk;

Each term in this expression has two parts. The first
part names a transaction. The transaction can be ex-
ecuted only by a user with role specified in the second
part. For simplicity in discussion assume each user
has only one role. So ‘prepare e clerk’ specifies that
the prepare transaction can be executed on a voucher
only by a clerk. The semi-colon signifies sequential
application of the terms. That is a supervisor can ex-
ecute the approve transaction on a voucher only after a
clerk has executed the preceding prepare transaction.
Finally, separation of duties is specified by requiring
that the users who execute different transactions in
the transaction control expression all be distinct.

We now show how the given TCE is specified in
augmented TAM. We make use of the following sets
of types and rights:

1. Rights R={prepare, prepare’, approve, approve’,
issue, issue'}

2. Types T={voucher, cletk, supervisor, manager},
all of which are subject types, with principal types
Tp={clerk, supervisor, manager}

Rights are used as a means of keeping track of
the current location in the progression of a transac-
tion control expression. Undecorated rights, i.e., those

rights without a trailing apostrophe, are used to indi-
cate that current operation in the transaction control
expression is in progress. Decorated rights, i.e., those
rights with a trailing apostrophe, are used to indicate
that current operation in the transaction control ex-
pression is complete. The decorated rights are useful
in ensuring both separation and coincidence of duties.

The augmented TAM commands for the voucher
transaction control expression are given below. Each
step of the TCE is translated into two commands: the
first indicating that the step in question is in progress,
and the second indicating that the step has been com-
pleted.

(2) command begin-prepare-voucher
(C : clerk, V : voucher)
create subject V
enter prepare into [C, V]
end

(a') command complete-prepare-voucher
(C : clerk, V : voucher)
if prepare € [C, V] then
delete prepare from [C, V]
enter prepare’ into [C, V]
enter prepare’ into [V, V]
end

(b) command begin-approve-voucher
(S : supervisor,V : voucher)
if prepare’ € [V, V] then
delete prepare’ from [V, V]
enter approve into [S, V]
end

(b') command complete-approve-voucher
(S : supervisor, V : voucher)
if approve € [S, V] then
delete approve from [S, V]
enter approve’ into (S, V]
enter approve’ into [V, V]
end

(c) command begin-issue-check
(C :clerk, V : voucher)
if approve’ € [V, V] A prepare’ ¢ [C, V] then
delete approve’ from [V, V]
enter issue into [C,V]
end

(c) command complete-issue-check
(C :clerk,V : voucher)
if issue € [C, V] then
delete issue from [C, V]
enter issue’ into [C, V]

enter issue’ into [V, V]
end

To control progress of the TCE, the clerk in com-
mand (a) creates a voucher subject and acquires the
undecorated right prepare, indicating that the first op-
eration of the TCE is in progress. (As will be discussed
later, command (a) can be modified to tie the voucher
subject to one or more particular accounts with re-
spect to which the voucher is being prepared.) Once
the voucher has been prepared command (a') is in-
voked to indicate, via the prepare’ right, that voucher
preparation is complete. Command (a’) can be in-
voked only by the same clerk who invoked command
(a) for a given voucher. Command (a') enters the
prepare’ right in the [C, V] cell to record which clerk
prepared the voucher. It also enters prepare’ in the
[V, V] cell to signify that the next step of the TCE
can proceed. The commands (b) and (b’) allow a su-
pervisor to obtain the approve right for the voucher
provided preparation is complete; and subsequently
denote, via the approve’ right, that voucher approval
is granted. The command (c) give the named clerk
the issue right for the voucher provided the voucher
has been approved, and the specific clerk named in
the command does not hold the prepare’ right for the
voucher. This is where the facility to test for absence
of rights is crucial. Command (c’) subsequently in-
dicates, via the issue’ right, that the check has been
issued. At this point the voucher’s TCE is complete
and the voucher can be archived. (The TAM com-
mand for archival has been omitted for simplicity.)

Several points about the example warrant atten-
tion. In particular, command (c) enforces dynamic
separation of duties by checking for the absence of the
prepare’ right before allowing a specific clerk to ob-
tain the issue right. Testing for the absence of a right
in a cell in the access matrix is outside the expres-
sive power of standard nonmonotonic access matrix
formulations such HRU and TAM. Also, commands
“clean up” after themselves so as to ensure that only
one thread is followed. For example, once a clerk has
obtained the issue right, via command (c), no other
clerk can obtain the issue right (because the approve’
right has been deleted from [V, V]). Thus it is assured
that two clerks will not concurrently issue the check,
with the undesirable consequence that two checks get
issued for the same voucher.

Now suppose the check requires approval by three
supervisors. We can specify this with the following
TCE.

prepare e clerk;
approve e supervisor;
approve e supervisor;
approve e supervisor;
issue o clerk;

With this expression the three approve transactions
must be executed sequentially. This is appropriate in
a manual system where there is one physical repre-
sentation of the check, which can be accessed by only
one supervisor at a time. However, in a computerized
system, it should be possible to request concurrent ap-
proval. Sandhu [13] proposed the following notation
for expressing multiple approval.

prepare o clerk;
3 :approve e supervisor;
issue o clerk;

The colon is a voting constraint specifying 3 votes from
3 different supervisors in this case, without requiring
the voting to be sequential.

We can implement this example in augmented TAM
by modifying the commands (b) and (b') from the pre-
vious example as follows; the other commands remain
as they are.

(b) command begin-approve-voucher

(51, S2, S3 : supervisor, V : voucher)

if prepare’ € [V, V] then
delete prepare’ from [V, V]
enter approve into [S1,V]
enter approve into {52, V]
enter approve into [S3,V]

end

(b') command complete-approve-voucher
(51,52, 53 : supervisor,V : voucher)
if approve € [S1, V] A approve € [S2,V]

Aapprove € [S3,V] then
delete approve from [S1,V]
delete approve from [S2,V]
delete approve from [S3,V]
enter approve’ into [S1,V]
enter approve’ into [S2,V]
enter approve’ into [S3,V]
enter approve’ into [V, V]
end

It is necessary to the success of the command (b')
that a given actual parameter to a TAM command
be represented by at most one formal parameter. In
other words we assume here that S1, $2 and S3 must
be distinct supervisors. This assumption differs from

135

the usnal convention followed in access control models
(see, for example, 3, 7, 14, 16]).

An objection that might be raised to the preceding
implementation is that it requires simultaneous agree-
ment from three supervisors to approve a voucher.
It can be argued that asynchronous agreement bet-
ter models organizational requirements. Fortunately,
asynchronous agreement can be achieved with the in-
troduction of additional rights. We sketch an asyn-
chronous solution here.

The idea is to introduce one right that stands for a
single approval, another that stands for two approvals,
and so on, up to a right that stands for n approvals,
where n = 3 in this example. One then defines a
series of commands, one for each possible count of ap-
provals. In the example given, these commands need
only have a single supervisor and the voucher as ar-
guments. Each begin-approve-voucher command re-
places the undecorated right for n approvals in the
[V,V] cell with the undecorated right for n — 1 ap-
provals, and enters a single undecorated approval right
in an [S, V] cell. Each complete-approve-voucher com-
mand replaces the decorated right for n — 1 approvals
in the [V, V] cell with the decorated right for n ap-
provals, and replaces the undecorated approval right
in the [S, V] cell with a decorated approval right. By
including appropriate checks for the absence of rights,
it can also be ensured that a given supervisor does not
grant more than one approval.

Following [13], further consider the requirement
that either three supervisors approve the check or the
department manager plus one supervisor approve it.
The TCE notation allows weights for different roles as
follows.

prepare o clerk;
3:approve e manager=2, supervisor=1;
issue o clerk;

Approve transactions with sufficient votes are required
before proceeding to the next term. In this case ap-
prove transactions executed by managers have weight
2 whereas those executed by supervisors have weight
1. If two managers approve the check we get 4 votes.
It seems reasonable to allow this so we interpret the
number of votes required as a lower bound. The mo-
ment 3 or more votes are obtained the next step is
enabled.

Essentially the implementation must allow for
progress to be made by the disjunction of various pos-
sible steps. A natural way to implement this is with a
corresponding variety of augmented TAM commands
for a given step, each of which is capable of enabling
the following step.

For this example, a possible TAM implementation
is as follows. The previous commands (b) and (b') are
still acceptable and necessary, in that they represent
a possible way in which approval might be achieved.
They are not sufficient, however, since the implemen-
tation must account for other ways in which votes may
be collected. There needs to be a means by which a
manager can combine with a supervisor, and also a
means by which two managers can generate an ap-
proval. The result is two pairs of additional com-
mands, of which one pair is shown below. (A similar
pair would be required for two managers approving a
voucher.)

(d) command begin-approve-voucher-2
(S : supervisor, M : manager,V : voucher)
if prepare’ € [V, V] then
delete prepare’ from [V, V]
enter approve into [S, V]
enter approve into [M, V]
end

(d') command complete-approve-voucher-2

(S : supervisor, M : manager,V : voucher)

if approve € [S, V] A approve € [M, V] then
delete approve from [S, V)
delete approve from [M, V]
enter approve’ into [S, V]
enter approve’ into [M, V)
enter approve’ into [V, V]

end

The concise voting notation in the TCE has been
fully enumerated in the translation to augmented
TAM commands. Provided the translation is auto-
mated, this expansion is not problematical for many
typical cases. Also, by introducing additional rights as
discussed earlier, we can decouple the supervisor and
manager approvals to make them asynchronous.

3.2 Coincidence of Duties

Sometimes different transactions in an object his-
tory must be executed by the same user. Consider a
purchase order with the following transaction control
expression.

requisition e project-leader;
prepare o clerk;
approve e manager;
agree e project-leader;
issue o clerk;
The idea is that a project leader initiates a requisi-

tion, a purchase order is prepared from the requisi-
tion, approved by a purchasing manager, and then

needs agreement of the project leader before finally
being issued by a clerk. Our rule of distinct identity
implies different project leaders be involved in requi-
sitioning and agreeing, contrary to the desired policy.
The following TCE syntax identifies which steps must
be executed by the same user.

requisition e project-leader | x;
prepare o clerk;

approve e manager;

agree o project-leader | x;
issue e clerk;

The anchor symbol ‘|’ identifies steps which must be
executed by the same individual. The x following it
is merely a token for relating multiple anchors, as for
example in the TCE given below.

requisition e project-leader | x;
prepare o clerk;

approve e manager | y;

agree o project-leader | x;
reapprove e manager | y;

issue o clerk;

In this case there are two steps to be executed by the
same project leader, and two to be executed by the
same purchasing manager.

The prepare, approve and issue steps in this TCE
are similar to those in the voucher example of sec-
tion 3.1, and can be accomplished by similar aug-
mented TAM commands. In addition we need com-
mands to initiate the requisition, agree to the pur-
chase order, and to reapprove the purchase order. To
implement this TCE we define the following rights and

types.

1. Rights R={requisition, requisition’, prepare,
prepare’, approve, approve', agree, agree,
reapprove’, reapprove’, issue, issue’}

2. Types T={purchase-order, project-leader, clerk,
manager}, all of which are subject types,
with principal types Tp={project-leader, clerk,
manager }

The full set of augmented TAM commands is given
below.

(a) command begin-initiate-requisition
(P : project-leader, O : purchase-order)
create subject O
enter requisition into [P, O]
end

(a') command complete-initiate-requisition
(P : project-leader, O : purchase-order)
if requisition € [P, O] then
delete requisition from [P, O]
enter requisition’ into [P, O]
enter requisition’ into [0, O]
end

(b) command begin-prepare-po
(C : clerk, O : purchase-order)
if requisition’ € [0, O] then
delete requisition’ from [0, O]
enter prepare into [C, O]
end

(b') command complete-prepare-po
(C : clerk, O : purchase-order)
if prepare € [C, O] then
delete prepare from [C, O]
enter prepare’ into [C, O]
enter prepare’ into [0, O]
end

(c) command begin-approve-po
(M : manager, O : purchase-order)
if prepare’ € [0, O] then
delete prepare’ from [0, O]
enter approve into [M, O]
end

(¢') command complete-approve-po
(M : manager, O : purchase-order)
if approve € [M, O] then
delete approve from [M, O]
enter approve’ into [M, O]
enter approve’ into [0, O]
end

(d) command begin-agree-to-po
(P : project-leader, O : purchase-order)
if approve’ € [0, 0] A requisition’ € [P,0)]
then
delete approve’ from [0, O]
enter agree into [P, O]
end

(d') command complete-agree-to-po
(P : project-leader, O : purchase-order)
if agree € [P, O] then
delete agree from [P, O]
enter agree’ into [P, O]
enter agree’ into [0, O]
end

(¢) command begin-reapprove-po
(M : manager, O : purchase-order)
if agree’ € [0, O] A approve’ € [M, O] then
delete agree’ from [0, O]
enter reapprove into [P, O]
end

(¢') command complete-reapprove-po
(M : manager, O : purchase-order)
if reapprove € [M, O] then
delete reapprove from [M, O]
enter reapprove’ into [M, O]
enter reapprove’ into [0, O]
end

(f) command begin-issue-po
(C : clerk, O : purchase-order)
if reapprove’ € [0,0] A prepare’ ¢ [C,O]
then
delete reapprove’ from [0, O]
enter issue into [C, O]
end

(f) command complete-issue-po
(C : clerk, O : purchase-order)
if issue € [C, O] then
delete issue from [C, O]
enter issue’ into [C, O]
enter issue’ into [0, O]
end

In commands (d) and (e), a check is made to ensure
coincidence of duties. Thus the same project-leader
who makes the requisition agrees to the subsequent
form of the requisition. Also, the same supervisor who
approves the requisition does the reapproval after the
project-leader has indicated agreement. In command
(f), on the other hand, a check is made for absence of
an access right, thus ensuring separation of duties.

3.3 Persistent Objects

We now turn our attention to persistent objects.
We propose the following transaction control expres-
sion for representing the potential history of an ac-
count.

create e supervisor;
{debit e clerk + credit eclerk};
close e supervisor;

The curly parenthesis denote repetition while ‘4’ gives
a choice on each repetition. The idea is that an ac-
count is created, thereafter repeatedly debited or cred-
ited, and at some point closed. Any object whose

transaction control expression contains indefinite rep-
etition is, by definition, a persistent object. Similarly
any object whose transaction control expression does
not contain repetition is, by definition, transient.

The history of a persistent object may be lengthy.
It is impractical to convert the transaction control
expression incrementally into an history, as done for
transient objects. We can realistically have only some
abbreviated history for persistent objects available to
the access control system. Fortunately, it is improper
to require that all transactions executed on a persis-
tent object be performed by distinct users. An ac-
count may have hundreds of debit and credit opera-
tions, while the organization employs only a few dozen
clerks. Separation of duties carried to this extreme will
paralyze the organization. The fundamental principle
is that transactions are executed on persistent objects
only as the side effect of executing them on transient
objects {13]. Separation of duties can be enforced by
keeping the following history information.

1. The entire history of transient objects.

2. A partial fixed length history of persistent objects
for non-repetitive portions of the transaction con-
trol expression.

For the account example, assume that Dick is the su-
pervisor who creates the account, as a side effect of
executing a transaction on some transient object. The
TCE of the account is modified to record this fact as
follows.

create o Dick;
{debit e clerk + credit e clerk};

close e supervisor;

Thereafter, as debit and credit transactions are exe-
cuted on the account, again as a side effect, the expres-
sion remains unmodified. Finally when the account is
closed by some supervisor other than Dick, say Jerry,
this fact is recorded in the TCE to give us the follow-
ing.

create o Dick;
{debit e clerk + credit o clerk};
close o Jerry;

There is a separation of duty involved in creating and
closing the account. But separation of duty in debiting
and crediting it is enforced only to the extent specified
in the transaction control expressions on the transient
objects related to this account.

There is no great difficulty in implementing the
transient object/permanent object TCE distinction in
augmented TAM. The general rule is that there must

138

be some TAM object created for each transaction on
which separation of duties needs to be enforced. In the
above example, the create right for an account is given
to Dick, and the absence of the create right in the cell
[Jerry, account] allows Jerry to obtain the close right
for that same account.

For the repetitive debit or credit operations, a sepa-
rate voucher subject is created each time, and transac-
tions as illustrated in earlier examples can manipulate
the column of the access matrix associated with the
voucher leading up to a debit or credit on the account
when the check is issued. To relate the voucher sub-
ject to the account in question, the account can be
tied to the voucher subject at the time the voucher is
created. The stipulation in [13], that Dick cannot ap-
prove vouchers for accounts that he has created, can be
easily accommodated. The detailed augmented TAM
commands required for this example are omitted due
to lack of space.

4 Automatic Translation of TCEs

In this section, we provide some general observa-
tions on the implementation of TCEs in augmented
TAM by automated translation. It is clear that any
translation scheme, based on the examples of section 3,
must accommodate at least the following.

e A subject, such as a voucher, must be created to
serve as the communication channel by which the
TCE proceeds. The communication subject ef-
fectively stores a “program counter” for the TCE
and controls which operation can occur next. At
creation time, communication subjects for tran-
sient objects can be tied to related subjects, such
as accounts and responsible users, for persistent
objects. When a transaction is complete, the
communication subject can be destroyed, typi-
cally after audit information has been archived.

e As part of the conditional test in the TAM com-
mands for successive operations in a transac-
tion control expression, satisfactory completion
of prior steps must be checked. Such checking is
done by consulting the rights stored for the com-
munication subject for the TCE.

o Separation of duties is enforced by explicitly
checking for the absence of a particular right or
set of rights. The specific checks are easily deter-
mined by examining the prior operations in the
transaction control expression.

e Conversely, coincidence of duties, i.e., when the
same principal must perform two or more tasks,
is enforced by explicitly checking for the presence
of a particular right or set of rights. Again, the
specific checks are easily determined by examin-
ing the prior operations in the transaction control
expression.

e Voting is achieved by either multiple TAM com-
mands or by disjunction in the conditional test
of a TAM command. In general, a concise vot-
ing expression in a transaction control expression
may result in a combinatorial number of resulting
TAM commands.

o The invocation of a TAM command with a given
set of arguments must imply real world agree-
ment by the users represented by those argu-
ments. For instance, when a TAM command en-
ters approve into the [S, V] cell, there must be
assurance that the action represents the supervi-
sor’s instructions, and not some malicious party.
Briefly, authentication issues require attention in
an actual implementation.

5 Safety Analysis of TCEs

In this section, we explain the general problems of
safety analysis, and the complications that checking
for the absence of a right in a matrix cell can introduce
into safety analysis.

The protection state of a system is defined by the
privileges, which we equate here with rights, possessed
by the individual subjects. Once the initial state ofa
system has been established, the state evolves by the
autonomous activity of subjects. A security model,
such as HRU or TAM, provides a framework for spec-
ifying the dynamics of the protection state. Such a
collection of rules is called an authorization scheme,
or simply a scheme.

To understand the implications of a scheme, it must
be possible to determine the cumulative effect of au-
thorized incremental changes in the protection state.
The incremental state changes authorized by a scheme
may appear innocent enough in isolation, but their
cumulative effect turns out to be undesirable. For a
given initial state and authorization scheme, we need
to characterize protection states that are reachable.

This problem was first identified in [7] where it
is called the safety problem. In its most basic form,
the safety question for access control asks: is there a
reachable state in which a particular subject possesses
a particular privilege for a specific object? It is the

fundamental question which an access control model
must confront. Since in most access control models
subjects are usually authorized to create new subjects
and objects, the system is unbounded; and it is not
certain that such analysis will be decidable, let alone
tractable, without sacrificing generality.

There is an essential conflict between the expressive
power of an access control model and tractability of
safety analysis. The access matrix model as formalized
by Harrison, Ruzzo, and Ullman (HRU) [7] has very
broad expressive power. Unfortunately, HRU also has
extremely weak safety properties. Safety is undecid-
able for most policies of practical interest, even in the
monotonic version of HRU [8].

The main contribution of access control models
such as take-grant [10], SPM [14], ESPM [1, 2, 3} and
TAM [16] is that they offer tractable safety for schemes
of practical interest. It is easy to add expressive power
to such models, and in many cases, the need for ad-
ditional expressive power can be readily argued. For
example, in this paper we argue for the need to check
for the absence of access rights. The difficulty is en-
suring that the increased expressive power does not
destroy the ability to analyze safety.

It is known that the general inclusion of checks for
the absence of rights greatly complicates the safety
analysis. For example, in [4] it is shown how to em-
bed satisfiability in an access matrix model in which
it is possible to test for the absence of rights. Thus
safety if general checks on the absence of rights are al-
lowed is NP-hard. What is required is some tolerable
restriction that avoids exponentially difficult analysis.

In the context of this paper, we propose to address
the safety problem by restricting the usage of check-
ing for the absence of rights. In particular, if access is
specified with transaction control expressions, then we
allow checking for the absence of access rights in the
(mechanical) translation to augmented TAM. Other-
wise, we prohibit checking for the absence of rights.
We also require that the rights used in implementing
TCEs be disjoint from TAM rights used for other pur-
poses.

The advantage of this approach is that safety analy-
sis for TCEs can be carried out separately from safety
analysis for the rest of the TAM authorization scheme,
a process which is explained in [16]. Safety analysis
for TCEs by themselves is relatively straight forward.
From inspection, it is clear which types of users can
receive particular TCE-related rights. For instance, in
the first example presented earlier, it is clear the clerks
can obtain the undecorated and decorated versions of
the prepare and issue rights for a given voucher, and

139

that the same holds for supervisors with respect to the
approve rights.

6 Conclusion

In this paper we have analyzed the implementation
for transaction control expressions in the augmented
typed access matrix model. Transaction control ex-
pressions are important because they provide a nat-
ural mechanism for the specification of separation of
duties applications. The main result of this paper is
that, to implement transaction control expressions in
the access matrix model, it appears necessary to al-
low checks for the absence of access rights in cells of
the access matrix. Such checks are outside the expres-
sive power of nonmonotonic HRU and (unaugmented)
TAM. Examples of translations of transaction control
expressions into the augmented access matrix (aug-
mented TAM) were given, and general considerations
in the translation were outlined. The complications
of the increased expressive power of augmented TAM
on safety analysis were discussed, along with a way of
handling such complications.

Acknowledgments

The authors are grateful to Nathaniel Macon,
Howard Stainer, and Mike Ware for making this work
possible.

References

[1] Ammann, P.E. and Sandhu, R.S. “Extending the
Creation Operation in the Schematic Protection

Model.” Proc. Sizth Annual Compuier Security
Applications Conference, 340-348 (1990).

[2] Ammann, P.E. and Sandhu, R.S. “Safety Analy-
sis for the Extended Schematic Protection Model.”
Proc. IEEE Symposium on Research in Security

and Privacy, 87-97 (1991).

Ammann, P.E. and Sandhu, R.S. “The Extended
Schematic Protection Model.” Journal of Com-
puter Security, to appear.

[4

Budd, T.A. “Safety in Grammatical Protection
Systems.” International Journal of Computer and
Information Sciences 12(6):413-431 (1983).

[5

-

Clark, D.D. and Wilson, D.R. “A Comparison of
Commercial and Military Computer Security Poli-
cies.” IEEE Symposium on Security and Privacy,
184-194 (1987).

140

[6] Department of Defense National Computer Secu-
rity Center. Department of Defense Trusted Com-
puter Systems Evaluation Criteria. DoD 5200.28-
STD, (1985).

[7] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D.
“Protection in Operating Systems.” Communica-

tions of ACM 19(8):461-471 (1976).

—

Harrison, M.H. and Ruzzo, W.L. “Monotonic Pro-
tection Systems.” In DeMillo et al (Editors). Foun-
dations of Secure Computations. Academic Press
(1978).

(8]

Lampson, B.W. “Protection.” 5th Princeton Sym-
posium on Information Science and Systems, 437-
443 (1971). Reprinted in ACM Operating Systems
Review 8(1):18-24 (1974).

(o

(10] Lipton, R.J. and Snyder, L. “A Linear Time Al-
gorithm for Deciding Subject Security.” Journal of
ACM 24(3):455-464 (1977).

[11] Nash, M.N. and Poland, K.R. “Some Conun-
drums Concerning Separation of Duty.” IEEE
Symposium on Security and Privacy, 201-207
(1982).

[12] Saltzer, J.H. and Schroeder, M.D. “The Protec-
tion of Information in Computer Systems.” Pro-
ceedings of IEEE 63(9):1278-1308 (1975).

[13] Sandhu, R.S. “Transaction Control Expressions
For Separation Of Duties.” Proc. Fourth Annual
Computer Security Applications Conference, 282-
286 (1988).

[14] Sandhu, R.S. “The Schematic Protection Model:
Its Definition and Analysis for Acyclic Attenuating
Schemes.” Journal of ACM 35(2):404-432 (1988).

{15] Sandhu, R.S. “Separation Of Duties In Comput-
erized Information Systems.” Proc. Database Secu-
rity IV: Status and Prospects S. Jajodia and C.E.
Landwehr, eds., Elsevier, 179-189 (1991).

[16] Sandhu, R.S. “The Typed Access Matrix Model.”
Proc. IEEE Symposium on Research in Securily
and Privacy, 122-136 (1992).

